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The spin-wave expansion is used to motivate a simple trial wave function for the Neel ground
state of a spin- —Heisenberg antiferromagnet on a square lattice; the wave function yields an upper
bound on the ground-state energy per bond of ( —0.3317+0.0002)J, where J is the exchange con-
stant. The wave function is easily generalizable to the case where a single hole, with hopping matrix
element t, is present. The hole energy-momentum relationship is determined for J/t) 0.25; the
minimum hole energy is always on the zone boundary at k=(~/2, m/2). The hole bandwidth, 8;
has a maximum value of 1.24t at J=0.73t. The small parameter which makes all of these calcula-
tions possible is 1/(2Z —2), where Z=4 is the coordination number of the square lattice.

I. INTRODUCTION

Highly correlated lattice electron systems, especially
those close to half-filling, are the subject of intense
current theoretical interest. This interest was stimulated
in part by the discovery of high-temperature supercon-
ductivity in LazCu04 and related compounds. ' These
systems are also of theoretical interest in their own right,
with a large number of fascinating theoretical questions
remaining unanswered. This paper investigates the
properties of two such systems —(i) the spin- —,

' Heisenberg
antiferromag net, with nearest-neighbor exchange con-
stant J, on a two-dimensional square lattice, and (ii) the
spin- —, Heisenberg antiferromagnet with one spin re-
moved; this vacancy or hole can hop through the lattice
with a nearest-neighbor hopping matrix element t. The
spin configurations in both cases will be assumed to pos-
sess long-range Neel order. The main result of this paper
will be a variational determination of the energy-
momentum relationship of a single hole moving in a
background quantum Neel state for a wide range of
values of the ratio Jjt.

Motivation for the problems investigated in this paper
is provided by several recent experimental and theoretical
investigations. Neutron scattering on undoped La2Cu04
revealed the existence of long-range three-dimensional
Neel order and a large two-dimensional spin correlation
length. A subsequent theoretical analysis has corivinc-
ingly argued that the neutron scattering experiments in-
dicate the presence of long-range two-dimensIonal Neel
order at zero temperature. Two independent Monte Car-
lo simulations ' of the nearest neighbor spin- —,

' Heisen-
berg antiferromagnet on a square lattice are consistent
with the existence of long-range Neel order in the ground
state. In this paper we will discuss a simple trial wave
function which provides a reasonable characterization of
this long-range ordered ground state and the ground-
state correlation functions. Low-order calculations on a
similar, but not identical, wave function were performed
by Fisher and Eguchi. The chief utility of our varia-
tional state is however that it is straightforwardly gen-

eralizable to the more interesting problem of the Heisen-
berg antiferromagnet with a single hole. A proper deter-
mination of the properties of a single hole is clearly
necessary in the understanding of the properties of a
many hole system and the possible existence of high-
temperature superconductivity in a purely repulsive
single-band Hubbard model.

We begin with a brief presentation of the results of the
analysis of the spin- —,

' Heisenberg antiferromagnet. The
system is described by the

H~„=J g g S'(i) S (j), (1.1)
iE A jci +5

where the S' are spin- —,
' operators, the sum over i ex-

tends over the 3 sublattice of the square lattice, and j lies
on the 8 sublattice and is restricted to be one of the
nearest neighbors of i. Conventional large-S expansion
methods can be used to show that the leading 1/S predic-
tion for the ground state of HA„ is very closely approxi-
mated by the state ~%):

(1.2)
iE A jEi+5

where ~0) is the classical Neel state with all spins up on
sublattice 3 and all spins down on sublattice B, and o'
are the usual Pauli matrices on the two sublattices. The
possibility that ~% ) may be a reasonable trial wave func-
tion for the antiferromagnet was suggested to the author
by C. M. Varma. The large-S expansion yields a value
for the parameter g of 0.36 in d =1 and 0.16 in d =2.
Recent studies ' ' have indicated that the large-S expan-
sion is remarkably accurate in determining the ground-
state energy and the sublattice magnetization of HAF.
We may therefore treat the state ~'p) as a good variation-
al guess for the ground state HA„with g treated as a free
variational parameter.

Exact evaluation of the expectation value of H~F in the
state

~
4 ) is only possible in one dimension. This calcula-

tion is presented in Sec. II A and yields a minimum value
of the energy per bond of —0.428J at g =0.389. This
compares reasonably with the exact ground-state energy
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of —0.443J. The sublattice magnetization at this value
of g is calculated to be 0.289 (in units where the classical
magnetization is 0.5), whereas the exact ground state has
no long-range order. There exist other trial wave func-
tions which yield lower energies and sublattice magneti-
zations than

l
4 ) . The properties of

l
4 ) are much more

encouraging in two dimensions, where the quantum Auc-
tuations from the classical Neel state are expected to be
smaller. As an exact evaluation of the ground-state ener-

gy is no longer possible, we develop a renormalized self-
consistent expansion in the parameter g which allows
determination of the expectation value of HA„ to better
than 0.2%. This expansion is based upon a mapping of
the problem to the statistical mechanics of monorners, di-
mers, and loops upon the square lattice', this statistical
mechanical problem is in turn mapped onto a Grassrnan-
nian functional integral which is then evaluated in a self-
consistent perturbation theory in g . One reason for the
accuracy of this procedure is that g is quite small in
d =2. The large-S theory predicts a value of 0.16. In ad-
dition, a straightforward evaluation of the expectation
value of HA„ to second order in g yields the result

1

2Z —2
(1.3)

where Z =4 is the coordination of the square lattice. The
renormalized perturbation expansion in g converges very
quickly and yields a variational upper bound for the
ground-state energy of H~F of -( —0.3317+0.0002)J.
This compares favorably with the estimate of
( —0.334+0.001)J made by Huse using series expan-
sions. It is also the lowest upper bound among existing
variational calculations with a single variational parame-
ter 5, 11

We now turn to the problem of a single vacancy in an
antiferromagnet. The system is described by the Hamil-
tonian H&,

Hh = t g g— (c; cj +H. c. )
i E A jEi+5

+J g g S'(i).S (j),
iE A jFi+5

where c; are the usual fermeon operators and

p( ) 2 ianna/3 iP
t t p

(1.4)

there is also a restriction forbidding double occupancy of
every site. We will restrict our attention to the section of
the Hilbert space with the number of electrons equal to
one less than the number of sites in the system. The
Hamiltonian H& can be obtained as the e6'ective Hamil-
tonian describing the large U limit of the Hubbard model
(where U is the repulsion between two electrons on the
same site) after states containing more than one electron
per site have been eliminated' (a "pair-hopping" term
which can cause a hole to hop to a second-nearest-
neighbor site has been omitted). The derivation of Hz
from the Hubbard model always yields J/t ((1;howev-
er, this regime of parameters is the most intractable and
we shall find it convenient to treat J/t as a free parame-
ter and deduce properties of the J/t ((1 limit from in-

sight gained from the large J/t regime. The properties of
Hh (with the "pair-hopping" term included) were recent-
ly investigated numerically by Trugman' by exact diago-
nalization on a truncated Hilbert space. The variational
method of this paper uses instead a Jastrow-type wave
function (see the following) which is chosen to properly
account for the distortion of the Neei order around the
hole. After the work described in this paper had been
completed and the paper written, the author learned of
the work of Shraiman and Siggia, ' Kane et al. ,

' and
Schmitt-Rink, ' all of which addressed the properties of
HI, (with the "pair-hopping" term excluded). The results
of these investigators and the present work are in qualita-
tive agreement (see the following).

