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The analyses of the two-dimensional Peierls-Hubbard model by Tang and Hirsch and by the
present author are compared. While there is agreement with the principal conclusion of Tang
and Hirsch, viz. , that the effects of the Hubbard interaction on the Peierls bond alternation are
different in one and two dimensions, I disagree on three related issues. First, the (tt, tt) phonon
which dominates in the uncorrelated limit is different from the one Tang and Hirsch believe wins

[(tt, tt) along x axis). Second, the energy crossing between the (tt, tt) and (tt, O) phonons found by
Tang and Hirsch for large magnitudes of the Hubbard interaction can occur only in the unrealis-
tic limit of very strong bond alternation where the strength of the weak bond is close to zero.
Finally, the disappearance of the bond alternation due to the Hubbard interaction is much more
rapid than that calculated by Tang and Hirsch —the bond alternation should become weaker even

at small U. This suppression of the bond alternation is indeed related to the long-range antifer-
romagnetism in two dimensions, as surmised by Tang and Hirsch.
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Here H &, and H„are the one-electron and many-electron
parts of the Hamiltonian, i and i+j are nearest neighbors,
and n; -c;t~; Unlike in .one dimension (1D), there are

The two-dimensional (2D) Peierls-Hubbard model has
recently been investigated numerically by Tang and
Hirsch. ' The same Hamiltonian has also been studied by
Mazumdar and Zhang and Prelovsek. While Ref. 3 in-
vestigates the limit of in6nite onsite Coulomb repulsion
(i.e., the 2D Heisenberg model), both Refs. 1 and 2 inves-
tigate the model for arbitrary values of the Coulomb pa-
rameter, but several of the conclusions are different.
Since the 2D Hubbard Hamiltonian is still being widely
investigated as a possible model for high-temperature su-
perconductivity, and since any lattice distortion will affect
fermion pairing, we believe it is important to understand
the origins of these differences. Specifically, we disagree
with three separate conclusions of Ref. 1, and elaborate on
those here.

The model Hamiltonian for a square lattice is written
as

Et, (4) =2[(cosk„+cosk~) +8 sin2k„] 't2, (2b)

where to=1,
~
6

~
=2auo, and uo is the mean displace-

ment of the ith atom along any axis. Then in the limit of
0+, the electronic energy gain from dimerization con-

tains the well-known term 8 lnb in both cases (3) and (4),
showing that arbitrarily large K is unable to prevent the
distortion in the limit W~ ~. This is understandable
physically: cases (I) and (2) correspond to phonons with
wave vectors (tt, O) and (O, tt) [both for case (1), only one
of them in case (2)], while cases (3) and (4) correspond to
phonons with wave vector (tr, tt), which is the 2KF in the
present case.

Since the elastic restoring force in case (3) is twice that
in case (4), in which only half the bonds are distorted,
Tang and Hirsch compare

~
AE„(3)

~
and 2

~
AE„(4)

~
to

determine which pattern of bond alternation dominates.
Here AE„ is the total electronic energy gain on bond al-
ternation. Since 2~BE„(4)

~
is found to be larger than

~
AE„(3)~, they conclude that case (4) will dominate

now several possible bond alternation patterns, as dis-
cussed by Tang and Hirsch' and shown in Fig. 1. In the
limit U=O, analytic expressions for H~, are obtained;
from these it is easily shown that the distortions corre-
sponding to cases (1) and (2) in Fig. I are not uncondi-
tional, i.e., they do not occur in the limit a /Kto 0+.
The electronic band energies Ek(3) and Ek(4) corre-
sponding to cases (3) and (4) are given by'

Ek(3) =2[(cosk +coskr) +8 (sink +sink~) ] ', (2a)
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FIG. 1. Bond alternation patterns due to coupling to different
phonons (same as Fig. 1 of Tang and Hirsch). Here a thick
solid line corresponds to a strong bond with hopping integral
to(1+6'), a dashed line corresponds to a weak bond with hop-
ping integral to(l —8), and a thin solid line corresponds to a
normal bond with hopping tp. (a) Case (1) with two phonons
with wave vectors (+,0) and (O, tt). In the limit of b~ 1, 2&2
plaquettes are formed. (b) Case (2) with a longitudinal phonon
(tt, O). (c) Case (3), one longitudinal phonon of wave vector
(tt, tt). Staircaselike chains are formed at 8~ 1. This is the
dominating configuration according to Ref. 3. (d) Case (4), one
phonon with wave vector (tt, tt) and polarization along x axis.
The dominating configuration at U=O, according to Ref. 4.

