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The scaling function at the wetting transition for the two-point energy-density correlation func-
tion is computed exactly for two-dimensional Ising models with interfaces in the [10) and [11]
directions. The two-point separations perpendicular and parallel to the wall are scaled by
g& —(T„—T) ' and g~~

—(T„—T), respectively; and the energy-density operator scales as
T —T. The resulting scaling function is independent of the microscopic couplings, boundary in-
teractions, wall orientation, and specifics of the operator. Furthermore, the result is simple and
consists of Gaussians and error functions, suggestive of random walk.

The wetting transition, or the unbinding of interfaces, is
a subject of much recent interest. (See reviews in Refs.
1-5). Despite the tremendous understanding that has
been achieved through these works, no exact result from
microscopic models on correlation functions for wetting
has been computed. Eff'ort in this direction has been in-
hibited by the expectation that the results may be compli-
cated, hence unilluminating. However, we will present
below an exact result which is simple and may be repro-
duced by other approaches, such as the random-walk
method.

The last few years have seen an important develop-
ment in the applications of conformal algebra to two-
dimensional systems. The method has been successfully
used to derive correlation functions at the critical temper-
ature T„and there has been much interest in extending
the method to T~T, and to defect systems. Two-
dimensional wetting naturally falls in the regime of con-
cern, for wetting generally occurs at T„&T, and the de-
fect representing wall interactions is the mechanism of in-
terface pinning. If it is possible to extend conformal alge-
bra to treat wetting, one would expect the results to
possess some universal character. However, it is well
known' that noncritical correlations in general depend
very explicitly on the detailed couplings. Furthermore,
two-point scaling functions for T T, for the Ising model
with linear defects has been computed in Ref. 11 for ener-

gy densities, and in Ref. 12 for spins; it was shown that
the universal scaling forms are destroyed by the defect.
The energy-density correlation is a simple expression in
terms of Bessel functions for the homogeneous system, '

but that for the defect system is rather complicated, with
the explicit dependence on the defect persisting to the at-
T, limit, even though the critical exponent a remains
universal. ' In view of these known results, it is not a
priori c1ear how universality can arise for wetting in the
Ising model, even though it is expected from generally ac-
cepted principles. Our result shows that the answer lies in
the following two points: First, how to isolate the interfa-
cial contribution to the correlations in a microscopic mod-
el and second, how to scale the distances as well as the
operators as T T .

The answer to part of the second point has been sug-
gested in fluctuation theory' and solid-on-solid walks, '

where it has been proposed that the scaling behaviors of
correlation lengths perpendicular and parallel to the wall
are g~ —(T„—T) ' and gi —(T„—T) . And indeed
these are consistent with the exact result to be shown. On
the other hand, the answer to the first point comes out of
our exact calculation. It is found that the proper "net
energy-density correlation" for wetting is

&8/8$&, -&else')+ —&8182&4-/ —&8/), &82&+ / —
&8t &++&82&, ,

where ++ denotes the boundary condition for pure
phase. The net one-point function '

&s&, &s) ~ —&d~ y
decreases exponentially from the wall to the bulk in the
partially wet phase, and changes to a power-law decay at
the transition. Note that this subtraction removes the
disconnected part as well as the pure phase contributions.

Consider two infinite cylindrical Ising lattices, one
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with z'p the bulk incremental free energy,

r(%' 1-2K(+IntanhK2,

r(%j
j 1

= ln(sinh2K (sinh2K2);
(3)

and F(T), the vanishing of which determines T and,
hence, the phase diagram, is given by ' '
F(T) jjoj [e '(cosh 2K j

—cosh 2K j ) —sinh2K je ']
(cosh2K j

—cosh 2K ( )sinh2K j

F(T) lj jl (sinh2K) sinh2K2 —1 —2 sinh2K j sinh2K2)

sinh2E I sinh2K2

(4)

Vr'e calculate the correlation function between two en-
ergy densities ej e„, , and e2 e„,, , with

o; ~a;~+j. The precise coordinates in each lattice are
I

oriented in the [10] direction, and the other in the [11]
direction. The reduced interactions between nearest-
neighbor spins are Kj and K2, except they are modified to
Kj and K2 in the bottom row, as shown in Fig. 1. The
boundary condition at the top and bottom of the cylinder
is that all spins are +1 in the top row and —1 in the bot-
tom row. An interface is imposed by this boundary condi-
tion. The thermodynamics of the [11] interface has re-
cently been calculated a large entropic freedom is asso-
ciated with this geometry and it results in lower T„com-
pared with that of the well-known [10) case, calculated in
Ref. 17. The incremental free energy i for the two lat-
tices has the form

cosh r =cosh ro ——,
' F(T),

I@I I I l I
I I I I I

2 S gp

Kg ~V V

FIG. 1. The two-dimensional Ising lattices with boundary
oriented in the [10] and [1 ll directions. The boundary condi-
tions are periodic on the side and all spins are —1 (+ 1) at the
bottom (top). The reduced couplings are Ki and E2 except near
the wall at the bottom where they are EC],K2. The coordinations
of the energy-density operator e„are indicated.

shown in Fig. 1. Note that the term "energy density" is
used in a loose sense in the [11] lattice, for it is really the
next-nearest-neighbor spin pair. Clearly the presence of
the wall destroys some symmetries enjoyed by correlations
in the bulk. The translational invariance in the horizontal
direction remains valid, and only m=m2 —m~ &0 is
relevant; but both n j and n2 will appear in the correlation,
and the natural vertical separations are n =n2 —nj &0
and n n2+n( We .use the method of transfer matrix to
compute this two-point function in both lattices. In the
following we show the net two-point functions for the two
Ising lattices in a notation which brings out the similarity
of the results in the two lattices for arbitrary temperature
below transition. Then we proceed to show how to obtain
the scaling function.