We shall describe the properties of the hole in the anti-
ferromagnet by variational states which are a simple gen-
eralization of the state

l
4 ) used to describe the quantum

Neel state. These variational states can be written in the
form

(1.5)

where lR;V) is a classical Neel state with a hole at R
and a few ( ~5) spins flipped with respect to the Neel
state, 9 is a label for the set of flipped spins, K is a nor-
malization constant, the 6 (i,j) are an infinite set of vari-
ational parameters, and the product extends over a re-
stricted set of bonds which do not touch either the hole
site or the flipped spins in the set X An important con-
straint which must be satisfied for the states in Eq. (1.5)
to be reasonable trial wave functions for the ground state
of Hh, is that the absolute values of the set of variational
parameters 6(k,j) must be much smaller than unity at
the minimum energy. This follows from the procedure
used in motivating the state

l
4 ): only if each bond has a

small amplitude for Aipping the spins at its ends, will the
neglect of longer-range bonds be reasonable. The param-
eter which makes this amplitude small is essentially the
inverse of the coordination number of the bond,
1/(2Z —2). We will show in the body of the paper that
with a careful choice of 13 di6'erent sets of Aipped spins
7, we are able to satisfy l 6 (i,j) l (0.5 for all J/t )0.25.
The procedure for determining the energy of the hole
therefore involves writing down eigenstates of momen-
tum by combining the states in Eq. (1.5) into plane-wave
states; the Hamiltonian can then be expressed as a 13X 13
matrix which is then diagonalized. Note that the varia-
tional parameters 6 (i,j ) will be a function of the momen-
tum k and will not be invariant under the symmetry
group of the square lattice. Also, the matrix elements of
this Hamiltonian are only determined to second order in
G(i,j ); our experience with H~„ indicates this to be a
good approximation. The arguments presented earlier
and in Section III 8 lead to the following conclusions on
the usefulness of the states in Eq. (1.5): (i) The small
values of lG(i, j)l at the minimum energy indicates that
the states lR; V) with 13 difterent sets of fhpped spins V
are a good variational basis set for all J/t )0.25. (ii) The
smallness of lG(i, j)l also allows evaluation of the band-
width of the hole within an accuracy of 9% for J/t = 1,



12 234 SUBIR SACHDEV 39

0- 1.5—

i.o

0.5—

0.0-

0 10

FIG. 1. The energy of a hole E moving with hopping matrix
element t moving in a Neel state with exchange constant J. The
zero of energy is the ground-state energy of the antiferromagnet
with one hole and t =0. The energy is plotted at the three mo-
menta k=(0,0), k=(~,0), and (m/2, m/2). The momenta have
been labeled in units of m in the figure.

FIG. 2. The hole bandwidth 8'/t =E/t(k =(0,0) )—E/t(k=(m/2, m./2)) as a function of J/t. The dashed line is
the best fit to the functional form 8'=ct /J at the value of
c =2.6.

and within an accuracy of 25% for J/t =0.25.
The results of the calculation are summarized in Figs.

1 and 2, which are the central results of this paper. Fig-
ure 1 shows the energy of the hole E/t at the three
different momenta (0,0), (m, 0), and (rr/2, m. /2) as a func-
tion of J/t. The zero of energy is the energy of the anti-
ferromagnet with one hole and t =0. For all values of
J/t, the global minimum state is always at the momen-
tum (m/2, ~/2). This feature was also present in the cal-
culations of Shraiman and Siggia' and Trugman. '

Direct numerical comparison of our results with those of
Trugman is not possible because the Hamiltonian con-
sidered by him is not identical to ours; using J =4t /U,
we find the energy of the k=(0,0) state to be within 15%
of the results of Trugman in the J/t (1 regime. Howev-
er, we find that the energies of the k=(~, 0) and the
k=(n/2, m/2) states decrease as Jjt decreases below
J/t =1, while Trugman finds that the energies increase
with decreasing J/t. We show in Fig. 2 the bandwidth of
the hole

Wjt =Ejt(k=(0.0))—Ejt(k=(vr/2, m /2)) .

A remarkable feature of this figure is the maximum in
the bandwidth at J=0.73t where 8'=1.24t. At large
values of J/t we find W=2. 6t /J; this feature can also
be understood from a large J/t perturbation theory for
the hole. The dashed line in Fig. 2 shows the best fit to
this functional form. For small values of J/t, the band-
width satisfies 8'=3.4J. This linear decrease in the band
width 8'with J is consistent with the results of Schmitt-
Rink et ah. ,

' Kane et al. ,
' and Shraiman and Sig-

gia. ' ' Kane et al. have also argued that the decrease
I

in 8'is consistent with the enhancement of the hole mass
observed in optical absorption experiments. '

The outline of the rest of the paper is as follows. Sec-
tion II deals with the properties of the spin- —, Heisenberg
antiferromagnet in two subsections: (i) the first subsec-
tion presents exact evaluation of the variational wave
function in one dimension and (ii) the second subsection
deals with the properties of the two-dimensional antifer-
romagnet. Intermediate steps in the evaluation of the
variational encl'gy using the monomer-dimer-loop count-
ing problem and the Grassmann functional integral are
relegated to Appendix A. Section III evaluates the ener-
gy of a single hole. Two different trial wave functions are
used. The first, discussed in Sec. III A, is simpler, but is
useful only for J/t )&1. The failures of this simple wave
function help motivate the second more complex wave
function discussed in Sec. III B. The results summarized
in this Introduction were obtained using the second wave
function. Some details in the evaluation of the matrix
elements of the III, are discussed in Appendix B. The
conclusion contains a brief discussion of other problems
that may be attacked using the approach of this paper.

EI. ANTIFERROMAGNET WITHOUT HOLES

We begin by establishing notation with a brief review
of the Holstein-Primakoff' transformation for generating
a large-5 expansion for the Heisenberg antiferromagnet.
The transformation introduces a mapping between the
Hilbert space of the spins and the Hilbert space of two
species of bosons. The bosons are created by the opera-
tors a; and b; and represent spin Aips on sublattices 3
and 8, respectively. The correspondence between the
operators is given by

a, a,-

S+ (i)=&2S 1— a,~a;
a;; S' (i) =&2Sa; 1—

1/2

; S;(i)=S—a;a;
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on sublattice A, and by
r

S" (i)=&2Sb; 1— ; S' (i)=V2S 1—b,~b;
b;; S,(i)= —S+b; b;

on sublattice B. Introducing these representations into
H~„we obtain to first order in 1/S, the following
equivalent Hamiltonian for the antiferromagnet

Hz= —JZS +JZS g [akak+bkbk
k

+1'«akbk+akbk)] (2.1)

where Z is the coordination number of the lattice, ak and

bk are Fourier transforms of a, , and b, and yk is defined

by

1 y eik. s

NN

(2.2)

~G & =exp —g . . .a„bk ~0&,yk

~ (1-) l+1)'" (2.3)

where ~0& is the state with no bosons (the classical Neel
state). Rewriting this state with real-space operators we
obtain

~G&=exp '—
iE Aj EB

I(i j)a, b, —~0&, (2.4)