over (3). This is the same conclusion that is also reached
by Zhang and Prelovsek, while Mazumdar and Barisic,
Batistic, and Friedel focus only on case (3). If indeed
case (4) dominated over case (3), it would be surprising
since, after all, these are electronic instabilities; therefore,
at N~ ~ (though not necessarily in finite systems) the
distortion driven by larger absolute electronic energy gain
should dominate. In the present case, the proper compar-
ison is between

~
AF.„(3)

~
4NKuo and

~
AF«—(4)

~—2NKuo, where 4NKuo and 2NKuo are the harmonic
restoring forces, and the former is always larger than the
latter, indicating that case (3) dominates over (4). This is
expected, since ~A&«(3)

~

—~AF«(4)
~

is also logarith-
mic and grows faster than quadratic.

The above remains true for arbitrary U and, therefore,
also applies to the conclusion of Zhang and Prelovsek,
who postulate that case (4) dominates over (3) in the
Heisenberg limit. For arbitrary U, case (3) dominates,
but finite-size effects have to be taken into consideration
in numerical simulations done for large U. In 1D, for a
given a /Kto, bond alternation is seen only in finite lat-
tices N &N„where N, depends on the dimensionless
electron-phonon coupling constant. In 2D there are two
critical sizes N, i and N, 2. For N, i &N &N, 2, case (4)
dominates, but for N & N, 2, case (3) dominates.

The second issue over which we disagree with Tang and
Hirsch is the crossover between the state(s) with (tt, 0)

distortion and the state(s) with (tr, tr) distortion. For
b 1, case (3) corresponds to isolated staircaselike 1D
chains, while case (I) corresponds to 2X2 plaquettes.
Tang and Hirsch compare the energies of the infinite
chain and the 2X 2 plaquette as a function of U (see Fig. 7
of Ref. I) and find that while for U/tp & 15, e(1) & e(3),
e(I) & e(3) for U/to& 15, where e(1) and e(3) are the
electronic energies per site for cases (1) and (3), respec-
tively. From the numerical data at 6'=1, they conclude
that case (1) begins to dominate over case (3) [and hence,
presumably, case (2) dominates over case (4)l at
U & U, 15to, while from a perturbative calculation
around b 1, they conclude that U, decreases as b de-
creases (to U, -7.5to for 8 0).

We believe that the above effect is related simply to the
behavior of finite 4n rings, where n is an integer. At U=O,
such systems have occupied states at the Fermi level,
which do not contribute to the total energy. Thus at small
U, the energies of 4n periodic rings converge to N~ ~
from above, while those of 4n+2 rings converge from
below. At large U, however, the single-particle descrip-
tion is no longer valid and both 4n and 4n+2 rings con-
verge from below in the Heisenberg Hamiltonian in 1D,
the N ~ result being now bounded by open chains and
closed rings. . It is thus no coincidence that for U & U,
Tang and Hirsch find that the ground-state energy goes as
1/U and resembles the Heisenberg model.

What about 8& I? We do not believe that U, de-
creases at small 6 because of the following reason. Con-
sider the 2X2 plaquettes in Fig. 1(a), as the strength of
the weak bonds is gradually made finite. At U=O we ex-
pect a splitting of all one-electron levels as the interactions
to(1 —b) are turned on with b 1 —e. Such splittings
will lower half the states which were previously at the Fer-
mi level and were singly occupied. These are now below
the Fermi level and doubly occupied. Such an argument
indicates that U, increases for 6 1 —e, while for any
realistic 8 there is no crossing at all. Thus, once again,
case (3) should dominate even at large U (although this
instability itself has become conditional here).

