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Volume changes at the valence phase transition occur as a macroscopic mechanical instability,
where only a single mode representing homogeneous expansion becomes unstable without critical
phonon enhancement. As a consequence, the Landau theory of phase transitions holds exactly at
the critical point in describing the transition phenomenologically. However, there is a new possi-
bility: If crystals are allowed to change their shapes in only one direction, the acoustic mode in
that direction can become critical at the transition. We examine macroscopic dynamics near the
transition and point out the resemblance between the valence transition and the swelling transition
in gels. The frequency-dependent specific heat is also proposed.

Cowley examined general conditions of observing a
phase transition in solids in which the volume (or the lat-
tice constant) is the order parameter and there are no crit-
ical fluctuations with wavelengths shorter than the crystal
dimension.! In such cases, an instability is triggered
without critical enhancement of acoustic modes when the
bulk modulus K= —V(8p/0V)r tends to zero, V being
the volume and p being the pressure. In cubic crystals this
condition is written as K=(C;;+2C2)/3— 0 and
C12<0. Hereafter, C;; are the usual elastic moduli. No-
tice that if Cj; > 0, an acoustic mode becomes unstable at
C11 —C2=0 before K tends to zero. Examples are given
by rare-earth compounds such as solid solutions of
Sm;-,Y,:S or Ce,—,Th, at the valence transition.?™®
They undergo isomorphic transitions without any change
of symmetry. The transition is usually of first order but
can be made of second order by changing the pressure or
the alloy composition.* On the p-V phase diagram of such
materials, ¥ jumps discontinuously at first-order transi-
tions and the isothermal compressibility K ~!=—p !
x (8V/3p)r can be nearly infinite near the critical point.2
Note that, even if K=0, no critical scattering from pho-
nons has been observed.’

Here I point out that an analogous phase transition be-
longing to the same universality class has been studied for
over a decade in polymer gels as the volume phase (or
swelling) transition by Tanaka’s group.® There, if gels are
immersed in a solvent, they can swell or shrink discontinu-
ously as a first-order phase transition upon a change of an
external parameter such as the temperature. Moreover,
the discontinuity at the transition can even be diminished
to zero by changing the degree of ionization of the net-
work. Then we have continuous phase transition where
the bulk modulus K = — ¥V (8I1/8V) 1 vanishes, IT being
the osmotic pressure. We notice a striking resemblance
between V-T or V-p curves for solids near the valence
transition>* and those for gels near the swelling transi-
tion.®? At this critical point, however, Tanaka claimed
that critical enhancement of the scattered light intensity
was observed.’ Recently, I have shown that the spinodal
curve, on which the scattering diverges, is given by
K+ %11 =0, u being the shear modulus.'® Namely, the
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spinodal curve is separated from the critical point and is
located in an unstable region K < 0. The difference of the
temperature at which K =0 and the temperature at which
K+ % 11=0 can be estimated to have been of order 1 K
and the experiment was not precise enough to detect it.
The aim of this paper is to examine the phase transition
in the case of cubic solids in some detail on the basis of the
results for gels. (i) We show that as K— 0 only a single
mode representing homogeneous expansion becomes mar-
ginal while fluctuations with wavelengths much less than
the system size are still suppressed by the finite shear
modulus Cy4 for the cubic case. This means that the criti-
cal exponents are exactly given by the mean-field values.
In Ref. 4, the resistivity anomaly was shown to be de-
scribed by the mean-field exponents. Although they attri-
buted it to a long-range force, our view is that this should
arise from the discrete nature of the transition. (ii) How-
ever, interestingly, the specific heat at constant pressure
C, diverges according to the following thermodynamic re-

lation:!!
2
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We assume that the specific heat at constant volume Cy
and the thermodynamic derivative (8p/d7), have no
singularity at the point K=0. Obviously, the thermal ex-
pansion coefficient 8, =V ~'(8V/8T),=(3p/dT)yvK ~!
also diverges like K ~'. (iii) As in the gel case the phase
transition can be drastically altered if the sample is
clamped and allowed to change its shape in only one or
two directions. 2 Particularly, in the one-dimensional
(1D) case, the valence instability can occur at an instabili-
ty point of the acoustic mode propagating in the stretched
(or shrunken) direction, thus accompanied by critical fluc-
tuations. However, the instability point of the 1D case
and that of the usual 3D case should be greatly separated
due to the large sizes of | C12| and Ca4 in solids in con-
trast to the gel case where the two points can be very
close.