The sum over 5 extends over the nearest neighbors of any
site of the lattice, and yk is real on any lattice with inver-
sion symmetry. It is easily shown that the ground state

~
G & of Hs is given by

In 1D the nearest neighbor value of I is 59 times larger
than any other bond, while in 2D the corresponding
number is ten. We may therefore take as a reasonable
variational wave function of the Heisenberg antifer-
romagnet the state

~%'&=exp — — g g gS' (i)S"+(j)1

i E' A jHi+5
(2.7)

We now treat g as a free variational parameter. From the
spin-wave expansion we expect g to be nearly 0.36 in 1D
and 0.16 in 2D. Specializing to the case of S =

—,
' where

(a' ) =0, we obtain the variational wave function used
in this paper in its Anal form:

g [1—g '( ) ', (j)]10& .
iEA jEi+5

(2.8)

A. Exact results in one dimension

The expectation value of the state in Eq. (2.8) can be
evaluated exactly in one dimension. This result depends
upon the well-known Jordan-Wigner transformation
which establishes a connection between the Hilbert space
of the Pauli matrices and that of a spinless fermion. The
connection is established using the operator relationships

cr+(i)=ftexp iw g ftf; o,(i)=2f; f; —1, (2.9)

1 d "k yke'"'I(r)=-
U (2m)" (1 —

y +1)' (2.5)

v being the volume of the Brillouin zone. Undoing the
Holstein Primakoff transformation, we see that to order
1/S, the ground state of H is given by

where f; is operator annhilating a Jordan-Wigner at the
site i Substituti. ng Eq. (2.9) into Eq. (2.7), we obtain the
following representation for the trial wave function:

~
4 &

=exp —g g (f2„+,+f,„,)f2„~0& . (2.10)

~G & =exp (i j)S" (AS' —(j )—
i& A,j&B

(2.6)

We have taken the A sublattice to be the even-numbered
sites of the chain. It is now necessary to introduce the
following Fourier transform representations of the
Jordan-Wigner fermions

An alternate approach is to treat the state in Eq. (2.6)
as a variational ansatz for the ground state of the Heisen-
berg antiferromagnet. The constraint that no more than
2S bosons can occupy a given site, which is implicit in the
Holstein-Primakoff transformation, will then have been
taken into account exactly. The state in Eq. (2.6) is, how-
ever, complex enough to make calculation of the expecta-
tion value of HA„quite dificult. An important
simplification can, however, be made by noting the spa-
tial dependence of I(r). It can be shown from Eq. (2.5)
that I(r)~~r~ ' +" for large ~r~. We show in Table I
the values of I for a few points for both the one-
dimensional chain and two-dimensional square lattice. A
notable feature of Table I is that the values of I are much
larger for nearest neighbors than any other pair of sites:

f„'=( 2+/)'I +2f t„elk"' f0

(2/~)1/2 ~ f eik(2n+1)
+&e (2.11)

0.363
0.0061
0.0024

(1,0)
(1,2)
(0,3)

0.1579
0.0155
0.00834

TABLE I. Values of the function I(r) in d =1 and d =2.
The coordinates of r are represented by the integers in column 1

for d = 1 and by the pairs of integers in column 3 for d =2.
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terms in a naive expansion in powers of g. However, a
little work shows that this procedure converges slowly
and an improved procedure is necessary with a partial
resummation of the power series in g. We will develop
such a procedure in this section.

We begin by making a connection between the quan-
tum mechanics of the state 4& in Eq. (2.8) and the sta-
tistical mechanics of counting monomers, dimers, and
loops on a square lattice —this statistical mechanical
problem will in turn be shown to be related to a
Qrassmannian functional integral. The argument begins
by noting that the state ~g& consists of the sum of a large
number of terms generated by expanding out the product
of the factors [1 ger—' (t)o "+(j)] on each bond. For any
term in this expansion the contribution of every bond on
the square lattice will either be the term 1 or the term

go'—(1')o "+(j ) We. graphically represent bonds which
contribute the second term by placing a dimer on the
bond. Two dimers cannot have a common site because

where X is the number of sites in the chain. In terms of
these operators, the state in Eq. (2.10) can be written in
the following simple manner:

I+&= g(1—2g o kf"f')IO& . (2.12)

In a similar manner, the Hamiltonian HAP can also be
written in terms of the fk and fk operators:

Jy [cosk (jefD+fOtf e1)fef'et fOtf 0]
k

+ ~ X fk)fk(+qfk2+qfk2cosP
klk2q

(2.13)

The evaluation of the expectation value of the Hamiltoni-
an in Eq. (2.13) in the state in Eq. (2.12) is now complete-
ly straightforward. We state the final result:

&HAF &

XJ 4 [(1+4 2)l/2
2g(1+4g )'

(~r' )'=(o )'=0
1 [(1+4g2)1/2 1]2

4g 2
(2.14)

We may therefore represent this state ~'Il & as follows:

(o, (n) & =( —1)'" 2 —1
( 1 +4g 2 }1/2 (2.15)

which takes the value 0.289 at g =0.389. The classica1
value of this sublattice magnetization is 0.5 while the ex-
act quantum value is 0.

B. Two dimensions

Exact evaluation of the expectation value of the state
in Eq. (2.8) is not possible in two dimensions. However,
we shall develop a renormalized perturbation series in g
which leads to a very accurate estimate of the energy of
the Heisenberg antiferromagnet in the state ~ip&. From
the spin-wave estimates of the value of g of 0.16 in two
dimensions, we anticipate that a naive expansion of the
expectation value of the energy in g will not yield un-
reasonable results. A simple expansion of the expectation
value of the energy in powers of g leads to the result

(e[H„„/e& ZE
2

—[-' —g+(Z —1)g'+ . . . ].4

The energy is a minimum at g =0.389 where it takes a
value of —0.428J per bond. This is about 3% larger than
the exact ground-state energy of —0.443J. It is also not-
able how close the value of g is to the spin-wave value of
g =0.36. The magnitude of the sublattice magnetization
(o, (n) &/2 can also be calculated straightforwardly. We
obtain

I+& = & ( —g)"'"'~d &, (2.17)

(b)

where 2) is the set of all possible ways of putting an arbi-
trary number of dimers on a square lattice, and n(d) is
the number of dimers in the state d. The set 2) may also
be described as the set of a11 monomer-dimer coverings of
the square lattice by placing a monomer on all the empty
sites. In the calculation of the expectation value of the
energy, one complicating feature is that the overlap,
(d~d'&, between the two difFerent dimer configurations
~d & and ~d'& is not zero. This feature is demonstrated by
the example shown in Fig. 3. The two dimer
configurations in Figs. 3(a) and 3(b) are not identical; nev-
ertheless, the spin configurations they represent are iden-
tical because the set of sites which have a dimer on them
is the same. Diagramatically, this may be seen in Fig.

(2.16)

This has a minimum at g =1/(2Z —2) which is —,
' for

the square lattice. Note that this value of g is very close
to the spin-wave prediction of 0.16. The minimum ener-

gy is. —(1/3)J per bond. To make a more accurate esti-
mate of the minimum energy and of g, one tedious but,
in principle, straightforward method, is to obtain further

(c)

FIR. 3. Two terms, ~d & [(a)] and ~d'& [(b)], in the dimers
expansion o& l'p ) The overlap (d ~d') is shown in (c).
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3(c}where the two configurations have been overlaid. We
see that while some dimers overlay exactly, the remaining
form closed loops. It is now easy to see that the overlap
(0'~%& is given by

m6P,
(2.18)

where A1 is the set of all possible monomer, dimer and
loop coverings of the square lattice, nd(m) is the number
of dimers in m, and ni(m) is the number of loops of size 1

in m. The loops yield an extra factor of 2 because there
I

are two ways to obtain a loop from the overlap of two
monomer-dimer coverings.