The exact result for the net energy-density correlations
1S

(eje2), L(ro~) de(isin[b' (n)) —b (co~)]L —(ro) —{I—cos[b (ro) —8 ( r~o)] ]L+( r)o)[1+ O(e ')],
with ro~ is, the incremental free energy, and

e
—ny(co) —imago

L() 2e L (~) e
—ny(m) —imm L (~) & (~) e

—ny(m) imm—
A term of O(e ™')in (5) has been ignored because we shall concentrate on the limit m, n ~. An anisotropy factor
which differs from unity only for one lattice has also been suppressed, being irrelevant in the scaling limit. The m, n
dependence in (5) has a simple form which only appears in L (o) ), L —(ro), and L+ (ro). The combination
exp[ ny(ro) ——imago] is a familiar one' ' in the in6nite homogeneous Ising model. The functions y(ro) and 8 (ro) for
the [10) lattice are the elements of Onsager's hyperbolic triangle, '

sinhy(ro) . [(aj ' —e' )(1 —aje '")(a2 ' —e' )(1—a2e '")]'i,
2sinh2E~

' I/2

,, („) (1 —aje' )(1 —a2e ' )

(1 —a2e'")(1 —aje ' )

where aj ' exp2(K(+K2 ), a2 ' exp2(K) —K2 ). These are presented in their factored form so that the analytic
structures are easily discerned. Similarly, for the [11]lattice, '

sinhy(ro) = (sinh2K(+sinh2K2e'") '[(ao ' —e'")(ao ' —e ' )]' e'
&/2

1 —ao

1 —oe

where ao -sinh2K( sinh2Ki. The branch selected for each square root in (7) and (8) takes a positive value at co -0.
Comparison between (7) and (8) shows that they both have the structure of a branch cut inside and outside the unit cir-
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cle in the complex e' plane, and the branch points a1, a2,
a2 ', and a~

' in the [10] lattice are replaced by 0, ao,
ao, and eo in the [11] lattice. Below the bulk critical
temperature, ao, az & 1 and they are related to the bulk
incremental free energy by mo imp, where expicoo a~, ao
for the [10], [11] lattice, respectively. To complete the
definition of Eq. (5), we have

A (co) -Z+ (co) [—f+ (co)+tanH(co) ],
8(co) Z+(co) [fy(co) tanH(co)+1],

C(co) -Z (co)[f-(co) tan8(co)+1],

where 8(co) b (co)/2, b (co)/2+co/2 for the [10], [11]
lattice, respectively; and

fg (co) T- (coth2K~ -t cosco)csccoe

f4'1(co) tanh (K~ +' K2)tan —,
Z ~g (co) ~ sinh2K~ sincoe 'cos~ tc, b'(co)

cosh2(Ki+ Kz)+ 1
cos cosH co

sinhK~ +sinhK2e '" 2

Note that A(+ co~) 0; this adds two poles to the branch
points in the singularities of the integrand of (5).

As T T„, the incremental free energy approaches
the bulk value, z zo, thus y(co&) y(coo) 0. In the
limit n, rn ~ and T T„,we obtain the scaling func-
tion for (5) by defining the scaled distances x m(zo —z),
y ny(co„) and y ny(co~) Th. us, the vertical' and hor-
izontal correlation lengths are given by

y(co~) —T~ —T, gt zo —z- (T —T) 2.

(i2)

The above scaling is implemented in the two-point func-
tion in (5) in the following steps. The contour of integra-
tion in co from —x to x is deformed down to the lower
complex co plane; there is a contribution from the pole at
co —co~ iz, an—d a contribution from the contour
along the branch cut from co —mo —iso to m~ —i .
Since the latter is dominated by co-coo due to the factor
exp —imco, we expand co around —coo and scale it by
z (co+coo)/(co~ —coo). This reduces (5) to the follow-
ing scaling form.

( ) gr —y 2
—y+ e d

—x 2 (1 z )cosyz+ 2z slnyz
8~ 82 ze cosyz—

1+z
(i 3)

where

+e-'& I+e Wx-
2Jx,

(14)

where @(x) is the error function, and x and y(y) are the
scaled horizontal and vertical (image) separation between
the two scaled energy densities e~ and ez, respectively.

Clearly the above result is universal: any dependence
on the microscopic couplings K~, K2, the wall interactions

W lim „,2e
' ' /g()C(cot, )A'( —

cot, )-(T —T)

The consequence of this factor is that the scaling dimen-
sion of the energy density is one. This is the same scaling
dimension for energy density at T„whether or not it is
only a coincidence remains open. We scale the operator
by ej ej/4W, and carry out the integral in (13) to ob-
tain the final result

&e)e2&, - —,
' (xx) ' 'e " '(e ""+e ' '")

i

K~, K2, as well as any reference to the orientation of the
boundary or the difference between nearest- and next-
nearest neighbor pair operators has been scaled away, and
is implicit through (&, (s, and $Vonly. Furthermore, the
appearance of Gaussians and error functions is very sug-
gestive of random walk and may be reproduced by
methods such as those reviewed in Ref. 5. The random-
walk feature is expected to be general and valid for more
complicated correlations even if spins are involved. While
the spin- and energy-density correlations are profoundly
different at T„we expect them to be quite similar at T,
provided proper subtraction and scaling are taken.

Note added in proof. Professor T. W. Burkhardt kindly
informed us that he has recently produced our results with
a solid-on-solid model.

The authors wish to thank Professor M. E. Fisher, Pro--
fessor M. L. Glasser, and Professor N. M. Svrakic for
many stimulating discussions.
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