In the cubic-crystal case the stress tensor oj; is related
to the spatial derivatives of the displacement vector u;,

C,=Cy+VT

9p
oT
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Gii=C|1—Q—ui+C|2 V'u__@'—ui , 2)
ax,- Bxi
) 9
0ij=Cus | 7—ui+——u; | for i=j. 3)
J [ ax,‘ ! axj' ]
The elastic free energy is given by
du; 8 1’
;_ der.-z,;’ [a;‘ ] Oij =fydl' [‘;‘ (C“ - C|2); [—a—;ui] + 17 Clz(V' u)2+ ‘;‘ C44(u3y+uyzz +uz2x) . (4)
[
where u;; =9u;/dx;+0u;/dx;. On the boundary the (5). If we expand u; as
stress-free condition is required: hnd
ui(r,0) =2 4;,(r)A4,@), (8)
p=0

2oin;=(Ci1—Ci12—2Cus)n; [i
J

ui] +C12n,~(V' u)
ax,-

+Cy4

)
(n-V)ui+§nja;-uj] =0, Q)

when n is the outward normal to the surface of the system.
The equation of motion is of the form

—ui=—%Fel=Z—a—'G,~j , 6)

where p is the mass density and the dissipative effects are
neglected. Then we consider the following eigenvalue
problem:

2
;bi—jcu =(Cy —C12—2C44)—:—2u,

+ (C12+C44)'aix"(V' u)+CaaViui=—\uy; .
i

¢))

Let 4, and A, with p=0,1,2,..., be the eigenfunctions
and the eigenvalues to (7) under the boundary condition

(u,v) = fdr[(C“ Clz)Z[ ][

+1 C““E[a -+—aa— ][ 9

i=j ax,

where u and v both satisfy the boundary condition (5).
Some manipulations lead to

(u, )=_f erU, o-lj ’

where o;; are related to u; by (2) and (3). Then we find
(ﬁpl,ﬁp2> o 5,,1,,,2 and

13)

x0=(ﬁo,ﬁo)/fydr|ﬁol2%3(C”+C12)/Rgz, (14)
where R, is the gyration radius defined by VR2? = f drr?,
the origin of the reference frame being at the center-of-
mass from f ydrio=0. [It follows the relation

]+c12[2

9
+6x, ”’

the amplitudes A, (¢) oscillate with frequency
Q,=0,/p)'"2. 9

We can show that there emerges an eigenmode p =0
with its eigenvalue Ao going to zero as K=1(Cy;
+2Cy)— 0. This mode represents a homogeneous, iso-
tropic expansion. In fact, if we set u; =A¢x;, the bound-
ary condition (5) is satisfied for K=0 as ought to be the
case. Hereafter, we assume Cj,=— +C;; and
C11~C44>0. Then, for general crystal shapes, the
zeroth eigenvector #p; may be expanded in powers of
K/Cyy. In particular, if the crystal is a sphere with radius
R, (5) requires the form,

foi=x;— 3 [(C11+2C12)/Caal

x[r2— %x,-2+%(C44/C11)xi2]xi/R2+ (10)

The ratio of the second term to the first term is of order
K/Cas at r=R and is surely small for |K |/Css<<1. The
lowest eigenvalue A is obtained from (7) in the form

Ao=5(C,+2C12)/R*+ - -+ 11)

To treat the problem more generally we introduce an
Hermitian form for two vectors u and v by

‘|2

ax, ]

(12)

|
Jvdri, =0 from (5) and (7)].
Next we express Fe [see Eq. (4)] by expanding u; as

