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Quantum el'ects and competing interactions in crystals of the mixed rubidium
and ammonium dihydrogen phosphate system

Julio A. Gonzalo

(Received 3 October 1988)

Quantum corrections are introduced in a simple two-sublattice model, which describes well both
para-ferro (Tc) and para-antiferroelectric (Tz) phase transitions in mixed crystals of the potassi-
um dihydrogen phosphate family, leading to a determination of the phase diagram in satisfactory
agreement with that observed in rubidium and ammonium dihydrogen phosphate mixed crystals.

Considerable attention has been devoted in recent years
to the investigation of phase transitions in mixed crystals
with competing interactions, and, in particular, to the
mixed ferro-antiferroelectric system' (RDP) i —„(ADP)„
made up of rubidium and ammonium dihydrogen phos-
phate. The phase diagram of this system is shown in Fig.
l. In this article we will investigate erst a simple two-
sublattice classical model for ferro and antiferroelectrici-
ty, which will be shown to describe consistently the transi-
tions for pure RDP and pure ADP. Next, we will consider
the behavior to be expected for the phase transition classi-
cally, i.e., in the absence of quantum Auctuations of the
elementary dipole moments. Finally, we will introduce
the appropriate quantum corrections in the expressions for
T~ and T~, and we will show that satisfactory agreement
with the observed phase diagram is obtained.

It is well known that crystals isomorphous with potassi-
um dihydrogen phosphate (KDP) often show ferroelectric
or antiferroelectric phases at low temperatures. The fact
that an antiferroelectric arrangement of dipoles is some-
times realized suggests that a simple two-sublattice mod-

el, similar to the one for antiferromagnets, may be useful
to describe the phase transition in the KDP family. Since
there are four chemical units (Z =4) per (conventional)
tetragonal unit cell in KDP crystals, the system may be
thought of as a superposition of two interpenetrating bcc
sublattices, each containing two chemical units. Let us
call these two sublattices A and 8, and take into account
that we must consider intralattice (AA, BB) and interlat-
tice (AB,BA) interactions. In the mean-field approxima-
tion, the local eA'ective field acting on unit dipoles at
points in lattice A and 8, respectively, will be

(E.ir). -E+ P +PPb

(E,rr)b =E+PP, +aPb,

'I 50 (R DP)t-„(A D P )

(Tetra)

where E is the external field, a(AA) =a(88) and
p(AB) =p(BA) are mean-field coe%cients, and P, and Pb
are the pertinent sublattice polarizations per unit volume.

Using these eff'ective fields in the standard mean-field
expression for the polarization as a function of tempera-
ture we get
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FIG, 1. Phase diagram of (RDP)~ — (ADP)„. Observed,
solid line (see Ref. 1); theory (including quantum eA'ects),
crosses [Eqs. (22) and (23) with xc=0.22 and y& =0.26, re-
spectively; see text].
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«air)b~b=tanh (4)

E = tanh —aPa PPb, —kT I &a

pa Np,
(5)

E = tanh — PP, —aPb, —kT t ~b

Pb Npb

where W is the total number of sublattice sites (or unit
cells) per unit volume, and p„pb are the respective sub-
lattice unit dipoles, which, in the ordered phase can be
pointing parallel (ferroelectric case: p, =pb) or antipar-
allel (antiferroelectric case: p, = pb) to each other, de-—
pending on the geometry of the lattice. Since the two
sublattices are chemically identical, we take

~ p., (= ((pb I
=r' l~l. F«m Eqs (1)-(4) weget
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which, together, define an equation of state for E,
P—=P~+PI, and T.

Let us consider first the ferroelectric case, in which at
T & Tg we have a nonzero spontaneous polarization
P, =P„+P,t, &0 for E =0. Adding Eqs. (5) and (6), and
taking into account that

tanh 'Z
~
~ tanh 'Z2 =tanh ' (Z ~

~ Z2)/(1 ~ Z ~ Z2)

and that p, -pb p/2, we get

2E=2k tanh-'
p 1+4(P, /Np )(Pt, /Np )

—(a+ p) (P, +Pb ) .

It is easy to get from here the spontaneous polarization
below the transition temperature, but not very far from it,
as

P,/N„=is(T, /T i) '" Z;—= '
The low-amplitude (b'E BP«Np ) inverse dielectric
constant e '=—dE/4ndP can be obtained from Eq. (7)
with the following results:

e '-(T —ec)/C+ at T~ec(P =0), (9)
C+ =2ttNp /k. ec =Tc

~

and

=(ec T)/C at TSec(Ps—~O) C —=ttNp /k.
(io)

Next, we consider the antiferroelectric case. At E =0
we have now P, =P„+P,I, =0, being P„=—P,q =P„
the sublattice spontaneous polarization, obtained solving

4(P„/Np )
tanh ' 14(P„/Np)/[1+4(P„/N„) 2

which has a nonvanishing solution for P„at T & T~, the
antiferroelectric transition temperature. Below T~, and
not very far from it, we can get from Eq. (11)

P„/N p = (J3/2) (1 —T/Ttv ) ' ' . (i2)
The low-amplitude expression for e ' can be obtained
from the sum of Eqs. (5) and (6) for bE~ SPAN@, re-
sulting in

e '-(T —ejv)/C~ at T & Tjv(P„=O),

C+ 2ttNp /k,
a+P Np

4 k
and in another, more complicated expression, at T & T~,
which leads to

'(T~ ) =e '(T~+) = —P/8n. ,

(i4)'(0) -~
[i.e., e(0) =0].

