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Effect of crystal fields on the Hall effect in Kondo-type systems
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We calculate the e6'ect of crystal fields on the skew scattering and anomalous velocity contribu-
tions to the Hall effect of Kondo systems. Above the Kondo temperature Tz the crystal field
reduces the extraordinary Hall e6ect in the same proportion as the product of the magnetic resis-
tivity p and susceptibility y. Below Tz the effect of the crystal field cannot be accounted for by only
the reduction ofpg, and the Hall efFect can be either enhanced or suppressed.

I. INTRODUCTION

V,„=QBt (z)0' (J,z),
Im

and the Zeeman interaction

V, =gjp~H J=gjpttHOO(J, h), (1.2)

where the angular momentum tensor operators 0' (J) are
defined by Smith and Thornley, e.g., Oo(J, h)=J.h=Jt, .
The additional variable z or h on these operators denotes
the direction of spatial quantization. If we choose to ro-
tate the crystal-field Hamiltonian to the set of field axes
[8,—(8Xh), h] we use

I
m ("z) & =& lm (h) &

= g lm '(h ) & & m '(h ) IR lm (h ) &,
m'

The Hall effect has been a particularly effective probe
of conduction-electron scattering in Kondo-type com-
pounds. ' In particular the extraordinary Hall effect
(EHE) probes the scattering of conduction electrons by
the orbital angular momentum of localized electrons. As
such, it is sensitive to crystalline electric fields, because
they reduce the orbital degrees of freedom of localized
electrons. Here, we show how to include the effects of
crystal fields on the EHE. We determine these effects for
single crystals and powdered samples.

In the conventional Hall geometry one applies a mag-
netic field H perpendicular to the current which is paral-
lel to the applied electric field 8, and measures a Hall
voltage along the direction R Xh. The presence of a crys-
tal field introduces a second set of axes, i.e., the set of lo-
cal axes about which one defines symmetry operations of
the crystalline environment, in which the crystal-field
Hamiltonian assumes its simplest form. In general these
two sets of axes are not coincident, and it is necessary to
rotate one set into the other. The Hamiltonian for the
Kondo ions in a roetallic system contains, among other
things, two terms which depend on the relative orienta-
tion of the two sets of axes, viz. , the crystal field

and find

&=&o+ +Bt (h )0' (J,h )+gsp~HOO( J,h),
lm'

where

(h)—:g&t (z)2)'" (&),

(1.4)

and 2)'", is a matrix element of the rotation from the
field h to local z axes,

(W)=(lm'~R ~lm & . (1.5)

(1.6)

In either case the eigenstates of & depend on the relative
orientation of the two sets of axes, and on the field H, be-
cause the commutator [V„,V, j is nonzero. Thus for a
single crystal one cannot express the eigenstates of & in a
simple form because they vary with H. For a polycrystal-
line sample the different orientations of local axes relative
to the field axes further complicate the situation. One
could diagonalize the Hamiltonian numerically and ob-
tain solutions for arbitrary field strengths. However, that
would not be very enlightening; we are more interested in
trends. Therefore, we limit ourselves to effects linear in
the magnetic field so that we obtain analytic results.

II. HALL EFFECT

The Hall constant due to the linear extraordinary Hall
eff'ect (LEHE) is

pII o a~~
H

~N
(2.1)

When we consider only the spin-independent contribu-
tion to the LEHE, the Hall conductivity o.~ is given as

On the other hand, if we choose to rotate the Zeeman in-
teraction, we find

&=&o+ +Bi (z)0' (J,z)+gjpttH g2)(')"*0' (J,z) .
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o~ =—e n(e)dE—2 2 B 0

H BE,

X [v (E)ro~(E)8(E)+2U(s)ro(E)co, (E)],
(2.2)

when the Zeeman interaction commutes with the unper-
turbed Hamiltonian as it does for a free 4f electron.