(8):
Fa=+(uu)=1% 2‘,()(7&,,1\7,,),42 , (15)
=

where N, =[ydr|d,|2 Particularly, No=VR} and
ANo==9KV. The variables 4, are independently Gauss-
ian with variance kgT/(A,N,) near equilibrium. The
correlation function of u; can be formally expressed as

— 1
(ui(r)u;(r)) =kg szom

~ (kBT/9VK)X1[x2j

l;ip (1'1 )1‘4‘,-,, (l'z)

as K—O0. (16)
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On the second line of this equation, only the first mode
p =0 is retained. As K— 0, (16) is consistent with the
thermodynamic relation { | 8V | 2) =k TV/K, 6V being the
total-volume fluctuation. However, to the correla-
tion function of the local-density fluctuation
8p(r)= —p(V-u), the first mode gives rise to a nearly
homogeneous contribution inversely proportional to V
(~kpT/VK). Therefore, it is irrelevant to scattering ex-
periments in which fluctuations with sizes of the order of
light (or neutron) wavelengths are detected. On such spa-
tial scales much shorter than the system size, the correla-
tion function should be insensitive to the boundary condi-
tions and hence, it may be calculated by pushing the sys-
tem size to infinity. Then from (4) we find for the Fourier
component u;y:

(upu i) = VV,~1k2 8ij— I+ 8?:;%:4)0 W,kI::'ij4 , am
where ;
W;=Cu+(C1) —C12—2C4a)k?/k?, 18)
G =Zi',k,-2/(k2W,-) . (19)

We expect that the contribution from large p in (16)
should be insensitive to the boundary conditions with its
dominant part being the inverse Fourier transform of
(17). The correlation function for dpx = —ik-uyp is of
the form

(| 8px| 2 =p2G/I1+(C 12+ Cus)G]. (20)

The above results can be used only when the wavelength
2n/k is much shorter than the system size and much
J

aZ
A Erord O vl K Dl rr WY

g

Here use has been made of (21) and (22) and the volume
deviation &V is nearly equal to 34¢V. The decay rate yg
will be of the following order:

Yo~ep 'Ry 2, (24)

where ¢ is the bulk viscosity independent of the system
size.!> To the linear order and under isothermal condi-
tions, by assuming Apcce ~ ', we find

a=3rtitolp— + )2, (25)

The mode becomes overdamped for 0 <Ao< § py§ or for
(K/p)'?Rg < const(~¢). The system is unstable for
K <0. However, the isothermal condition is satisfied only
when the time scale of the heat exchange at the boundary
is much faster than 1/| @ |. In the reverse case Q should
be determined under the adiabatic condition 8s =0 before
the heat exchange occurs.

It is also worth noting that the frequency-dependent
specific heat C,(w) should be measurable in solids and
gels near the transition as in the case of supercooled
liquids near the glass transition,!* because the volume
change occurs slowly for K=0. Then (1) can be used
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longer than any microscopic lengths. We can easily check
that the correlation functions (17) and (20) remain finite
even for K =0 if C|, <0, implying no critical scattering.
However, if we set C44=0, we find (| 8px | > =p?/K as in
fluids. This means that the finite shear modulus Cy4
serves to suppress the fluctuations with sizes less than the
system size.

Obviously the mean-field theory holds exactly at the
critical point of the valence transition. The Landau ex-
pansion is allowed for the free energy near the critical
point,

FIV=%KA3+bA§ —hAo+ £ (T/cy)(pds —aAo)?,
21

where Ay is the deviation measured from the critical value
and is related to the volume deviation 6§V by A= 8V/3V,
8s is the entropy deviation (per unit mass), and cy is the
specific heat per unit volume at constant volume. The
coefficients b and 4 have the usual meaning. Here the sys-
tem is assumed to be nearly homogeneous and, to be pre-
cise, 8s should be taken to be the spatial average of the en-
tropy deviation. The coupling constant a is equal to
3(8p/dT)y. Then the deviation of the total entropy,
8S =Vpéds, obeys a distribution with variance kg C, where
C, is given by (1). The temperature variation 87 is the
thermodynamic force to pés and hence,