An efFicient way of calculating the normalization and
energy expectation value of

~
4 & is to map the problem of

counting monomer-dimer-loop coverings of a square lat-
tice onto a functional integral over Grassmannian fields.
The procedure for carrying this out for a subset of the
terms in Eq. (2.18) has already been developed by Samu-
el. ' Samuel considered only monomer-dimer coverings,
i.e., he evaluated the sum in Eq. (2.18) over all terms with
nI(m) =0 for all l. He showed in particular that this sum
equals

f g dg (i)dg(i)exp g ri (i)ii(i)+g g g g (i)ri(i)ri (j)ri(j)
l E iE A jci+5

where ri (i) and g(i) are Grassmannian variables at the site i The .validity of this result is easily seen by expanding the
exponential and using g =0, (g ) =0, and the usual properties of Grassmannian integration fdr) dr)=0,
fdg dggt=O, and fdgtdriri ri= l. We then see that the only nonzero terms in the expansion are those in which
every site has a contribution from either the first term in the argument of the exponential (these are the sites with a
monomer on them} or from the second term (these are the sites with a dimer on them). The properties of Grassmann
numbers automatically take the hard core repulsion between the dimers into account.

The extension of Samuel's results to the case of interest in this paper is relatively straightforward. We simply add an
additional interaction term in the functional integral for every different type of loop on the square lattice. A loop with l
bonds will carry a prefactor 2g', as g is small, this implies that the calculation can be carried out to a high degree of ac-
curacy with only a small number of additional interaction terms. To order g, the only loop that needs to be considered
is the elementary square plaquette. We therefore have the result

&q ~q &= f gd~t(i )d~(i)e''
with

S =g g (i)q(i)+g g g ri (i)g(i)r)t(j)g(j)+2g g ri (h)g(h)ri (i)ri(i)ri (j)g(j)ri (k)ri(k)+ 8(g ),
i&A jEi+5 h, i j,k Fo

(2.19)

where in the third term the U indicates that the sum extends over all different sets of four numbers h, i,j,k which form
an elementary plaquette. We will present results in this section to order g; the terms to order g have also been calcu-
lated and will be discussed in Appendix A.

A particular advantage of the Grassmann functional integral representation is that properties of the antiferromagnet,
like the sublattice magnetization and the ground-state energy, can be represented as local correlation functions of the
Grassmann variables. The normalization of ~%& is taken into account by omitting the disconnected diagrams. We il-
lustrate this procedure by considering the calculation of the sublattice magnetization M,

(q l~;(i) I+ &

(2.20)

In the expansion of ~% & in Eq. (2.17), every configuration d which has a dimer on site i will yield a factor of —1, while
the remaining will yield a factor of + 1. Now perforining the expansion of both ~%' & and ( ~p

~
in M, we obtain

M=E, 4(g E2) 4(2g E—~, )+ . —8(g ),
where we have introduced the quantities

(2.21)

Ej = Probability that site i is empty in At

= (q'(i)q(i) &

f g d„(j)dr)(j)g (i)g(i)e
J

f + dq (j)dr)(j)e
(2.22)
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g E2= Probability that site i is on a dimer in JK

=g (g (i)g(i)g (j)g(j)), i,j nearest neighbors,

2g E4, = Probability that site E is on a square loop in AL

=2g (q (h)g(h)g (i)q(i)g (j)g(j)g (k)r)(k)), h, i,j and k on a square plaquette .

(2.23)

(2.24)

The correlation functions E&, E2, and E4, are represented graphically in Fig. a shaded square is placed at every site
which appears in the argument of the correlation function; the squares are connected by lines to show the relative posi-
tion of the sites on the square lattice. The correlation functions can be evaluated in a renormalized power series expan-
sion in g in a procedure very similar to that used by Samuel. ' We introduce the Green's function

G&;, =(g (i)g(j)) . (2.25)

2 4———„'E2+ (4E3, +2E3b E2)——(6E~, +2E~b+4E~, +E4~)+6(g ) . (2.26)
(vie&

We have introduced five new correlation functions which are described by their diagrammatic representation in Fig. 4.
Similarly,

(0'~S (i)S (i +1)+S (i)S (i+1)~ql)
(@~@)

= —gE2 2g E4, +—6(g ) . (2.27)

The bare value of this Green's function G is 1. The full Green's function is determined in a self consis-tent Hartree-
Fock expansion in powers of g. As noted by Samuel, the use of this renormalized Green's function removes the slow
convergence of the perturbation expansion of the correlation functions. Further details on the calculation of the
Green s function and the correlation functions E„E2,and E4, are presented in Appendix A.

A very similar representation can also be obtained for the ground-state energy. We find

(% ~S (l)S (l +1)~q )

Using the results of Appendix A we now have suScient
information to evaluate the ground-state energy, the sub-
lattice magnetization, and the value of g . The results of
this calculation are summarized in Table II. The small
di6'erence between the results of order g and g supports
the contention that the perturbation expansion is very ac-
curate. The best result at order g yields a variational
estimate for the ground-state energy of HA„of
( —0.3317+0.0002)J per bond, occurring at a value of
g =g =0.1878. As was the case in one dimension, the
spin-wave estimate of g =0.16 was quite accurate. Our
value of the ground-state energy is the lowest upper
bound among existing variational calculations with a sin-
gle variational parameter. '" Our estimate of the sublat-
tice magnetization (76% of the classical value) is some-
what higher than the estimates of Huse and Elser (63%)
and Reger and Young (60%).

III. ANTIFKRROMAGNKT WITH ONE HOI.E

We will now generalize the techniques introduced in
the previous sections to obtain simple variational wave

E2

38 3b

~E
RR

~555

4a
4b

functions for the hole moving in a quantum Neel state.
We present two closely related trial wave functions. The
first wave function is presented in Sec. IIIA: its chief
virtue is its simplicity; it is a useful trial wave function

Order

0.15868
0.18402
0.18777

E/(2XJ)
—0.32499
—0.33126
—0.33172

0.41468
0.38478
0.38008

TABLE II. Ground-state energy per bond, E/2X, and sub-
lattice magnetization, M, of the Heisenberg antiferromagnet on
a square lattice with exchange constant J. The results are
presented to different orders in the variational parameter g.

4c

4d
FIG. 4. Graphical representation of correlation functions of

the functional integral in Eq. (2.19). Each figure represents a
different correlation function given by a product of factors
q~(i)g(i) for each solid square. The lines have been drawn in to
indicate the relative position of the sites on the square lattice.
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only in the regime J &10t. We nevertheless present a
complete discussion of this simple wave function to clari-
fy the concepts that will be needed for the second wave
function. The weaknesses of this first wave function also
help motivate the improved, but more complex wave
function discussed in Sec. III 8. The second wave func-
tion gives reliable estimates of the energy in the expanded
regime J )0.25t. The quantum Neel states considered
will be very similar to those of the previous section: they
will involve fluctuations of near-neighbor pairs of spins
from the classical Neel state. The guiding principle of
the calculation will be to include correctly all such near-
neighbor spins flips correctly —all e8'ects arising from the
existence of long-range "dimers" will be ignored. The ex-
pansion parameter which makes this a reasonable work-
ing hypothesis is 1/(2Z —2).