For RDP (ferroelectric, second-order transition) we can
get the sum of the sublattice mean-field coefBcients from

Eqs. (8) and (9), and the observed values for ec =147 K
and C+ 4.14X10 K, as

a+P =8nec/C+ =8ttT /C+ =0 89 & 0 (15)
For ADP (antiferroelectric, first-order transition) we

get the sum and difference of a and p from Eqs. (13) and
(11), along with 0jv —14 K, Tlv = 148 K, and
C+ 267&10 K as

a+P =8ne~/C+ = —0.13 & 0, (i6)

a —P =8ttTv/C~ =1.39 & 0, (i7)

and, therefore, a =0.63, P = —0.76.
That the two-sublattice mean-field relations obtained

for KDP-type crystals show a fair degree of internal con-
sistency can be checked in several ways. For instance, for
RDP we get p =(kC+/2ttN)'t =6.2X 10 ' esu from
Eq. (9) and p-P„,/N=7. 0X10 ' esu from the low-
temperature (saturation) value of the spontaneous polar-
ization P„t=5.6 pC/cm =5.6x3000 esu; N=(ca )
=2.36x10 ' unit cells/cm . For ADP we can use Eq.
(14) to get an independent estimate of P= —e(T~)/8'.
Using e(T~ ) =14 and e(T~+) =30, one gets, respective-
ly, P- = —0.55 and P+ = —1.19. These values average
out very close to the one previously obtained from Eqs.
(16) and (17). It is of interest to point out that, since a
and P depend on the tetragonality (c/a —1) of the lattice
(they should be zero for a cubic lattice if they are ori-
ginated by electric dipole-dipole interactions) we are enti-
tled to assume a=a(c/a —1) and p=p(c/a —1), and we
can use the calculated values for ADP, namely a~ =0.63
and p~ = —0.76, together' with (c/a —1)~ =0.0067, to
estimate a=0.94&&10 and p= —1.14X10 . For RDP,
on the other hand, (c/a —1)R = —0.041, from which
value we obtain estimates for aR a( —0.41) = —3.90
and Ptt =P( —0.41) 4.72, which imply (a+P)R =0.81,
in fair agreement with the value previously obtained from
Eqs. (8) and (9).

Having set the grounds for calculating (classically) Tc
and Ttv for the pure ferroelectric case (RDP) and the pure
antiferroelectric case (ADP), we examine now the
mixed-crystal case. The simplest mixed case is that of a
ferroelectric (or antiferroelectric) and a nonferroelectric
isomorph, for instance, that of K„Nb~ —„Ta03 or
(TSCC) ~ -„(TSCB)„(where TSCC is tris-sarcosine cal-
cium chloride and TSCB is tris-sarcosine calcium
bronide). Looking at the phase diagram (Tc versus com-
position x) in these systems, one sees, not unexpectedly, a
linear decrease of Tc with increasing x, which extrapo-
lates approximately to Tc =0 at x 1. Quantum fluctua-
tions, however, terid to depress T~ already at a certain
x & 1, suppressing the transition sometimes close to,
sometimes considerably below x =1.

In the mixed ferroelectric-antiferroelectric system, one
expects an approximately linear decrease in Tc at x &0
and also a linear increase in T~ at x & 1. Since
T~(RDP) =147 K, T~(ADP) =148 K, and N(RDP)
=2.36&&10 ', N(ADP) =2.37X10 ' are very close to
each other, one may expect a similar linear trend of tran-
sition temperature with composition from both sides to-
wards zero.

Then, classically, from Eqs. (8) and (11),we have
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kTc(0)—: Np, kTc(x) N(1 x—)p2k. Tc~(0)(1 —x),
4 (18)

kT& (0)—= Np ~ kT& (x') . N(1 y)p ~kTIv (0)(I y),4 ' 4

where y = 1 —x, and Tc (0), Tz (0) are the classical tran-
sition temperatures for the pure ferroelectric and antifer-
roelectric systems.

Quantum mechanically, on the other hand, we have

hrooc(T +(n)r ) Np for x =0,a+P

hroojv( 2 +(n)r„) Np for y 0,

where 2 hcooc and —,
'

hcooz are the zero point energies and
(n) is the average number of energy quanta excited above
the ground state at temperature T, given by Planck's rela-
tionship. Therefore,

hcooc/2 tanh [hrooc/2k Tc(0)] Np k Tc (0),
4

2kT&(0) «1. The last two equations yield

Tc(0) (hrooc/2k)/tanh '(Zc),
Zc:—hrooc/2k Tc (0),

(20)

(21)T~ (0)- (hroojv/2k )/tanh ' (Z~ ),
ZIv =hruow—/2k Tw (0),

and, therefore, we finally get

Tc(x) Tc(0)tanh '(Zc)/tanh ' [Zc/(I x)] ~

TIv (y ) Tz (0)tanh ' (Zjv)/tanh ' [Z~/(I —
y )] . (23)

Since Tc(xc) 0 for Zc 1 —xc and Trv(y~) 0 for
Z~ 1 —y~, it is sufficient to know the experimental value
for x& and for y~ to completely specify the phase dia-
gram. For the (RDP)„(ADP) i „system, xc=0.22,
y&=0.26 (see Fig. 1). The agreement between theory
and experiment for this mixed system is excellent, as seen
in Fig. 1.

hroo~/2tanh[hroo~/2kTJv (0)] Np kT~ (0),

where Tc(0) and Tjv(0) are the quantum-mechanical
transition temperatures, which reduce to Tc (0) and
TJv(0), respectively, for hrooc/2kTc(0) «1 and hcoo~/
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