8T =(T/cy)(pds —aAy) . (22)

We can now consider the time development of the
volume of the system when | K| < C;;~C4s. Taking into
account the dissipative effect, we assume that the ampli-
tude A of the first mode p =0 obeys

= —#[(9K+4bA3)Ao—a6T—h]. (23)

more generally as the relation between C,(w) and the
frequency-dependent bulk modulus K (w).‘g This can be
shown as follows: In response to small changes of the
temperature and the volume, 67 and 8V, respectively, un-
der constant pressure, the heat absorbed by the system is
given by

o5 V. (26)

80 =T6S=CyéT+ o |,

In our case, the volume change occurs very slowly as

2
92

14

P aT

5T] , @7
P

(V)

+ — = p— —
Yo Y 14 Ao [V

which is the linearized version of (23). The thermal

diffusion process is assumed to take place quickly. If all
time dependences are taken as exp(iwt ), we obtain

2
)
Co(0) =5Q/8T=Cy+VT —a%]y/K(w), (28)
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where K () is the frequency-dependent bulk modulus
K (@) =KI1+iopyo/ho—pw*/hl
=K+ 15 pR}iwyo— 0?) . (29)

Finally, in summary we have examined the macroscopic
behavior of solids in which the order parameter is the
volume itself. This aspect seems to have not been studied
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seriously so far, probably because it has appeared rather
trivial. However, it would be interesting to induce the
valence transition with phonon softening by using clamped
solids expandable in only one direction.

I would like to thank Professor S. Hirotsu for useful
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IR. A. Cowley, Phys. Rev. B 13, 4877 (1976).

2A. Jayaraman, A. K. Singh, A. Chatterjee, and S. Usha Deri,
Phys. Rev. B 9, 2513 (1974); A. Jayaraman, P. Dernier, and
L. D. Longinotti, ibid. 15, 2783 (1975).

3T. Penney and F. Holtzberg, Phys. Rev. Lett. 34, 322 (1975).

4J. M. Lawrence, M. C. Croft, and R. D. Parks, Phys. Rev. Lett.
35, 289 (1975).

5T. Penney, R. L. Meleher, F. Holtzberg, and G. Giintherodt, in
Magnetism and Magnetic Materials— 1975, Proceedings of
the 21st Annual Conference on Magnetism and Magnetic
Materials, edited by J. J. Becker, G. H. Lander, and J. J.
Rhyne, AIP Conference Proceedings No. 29 (American Insti-
tute of Physics, New York, 1976), p. 392.

6C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).

7H. A. Mook and R. M. Nicklow, Phys. Rev. B 20, 1656 (1979).

8T. Tanaka, Physica A 140, 261 (1986), and references quoted
therein.

9T. Tanaka, S. Ishiwata, and C. Ishimoto, Phys. Rev. Lett. 38,
771 (1977).

10A. Onuki, Phys. Rev. A 38, 2192 (1988). Usually K is sup-
posed to be positive in elastic theories. In gels K can be made
negative transiently because the time scale of swelling is very
slow due to the friction between the network and the solvent.
In principle, K/u can be negative with no instability in any
materials if deformations are allowed in only one or two direc-
tions (Ref. 12).

n the gel case (9p/dT )y should be replaced by (8T1/8T)y. I
am not aware of measurements of C, in solids near the critical
point of the valence transition, whereas the specific heat at
zero osmotic pressure in gels near the critical point is now be-
ing measured at the Massachusetts Institute of Technology
(T. Tanaka, private communication).

12A. Onuki, J. Phys. Soc. Jpn. 57, 1868 (1988).

3L, D. Landau and E. M. Lifshitz, Theory of Elasticity (Per-
gamon, New York, 1986).

14p, K. Dixon and S. R. Nagel, Phys. Rev. Lett. 61, 341 (1988).

I5R. Zwanzig, J. Chem. Phys. 88, 5831 (1988).