A. Wave function I

We begin the discussion by considering a classical Neel
state with spins up on sublattice A and down on sublat-
tice 8. Create a hole by removing an up-spin electron
from the A sublattice site r, ; this state will be denoted by
the ket ~r, ). This state is represented pictorially in Fig.
5(a)—the solid circle represents the position of the hole.
We may now include the quantum fluctuation of the
background antiferromagnet by flipping pairs of spins on
all bonds of ~r, ) except those adjacent to the hole; this is
represented pictorially in Fig. 5(a) by omitting the lines
through the bonds which cannot have a dimer placed on
them. This renormalized state will be labeled ~r, ),

g' [1—g. (&,J)a'—(&)a' (J)]lr'. &,
i, jNN

where X, is a normalization factor which insures
( R, ~ r, ) = 1, and the prime on the product indicates that
it only extends over all sites except those with no line
through them in Fig. 5(a). Notice that the variational pa-
rameters g, (i,j ) now depend upon the relatiue position of
the bond from the hole. This wave function can be quali-
tatively interpreted as a polaronlike state with the size of
the polaron being the distance over which the g (i,j ) vary
from the location of the hole. We have organized the
states so that the hole is at the center of the polaron.
This is not an intrinsic limitation; any polaron wave func-
tion can be rearranged so as to make this the case.

Now consider moving the hole in ~r, ) to the 8 sublat-
tice. Since the electrons conserve their spin while hop-
ping, we will always obtain one spin with no accompany-
ing partner, which has been flipped with respect to the
classical Neel state. The four states which can be ob-
tained by a single hop from ~r, ) are labeled
~rb', a)(a=1,2, 3,4); one of them (a= 1) is shown in Figi
5(b), and the a=2, 3,4 states are 90, 180, and 270' rota-
tions of the a=1 state. The diamond in the figure
denotes the position of the single Ilipped spin. Quantum
fluctuations of the antiferromagnet can now be included
as before: we flip pairs of spins on all bonds except those
with no line through them in Fig. 5(b). We therefore ob-
tain the states ~rb', a),

(o)
FIG. 5. Graphical representation of the states ~r, ) and

~rb; I ). The states ~rb;2 to 4) are rotations of ~rb, 1 ). The solid
circle represents the position of the hole and the diamond
represents a single spin-Aip from the background Neel state.
Dimer spin-pair fluctuation can occur on all sites except those,
adjacent to the hole and the single spin Aip, which do not have a
line drawn through them. The darkened bonds in (b) indicate
the locations where the g»(i, j) values become large in the ener-
gy minimization.

1 g' [1—gb.(i,j)a'—(i)a+(j)1lrb', a &,
ba i jNN

(3.2)

where again the prime denotes that the product extends
over all but the empty bonds of Fig. 5(b).

Further motion of the hole from ~rb', a ) will either take
the system to a state with nonzero overlap with ~r, ), or
to a state with the hole on sublattice A but with -a non-
near-neighbor pair of spins flipped. As discussed earlier,
such states do not appear to leading order in 1/(2Z —2)
in the antiferromagnet, and will be ignored. Therefore no
further states need be considered. The problem has
therefore been reduced to the diagonalization of a
5N/2X5N/2 matrix which is a function of the infinite
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number of parameters g, (i,j ) and gb (i,j ) .Translational
invariance and Fourier transformation reduce the matrix
to a 5 X 5 matrix which can easily be diagonalized.

As was apparent in the previous sections, the states in
Eqs. (3.1) and (3.2) are still too complicated for an exact
evaluation of the matrix elements of the Hamiltonian.
However, if ~g, (i,j) ~

and ~gb (ij )
~

are small, then an ap-
proximate evaluation of the matrix elements in powers of
the g parameters is possible. The procedure we shall fol-
low can therefore be outlined as follows:

(i) The matrix elements of Hb are evaluated to second
order in g. The mechanics of the evaluation of the matrix
elements is discussed in Appendix B.

(ii) The 5 X 5 matrix so obtained is diagonalized and its
lowest eigenvalue determined as a function of the
wavevector k and the parameters g, (ij ) and gb (i,j )

(iii) The values of g, (ij ) and gb (i,j ) which minimize
the lowest eigenvalue are determined for each k.

(iv) For consistency, it is now required that the values
of the g parameters at the minimum be small enough to
justify the approximations made in the evaluation of the
matrix elements.

An important feature of the calculation becomes ap-
parent when this procedure is followed. It is found that
even for small values of J/t, the values of g, (i,j) and

gb (i,j ) at a bond which minimize the energy are deter-
mined to a good approximation by the coordination num-
ber of the bond. Two consequences of this fact are as fol-
lows: (i) The values of the parameters g, (i,j) and gb (i,j)
return to their values in the hole-free antiferromagnet
[1/(2Z —2)] within three to four lattice spacings of the
hole. This fact can be used to reduce the computer time
necessary in determining the minimum of the lowest ei-
genvalue. (ii) The bonds which are most likely to violate
the consistency requirement in step (iv) above are those
with the weakest coordination. This is indeed what hap-
pens. It is found that the values of the g parameters on
the bonds which are drawn with a thick line in Fig. 5(b)
become unacceptably large for J/t &10; these are the
bonds with the smallest coordination. A heartening
feature of the calculation is, however, that on al/ other
bonds the g parameters remain smaller than 0.4 all the
way down to J/t =0.3.

The chief insight gained from the calculation above is
that, to obtain reliable values of the hole energy for
smaller values of J/t, it will be necessary to treat exactly
the spins on the darkened bonds in Fig. 5(b) by expanding
the set of basis states with hole on sublattice B; no
changes will be necessary for the states with the hole on
sublattice A because none of the g, (i,j) parameters be-
came large even for small values of J/t. The procedure
for carrying this out will be discussed in the next section.

B. %'ave function II

The spins on the darkened bonds in Fig. 5(b) can be
treated exactly by expanding the basis states

~ r, ) and
~rb, a ) upon which the dimers are placed. The new basis
states will be labeled ~R, ) and ~Rb, a)(a= 1 to 12) and
are shown in Fig. 6. There are a total of 13 basis states
and the dimers are placed upon all but the empty bonds

IR

iRb, 1)
i Rb, 5)

+++
+ 0+

i Rb,'9)

FIG. 6. Graphical representation of the states ~R, ), ~ Rb, 1 ),
~Rb, 5), and ~Rb,'9). The states ~Rb,'2 to 4), ~Rb, 6 to 8), and

(Rb,'10 to 12) are rotations of (Rb, 1), (Rb,'5), and (Rb, 9), re-

spectively. The solid circle represents the position of the hole
and the diamonds represent a single spin-flip from the back-
ground Neel state. Dimer spin-pair fluctuations can occur on
all sites except those, adjacent to the hole and the diamonds,
which do not have a line drawn through them.

in Fig. 6. Notice that the spins on the sites with the
darkened bonds in Fig. 5(b) have now been fixed. The full
trial states

~ R, ) and
~ Rb ', a ) are obtained as before:

(3.3)