The final point we want to discuss is the effect of finite
U on bond alternation. In Ref. 2 we have argued that U
decreases the bond alternation in 2D, and this agrees,
therefore, with the principal conclusion of Tang and
Hirsch. However, we believe that the rate at which the
bond alternation disappears with U is much faster than
that calculated by Tang and Hirsch (see Fig. 10 of Ref.
1). This is not an insignificant issue, as the appearance of
the much-discussed long-range antiferromagnetism in the
2D Hubbard model coincides with the disappearance of
the bond order wave instability. In the present case, we
expect antiferromagnetism to appear at U much smaller
than U, . Numerical calculation seems to indicate that the
energy gained on 2D bond alternation remains largely
unaffected until a very large value of U is reached. ' We
believe that this result is a finite-size effect, as well as
perhaps being related to the special eight-site lattice stud-
ied. In the absence of specific numerical calculations, we
can only present a valence-bond argument for this
viewpoint.

In Ref. 2 and previous papers, we have shown how a



12 326 COMMENTS 39

given broken symmetry can be associated with a single,
real-space many-electron configuration (and configura-
tions that are related to it by symmetry operations). Spa-
tial broken symmetry implies that real-space config-
urations can be classified as L and R, where L and R stand
for "left" and "right" and favor different phases of the
broken symmetry in question. In an infinite system, L
configurations can be further classified into Lh Lz, L3, . . . ,
etc. , where L& favors the left phase most strongly, L2
slightly less strongly, and so on. The same applies to the R
configurations, which are classified into R t, R2, .. . . Thus,
if o is the symmetry operation that is lost when the broken
symmetry state is reached, cr (L;) )R;). If L& and Rt,
which are unique, are chosen correctly, it is seen that one
may construct paths of the type

2 2 0 0

0 2 2 0

0 0 2 2

2 0 0 2

FIG. 2. The real-space many-electron configuration that
favors the bond alternation pattern of case (3) most strongly.
Other symmetry-related configurations are also possible.

L)~ L2--~ S—~ R2~ R),
where each arrow represents a single application of H~,
and the broken arrow represents (N/2 —1) applications.
Here S stands for "symmetric, " and o.

( S)
~
S). If

now H;; & HJJ for i &j, where H~; (Lt
~ H« ~ Lt)

-(R; ( H„~ R;), broken symmetry is enhanced by H„. If
H;; & HJJ, the opposite is true. Clearly this works only be-
cause L ~ and R ~ are unique.

In the case of bond alternation in 2D, we have shown
why L t (or R t) is the many-electron configuration shown
in Fig. 2, where the numbers 2 and 0 signify site occupan-
cies. The argument is simple. Since Lt is the extreme
configuration favoring bond alternation (at least the left
phase of it) most strongly, it must lead to the largest pos-
sible differences in charge transfers (c;~J +cj~; ) be-
tween consecutive bonds. The configuration in Fig. 2(a)
does exactly this, as no charge transfer is possible between
nearest neighbors with occupancies 2,2 or 0,0, while max-
imum possible charge transfer occurs between occupan-
cies 2,0.

The significances of these are as follows. First, since L t

and R~ contain the maximum possible double occupan-
cies, for any finite U, H~& &Hz2& . Hsv, and we ex-
pect U to rapidly destroy the bond alternation. This does
not occur in 1D since in the infinite 1D system (as well as

in finite 4n+2 rings) the natures of L t and R t are
different. The behavior of the smallest 4n periodic rings
should be similar to the 2D systems at small U, and there
such a rapid destruction is found. Second, from the na-
ture of L t and R t, here we do not expect coexistence be-
tween the bond alternation and a spin-density wave, as
occurs in 1D. The configuration in Fig. 1 is orthogonal to
the Neel configuration. In this sense, the behavior of the
bond order wave and the site diagonal charge-density
wave are somewhat similar. A rapid suppression of the
charge-density wave with U is the norm. From Monte
Carlo simulations, Hirsch finds that antiferromagnetic
order sets in at relatively small values of U, which, accord-
ing to arguments given in the above, would indicate that
the bond alternation has disappeared. Once again then,
these latter calculations suggest that U suppresses the 2D
bond alternation very rapidly.

To sum up, we agree with the major conclusion of Refs.
1 and 3, but we believe that (a) the bond alternation pat-
tern (3) in Fig. 1 dominates over all other patterns at both
U 0 and large U, and (b) finite U destroys the bond al-
ternation very rapidly. Clearly, Monte Carlo or exact cal-
culations over large lattices would be useful in this con-
text.
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