In general, in the presence of crystal fields the commu-
tator is nonzero and the expansion Eq. (2.8) is more com-
plicated. However, when we-restrict our attention to one
degenerate crystal-field level

where the first term in square brackets comes from skew
scattering, and the second from anomalous velocity con-
tributions to the EHE. The normal conductivity o & is

&raI v„Irp) = v,s.p,
so that

(2.9)

o~= —', e f n(e)de

The relaxation rate 'Tp is '

v (e)ro(e) (2.3)
& ra

I [v„,v, ] I rp) =0,
where II a) is an eigenstate of the crystal-field Hamil-
tonian

r, '(e) = —c;(I Vk I'/X)lmG (s), (2.4) (mo+ v„)Ira&=E, Ira&, (2.10)

the skew scattering coefBcient S is

8(s)= —Nc;(I Vk I /iri)sini)z(e)lm[e ' G, (E)], (2.5)

and when we neglect terms proportional to Bkgz(k},
which is quite small, the anomalous velocity m, is

and a denotes the degenerate partners of the manifold I .
Under these conditions the magnetic field dependence of
the crystal-field Green's function can be expanded as
shown in Eq. (2.8). The sums over the 4f Green's func-
tions Eqs. (2.7) can be rewritten in operator form as

Go =TrG "/(E)
~, = —

—,",c;(I VJ, I'/iri)sing2(e)

XRe[e ' (Ok+6/k)G&(e}] . (2.6)

Here c; is the concentration of Kondo ions, Vk is the An-
derson mixing parameter, and q2 the phase shift due to
potential scattering in the nonresonant l=2 channel.
The sums over the 4f electron Green's functions are
defined as

and

=TrG /(c, ,H=O)+O(H ),
, BG'/ 3

Gi =gjpeH TrJ& +O(H ),
a=o

(2.11a)

(2.11b)

BEk O'G'/
„gJV sH TrJh ~~+«H'»

Co Eh H=o

BG4/
J=gjpsH(g mj )

m
J H=0

+O(H ),

G = g G /= g G /(e, H=O)+0(H ),
Jm. = —j m.

J J

G, =pm 6/

(2.7a)

(2.7b)

(2.11c)

where Ji, =J.h=Oo(h).
To proceed we consider the Zeeman interaction is

small compared to the crystal field, and keep only the
leading order in H terms. The Green's function 6
(e,H =0) is diagonal in the crystal-field eigenstates

I
I a ),

therefore

and
& «IG'/(s, H =0}Ir'p& —=Gi (l~~ fi.p . (2.12)

B
Bk G)(co ek )=

Bk B6)

BEk

Bk
J

BEp
2G4

J

+O(H ) . (2.7c)

where E& =—g&p&Hmj. It can be expanded in this form

We have expanded the field dependence of the Green's
function as

G(EH) G, (eH==O), + BG
s„+O(H ), (2.8)

BE(,

In addition, we assume only one crystal-field level I is oc-
cupied for all temperatures. If this is not the case the
problem is more complicated because the crystal field be-
comes inextricably intertwined with the Kondo e6'ect it-
self. With this approximation only one Green's function
exits. We evaluate the traces in Eqs. (2.11) by inserting
the crystal-field eigenstates of the ground-state manifold,
and find

and

Go =NrGr(s, H=0)+O(H ),
Gr

G, =gqpeH Ri-+O(H ),
H=O

(2.13a)

(2.13b)

BEk B Gr
Bk G, (co= Ek ) =gqpsH R r +O(H ),

k BcoBE,„
(2.13c)
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where

Rr(h)=—g I&ralo,'(h)lr~&I'
aP

(2.14)
Id Qh2)(')" (h)2)(')" (h) =

—,'5

and the powder-averaged orbital factor Eq. (2.19) is

(2.20)

Go =(zj+1)G (E,H=O)+0(H ), (2.15a)

is an orbital factor, and Nr is the degeneracy of the level
I . For a free 4f electron in a j=

—,
' state, viz. , for cerium,

we have

R„=,y I&r Io'lrp&l .
aPm

(2.21)