1

ba i jNN

(3.4)

where again the primes indicate that the product extends
over all but the empty bonds in Fig. 6, and a new set of
variational parameters G, (i,j ) and Gb (i,j ) have been in-
troduced. The remaining procedure exactly parallels that
described in Sec. IIIA: the matrix elements of Hh are
evaluated to second order in the G(i, j)'s, the resulting
13X13 matrix is diagonalized, and its lowest eigenvalue
is minimized as a function of the G(i,j) s. The subse-
quent discussion is divided into two sections: Sec. III 8 1

presents the results of the calcu1ation and Sec. IIIB2
discusses the possible sources of error in the results.
Questions on the convergence of the calculation are also
discussed.
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1. Results

The results of the calculation are presented in Figs. 1,
2, and 7. Figure 1 shows the energy of the hole E/t at
the three different momenta (0,0), (m, O) and (m/2, m2) as
a function of J/t. The zero of energy is the energy of the
antiferromagnet with one hole and t =0. For all values
of J/t the global minimum state is always at the momen-
tum (m/2, m/2). We show in Fig. 2(a) the bandwidth of
the hole

W/t =E/t(k=(0, 0))—E/t(k=(~/2, m/2)) .

Note the maximum in the bandwidth at J =0.73t where
W'=1. 24t. At large values of J/t we find W=2 6t /J. ;'
the proportionality of the bandwidth on t /J can be seen
from a large J/t perturbation theory for the hole, al-
though calculation of the coeScient requires the nontrivi-
al calculations of this paper. For small J/t, Fig. 2(b) in-
dicates that 8'= 3.4J. It is clearly of interest to find oth-
er methods of calculating the hole bandwidth to see if
this behavior persists into the regime J/t &0.25. Some
of the points in Fig. 1 have been tabulated for reference
in Table III. Figure 7 displays the energy-momentum re-
lationship of the hole on a line from the zone center to
the zone-boundary point (m, O) for the case J/t =2.0.

2. Error estimation

The uncertainties in the results of Sec. IIIB1 arise
from three different sources.

(i) Truncation of the infinite set of variational parame
ters The . variational parameters 6, (i,j ) and Gb (i,j )

must necessarily be truncated to some finite set which is
allowed to vary freely, while the remaining are fixed at
their values in the hole-free antiferromagnet. However,
as noted in Sec. III A, the dimer nature of wave function
makes the value of any 6, (i,j) or Gb(i,j), which is
greater than four lattice spacings from the hole, essential-

1.8—

1.6—

ly equal to that of the hole-free antiferromagnet. Calcu-
lations were performed with as many as 236 different
variational parameters, although it was found that
reasonable results were obtained over the entire range of
J/t values considered with as few as 68 variational pa-
rameters. %'e estimate the error in the results from this
source to be smaller than 0 01t.for all J/t.

(ii) Approximate eualuation of the matrix elements of
H&. All the matrix elements of the Hamiltonian are eval-
uated to second order in 6(i,j ) Th.e values of ~6 (ij ) are
all less than 6,„=0.3 for J/t ) 1 but a feio ( —10) of
them start to become larger as J/t decreases. For
J/t)0. 6, G,„equals 0.4, while G,„equals 0.5 for
J/t &0.25. Each individual matrix element of the Ham-
iltonian is actually a power series in 6 (i,j ), so the rela-
tive error in each matrix element and in the bandwidth of
order G,„. Therefore the uncertainty in the bandwidth,
b W/W, satisfies 6W/W&9% for J/t ) 1.0, 5W/W
& 16% for J/t )0.6, and 6W/ W & 25% for J/t )0.25.
We emphasize however that these are very conservative
upper bounds on the error: the large majority of the
6(i,j) values are considerably smaller than 0.3 for all
J/t. Since the matrix elements of the Hamiltonian al-
ways involve products of the G (i,j ) on neighboring
bonds, the relative error in the matrix elements is prob-
ably much smaller than we have estimated earlier. Also,
the simple second-order approximation for the antifer-
romagnet gives much better results than would be expect-
ed from an error estimate similar to the one above.

(iii) Inadequacy of the dimer form of the wave function.
The relative errors from this source are the hardest to es-
timate. However, the fact that the 6 (i,j) parameters are
small is itself an indication of the adequacy of the trial
wave function. If true wave function was locally com-
pletely different from the background Neel state, we ex-
pect that the variational calculation would signal this by
making the G(i,j) parameters comparable to unity. This
is precisely what happened with the wave function in Sec.
III A: the values of the g (i,j ) grew large on a particular
set of bonds indicating that spin correlations on those
sites were poorly described by the dimer approximation.
The improved calculation in this section treated exactly
the relative spin configurations on these bonds. No
analogous signal appeared in the calculation with wave
function II, indicating that all the remaining bonds are
satisfactorily described by the dimer approximation.

1.4-
TABLE III. Energy of a single hole in units of the hopping

parameter t for different exchange constants J and momenta k.
The zero of energy is the ground-state energy of the antifer-
romagnet with one hole and t =0.

1.2—

I

0.0
I

0.2
1

0.4
k x

I

0.6
f

0.8
I

1.0

FIG. 7. Energy-momentum relationship of the hole on a line
from the zone center to the zone-boundary point (m, 0) at a
value of J/t =2.0; the momentum is m(k x,0).

10
6
2
1

0.6
0.3
0.25

k=(0,0)
—0.069
—0.12
—0.34
—0.64
—1.01
—1.78
—2.03

k=(m, 0)
—0.28
—0.46
—1.15
—1.71
—2.10
—2.56
—2.67

k= {m/2, ~/2)
—0.33
—0.54
—1.28
—1.84
—2.24
—2.76
—2.91
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FIG. 8. Green's function G and the three interaction vertices
of the action S6. The dashed lines indicate the relative position
of the fermions involved in the interaction.

-eg4G3 -i6g'G5

IV. CONCLUSIONS

This paper has presented a reasonable variational basis
for determining the energy-momentum relation of a sin-
gle hole moving in a background Neel state. The Neel
state is described as a classical Neel state superposed by a
dilute uncorrelated gas of near-neighbor spin flips (di-
mers}. The small parameter which makes the density of
dimers small is the inverse of the coordination number
[=1/(2Z —2)= —,'] of a bond on the square lattice. The
minimum hole energy occurs at the zone boundary point
k=(rr/2, m/2). The bandwidth W is a nonmonotonic
function of J/t and achieves a maximum value at
J/t =0.73. It obeys 8'=2. 6t /J for large J/t and ap-
pears to decrease linearly with J ( &=3.4J) for small J/t.
The decrease in the bandwidth 8' is consistent with the
enhancement of the hole mass observ'ed in optical absorp-
tion experiments. '

An intermediate result of our calculation was the
determination of a variation al upper bound of
( —0.3317+0.0002)J on the ground-state energy per bond
of the square lattice spin- —,

' antiferromagnet. This com-
pares favorably with estimate of the ground-state energy
( —0.334+0.001)J made by Huse using series expan-
sions. ' It is also the lowest upper bound among existing
variational calculations with a single variational parame-
ter 5, 11

Several other problems can be attacked using the ap-
proach of this paper. The simplest is probably the deter-
rnination of the S =1 excitation spectrum of the antifer-
romagnet. This will lead to a value for the renormalized
spin-wave velocity. A more difficult problem is the deter-
mination of the two and rnultirnagnon excitation spec-
trum, the solution of this problem could possibly shed
some light upon the light scattering experiments of Lyons
et al.

It would also be of interest to determine changes in the
configuration of the spins in the neighborhood of a single

%h

-24g G
-1eg6G5

FIG. 9. Graphs for the self-energy X to order g . The values
of the graphs include all the symmetry factors and the different
possible orientations of the interaction vertices.

hole in an antiferromagnet as a function of t/J. This in-
formation is, in principle, contained in the eigenvectors
of the 13X13 matrix diagonalized in Sec. IIIB and the
values of the G(i,j ) parameters at the minimum energy.
The analysis of these results is, however, complicated by
the fact that the hole eigenstates are Bloch wavelike
states, whereas the results are best understood in a local
Wannier representation. The analysis is deferred to a fu-
ture publication.
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APPENDIX A

In this appendix we present details of the calculation of
the expectation values of the energy and the sublattice
magnetization using the functional integral method.
Terms up to order g will be included. The action of the
functional integral was presented correct to order g (S4)
in Eq. (2.19); there is only one additional term in the ac-
tion at order g corresponding to the single six-sided loop
(covering two adjacent plaquettes) that can be drawn on
the square lattice (this loop will be represented by the
symbol H).

S,=S4+ g (a)g(a)g"(b)q(b)g (c}rI(c)g (d)g(d)g (e)g(e)g (f)q(f) .
abcdef EH

(A1)

We now present details of the diagrammatic evaluation of the correlation functions. The renorma1ized Green s func-
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tion G will be represented by a full line as shown in Fig. 8. Also shown in Fig. 8 are the three interaction vertices
present at order g . The Green's function 6 can be represented in the form

(A2)

where the self-energy X is the sum of all the one-particle irreducible graphs. All the terms in X to order g are shown in
Fig. 9. This yields the expression

X= —4g 6 —12g 6 —64g 6
Solution of Eqs. A2 and A3 yields the value of the renormalized Green's function.

The ground-state energy to 8(g ) involves the following expectation values:

(0 ~S,(l)S,(l +1)~e)
,'Ei—+—(4E~,+2EqI, E~ )—

4

(A3)

(6E4, +2E~I, +4E4, +E~d )
— (22E6, +8E6i, + 8E6i, +8E6, )

—8(g ), (A4)

where we have introduced the three new correlation functions E6„E6I„and E6, , these functions are de6ned by the di-
agrammatic representations in Fig. 10. Similarly,

(4'~S„(i)S„(i+ I )+Sy(i)Sy(i +1)~%)
(cia) gE 2—g E ——6g E —8(g ) .2 4a 6a (A5)

Finally we quote to order g the expression for the sublattice magnetization M,

M =E, —4(g~E, ) —4(2g E~, ) —12(2g E ) — 0(g') . (A6)

It is now necessary to calculate the various E,. correlation functions using the Grassmann functional integral. The
fIrst step involves the reduction of these correlation functions into their various disconnected pieces. For example, the
correlation function E2 has the decomposition

E = ( re( )ri( )ri"(j )ri(j ) )

=(q ( )g('))(q (j)g(j))+(ri (')q(')g (j)tl(j)) (A7)

where the C subscript on the second correlation function indicates that it involves only connected correlation functions.
We denote this connected correlation function by the symbol Cz„and represent it graphically in Fig. 11(a): as with the
E correlation functions, the solid squares represent the various points in the arguments of the correlation functions, and
the dark lines are drawn in to represent the relative location of the points on the lattice. The equation A7 may there-
fore be rewritten,

E2 =6 +C~, . (A8)

imilar decomposition of the remaining E correlation functions can also be made. We find it necessary to introduce 20
new connected correlation functions which are defined by their diagrammatic representations in Figs. 11(a) and 11(b).
They are denoted by the symbols C,. where the number i (i C 1 to 6) denotes a i-point connected correlation function
and n is a label distinguishing the various ~-point functions. The expressions for the E correlation functions can then be
calculated to be as follows. The decomposition of the three-point functions are completely straightforward:

E3, =6 +2CqgG+C2bG C3g ~

+2C2, 6+C2,6 —C3~ .
(A9)

The four-point functions are a little more complex:

E4, =G +4C2, 6 +2C~~ 6 +2C2, +C~~ —4C3g 6 +C4, ,

E4~ —6 +3C2,6 +2C2gG +C2dG +C~, +C2~+C2, C2d —2C3, 6—2C3g6+C4~,
(A10)

E4, —6 +3Cq, G +2C2~G +C2dG +C2, 6 +C2, +C2, C2d+C2gC2, —C3, 6 C3gG —C3gG —2C3d 4g

E4d =6 +3C2, 6 +2Cq, G +C2,6 +Cq, +C2, C2, +C2, —2C3gG —2C3, G+C4d .

The decomposition of the six-point functions into connected correlation functions is, however, an order of magnitude
more complex; we nevertheless display the results here for reference.
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E6, =6 +7C2aG +4C2bG +2C2, 6 +2C2dG +11C2aG +3C2, +2C2, C2d+8C2, C2bG

+2C2, C2b+4C2, C2b C2, +6C2, c2,6 +C2, C2, +6C2, C2d 6 +C2, C2d +4C2b G +2C2b C2d

+4C2bC2, G +4C2bC2dG +C2, G +C2dG (8—C3, +2C3b+4C3, +4C3d+2C3f)G

[4C3a( C2a + C2b + C2c +C2d )+ C3b( C2a + 2c )+ 3c(C2a +C2b+ 2d )

+4C3d ( 2C2g +C2b ) +2C3f ( 2C2b +C2, ) ]G +2C 3, +4C3, C3d +C 3b +2C 3,

+2CqaG +2C4aC2, +2C4bG +2C4.bC2d+4C4cG +4C4, C2, +2C4, 6 +2C4, C2,

+4C4f 6 +4C4f C2b+ 4g 6 4g 2a 5a 5b

E6b —6 +6C2, G"+3C2b6 +2C2, 6 +2C2dG +C2, 8C2, 6 +2C2, +C2aC2d+C2, C2,

+ C2a C2b 6 +C2a C2b + 2a C2b C2c +4C2a C2c 6 +C2a C2c +5 C2a C2d 6 +C2a C2d + 2a 2d 2e

+3C2, C2, 6 +2C2bG +C2bC2, +3C2bC2, 6 +2C2bC2, C2d+2C2bC2dG +2C2bC2, 6
+C2b C2, +C2, G +2C2, C2d G + C2d 6 +C2d C2, G —(5C3, +2C3b+3C3, +2C3d +2C3, +C3f )G

—[C3g(6C2, +C2b+2C2, +2C2d+2C2, )+C3b(3C2, +C2b+ C2d )+2C3d(C2a+C2, +C2d )

+C3, (3C2, +2C2b+C2, +C2d+2C2, )+C3,(3C2, +2C2b+C2d )+C3f(C2b+C2, )]G

+C3a 3c 3a 3e 3a 3b C3d +C3d C3e + C4a 6 +C4, C2, +C4b 6 +2C4b C2,

+2C4cG +C4, C2, +C4, C2d+C4d6 +C4dC2, +C4, 6 +C4f G +C4f C2c —C5, 6,
E6, —6 +6C2a64+4C2bG +C2, 6 +3C2dG +8C2a6 +2C2, +2C2, C2d+7C2, C2b6 +2C2, C2b

+C2aC2b 2c+2C2aC2c6 +8C2aC2d6 +2C2a 2d+4C2b +2C2b 2d+2C2bC2c6 + 2bC2cC2d

+5C2bC2dG +C2, C2dG +2C2dG (6C3, +C—3b+ C3, +2C3d+ 3f)G
—[C3,(8C2, +3C2b+ C2, +4C2d )+C3b(C2, +C2d )+C3c(5C2, +4C2b+ C2, + SC2d )

+ C3d( C2a + C2b +C2b +C2d )+2C3fC2b ]G +C3a + 3a 3c + C3a C3d + 3c

+C3cC3d 4a6 +C4, C2, +2C4bG +C4bC2, +C4bC2d+C4, G +C4cC2d+C4, 6

4f 4f 2b C5a 6

(A11)

(A12)

(A13)

The C correlation functions can be calculated accord-
ing to the usual Feynman rules. %'e show in Fig. 12 the
Feynman graph expansion for the correlation function
C2, . The results of such a calculation yield to order g

4 ~88

6c

FIG. 10. Additional correlation functions of the type in Fig.
4 which appear at order g .

the following results for the two-point functions:

C2, =g 6 +6g"6 +29g 6
C2b Sg 6, C2, = —g G —8g 6

66 8 C g 66 8

three-point functions,

C, = —128 '6' C» ———2g'6' —16g'6',

C3c 2g 6, C3d g 6
C =2g G, C3f Og 6

four-point functions,

2g 46 Sg 66 10 C 2g 66 10

4g 66 10 C 4g 66 10

C =4g 6' C =Og 6'4f

2g 66 10

five-point functions,

(A14)

(A15)

(A16)
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FIG. 12. Feynman diagram expansion of the correlation
function Cz, of Fig. 11(a) using the Green's function and in-
teraction vertices of Fig. 8. All graphs to order g have been in-
cluded.
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FIG. 11. Graphical representation of the connected correla-
tion functions. The rules for the representation are identical to
those of Fig. 4; the solid squares represent the sites which con-
tribute a factor of g (i)g(i) to the correlation function and the
lines indicate the relative position of the points on the square
lattice. The lines have, however, been drawn in thicker to em-
phasize the connected nature of the correlation functions.

3,1

FIG. 13. The states ~r, ) and ~rb;I) of Fig. 5. Some of the
bonds have been numbered to identify the g, (i,j) and gb&(i, j)
parameters on them.
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and six-point functions,

6G 12

(A17)

(A18)

This appendix presents the results of the evaluation of
the matrix elements of the Hamiltonian H& for wave
function I. The matrix elements for wave function II can

The ground-state energy and the sublattice magnetiza-
tion can now be calculated from the expressions in Eqs.
(A4)—(A6); we use the decomposition the E correlation
functions in Eqs. (A8)—(A13) and the values of the con-
nected C correlation functions in Eqs. (A14)—(A18). The
results of such a calculation and the subsequent minimi-
zation of the energy as a function of g are summarized in
Table II.

APPENDIX 8

be evaluated in a very similar manner, with however, a
much larger number of parameters.

The states we are considering are redrawn in Fig. 13.
For simplicity we will allow the g, (i,j ) and gb (i,j ) pa-
rameters to differ from their values at infinity only on the
bonds that been numbered in Fig. 13. This is done simply
to make the following discussion compact; the results of
the paper were obtained in a calculation in which much
larger sets of the g, (i,j ) and gb (i,j ) parameters were al-
lowed to vary. The numbers on the bonds are used to
represent the variational parameters; the variational pa-
rameters are therefore g, (1), g, (2) g, (12), g»(1),
gb)(2) gb, (16), and similarly for gbq, gb3, and gb~, lead-
ing to a total of 78 variational parameters. %'e represent
by the symbol g ( = —,

'- ) the values of the g, and gb parame-
ters on all the other bonds of the lattice.

The following are the values of the diagonal matrix ele-
ments of Hz so obtained:

&r, IHb Ir ~ = (1 g +3g')+J—J [g, (1)+g,(2)+g, (3)+g, (4)+g, (5)+g, (6)+g, (7)
2

+g, (8)+g, (9)+g, (9)+g, (10)+g,(11)+g,(12)—16g]

+ [g,(1)+g,(2)+g, (3)+g, (4)+g, (5)+g, (6)+g, (7)+g, (8)+g, (9)

+g, (10)+g,(11)+g,(12)——",g ],
& b'IIH lrbb, &= — (1—g+3g )+ J[sbi(1)+—gbi(2)+g i(b3)+g i(b4)+she(5)

NJ 2 5J

(B1)

+Sbl(6)+Sbl(7)+Sbl(8)+Sbl(9)+Sbl(10)

+gb)(11)+gb, (12)+gb, (13)+gb,(14)+gb, (15)+gb, (16)—23g]

+ —[10gb, (1)+10gb) (2)+10gb, (3)+10gb, (4)+6gb, (5)
4

+ 8ggb, (6)+8gb, (7)+Sgb) (8)+Sgb, (9)+Sgb, (10)+8gb, (11)+8gb, (12)

+6gb, (13)+ 10gb) (14)+10gb) (15)+10gb) (16)—276g ], (B2)

and similarly for lrb, 2), lrb,'3), and lrb, 4).
The oF™diagonal matrix elements arising from the hopping term displace the position of the hole. We denote the dis-

placement of the hole by the vector (h, h~ ), where h„and h» are integer lattice spacings. In this way we obtain

&r, IHb Irb =r, +( —1,0); I ) = ——[2—g, (1)—g, (2)—g, (12)—[g, (3)—g»(5)]

[g, (4) Sb 1(6)l [g, (5) Sb 1(7)] [S,(6) Sb1(8)] [ S,(7) Sb1(9)]
—fg. (8)—sbi(1o) 1'—

I s.(9)—sbi(11)]'—[s.(1o)—sbi(12) l'
—[s.(»)—s (»)]'—I:s —s (14)]'—[s —s (»)l' —[s —s (16)]'
—[g —

Sb 1(1)]'—[g —Sb1(2)]'—[S—Sb1(3)]'—[S —gb1(4) ]']
& rlHb Irb =r, +(1,0); I ) =tg, (7),
&r, lH„lr =r, +(0, 1);I)=tg, (5),
& r, IHb lrb =r., +(0, —1);1)=tg, (9),

(B3)

(B4)

(B5)

(B6)

and similarly for lrb,'2), lrb,'3), and lrb', 4).
Finally, there are the matrix elements arising from the nonorthogonality of the lrb, a) states. These are found to-be
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as follows (the convention for bond numbering in the orb', 2 }, orb', 3 },and ~rb', 4}states is obtained by rotating the orb', 1 }
state anticlockwise for 90, 180, and 270', respectively):

(rb,' 1 orb,'2 }=gb&(13)gbz(5),

( rb, 1 lrb, 4 & =gb1(5)gb4( 13)

(rb; 1 iHb orb; 2 }=J I ( X—/2+4)gb, (1 3)gb~( 5) ——,'[gb, (13)+gb~(5)jI,
(rb, 1 iHb orb,'4 }=I t ( N/2—+4)gbi(5)gbz(13) —

z [gbi(5)+gbq(13)] I,
and similarly for orb', 2}, orb, 3 },and ir»4}.
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