This is to be compared with the single-crystal expression,
see Eqs. (2.14) and (2.18),

4f BG
3

G& =gjp~H Ra+0(H )
a=o

(2.15b) Rr(h)= g +2)o" (h, x)& ralO Irp& (2.22)

and

O'64I
Bk G

&
(co=ok ) = gjp~H Ra+0(H ),

Bcoc)FI ~ o

(2.15c)

where

Ro—= pm~ = ,'j (j+—1)(2j+1). (2.16)

On comparing Eqs. (2.13) and (2.15) we note that the
crystal Geld affects the quantities entering the Hall con-
stant in two ways. First it replaces Ro by R r(h };we will
call this an orbital reduction effect. As the crystal-field
states are referred to the local crystal symmetry axes and1.
Oo is quantized along h, to evaluate the matrix element in
Rr we write 00(h) in terms of tensor operators referred
to the local axes,

0,'(h)=%'0,'(z)= g 0' (z)& lm IR'Ilo&, (2.17)

alld

O,'(h) = y n,'"*(h,z)O.'(z } (2.17a)

«a lo,'(h) lrp &
= y n~".*(h,z) & I alo' lI p& . (2.18)

where %' is the inuerse of the rotation A defined in Eq.
(1.3). We find %'=% '=%+, so that

The second effect of crystal fields is to replace the free
4f electron Green's function G" by the crystal-field
Green's function G„(H =0). There is no need for the in-
dex a, because in zero field the levels in the I manifold
are not split and have the same Green's function, see Eq.
(2.12). In the approximation within which we are work-
ing, viz. , of considering only one crystal-field manifold,
the Green's function Gr(H =0) is identical to that for a
state of fictitious anger momentum j, where j is defined
by the degeneracy of the manifold I,

Nr=:2j+ 1 (2.23)

and whose energy is Er. So long as the crystal-field split-
ting b.„is small so that IE„EFI= IEJ—EF I

where EF
is the Fermi energy, the sole effect of the crystal field on
the Green's function is to replace (2j+ 1) by X„.

III. WEAK-COUPLING LIMIT

With the approximations made above we can obtain
reasonable estimates of the conductivities aH and oz
[Eqs. (2.2) and (2.3)] by replacing ( —Bf /Be) by 5(E), so
that the integrands are evaluated at c.=0, the Fermi level.
In the limits of weak coupling (T))Tz, the Kondo tem-
perature), and strong coupling ( T =0 K) we have explicit
forms for the Green's functions entering o.~ and crz. For
intermediate cases only numerical results are possible and
we do not consider them here.

In the limit of weak coupling the Green's functions for
a free 4f electron [Eqs. (2.15)] are '

This result is for single crystals. For polycrystalline sam-
ples we perform a powder average. In the present con-
text this is done by averaging R r (h) over all orientations
of the local axes relative to the fixed field axes
[8,—(R Xh), h],

R, =, JdII. I
«a(-z) Io.'(»lrP(-z) & I'

= g «alo' Irp&&rpl(o', )'Ira&
mm'

G, /(c, -o)=——,'j(j+1) gJp~H
IEJI

X 1 —(i/2)(2j+1) I

Go (E-0)= 1 —i(2j+1) r
I EI I

(3.1a)

(3.1b)

X Id Q1,2)(')" (h)Xl(')".(h),
4m

(2.19}
a„G',I(.-o)=

~

J(J +1)4 2 EF 1 . . NzPa~
G',J (e-O),

where we average over directions of the field instead of
local axes because it is irrelevant to the present applica-
tion whether we rotate crystal-field states or the field
direction. The average over the rotation matrix yields

(3.1c)

where I is a measure of the strength of the Anderson
mixing parameter, I =~X(0)l Vk I, IE/I is the energy of
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the 4f electron relative to the Fermi level, EF is the Fer-
mi energy, and kF is the Fermi momentum. To obtain
the crystal-field Green's functions [Eqs. (2.13)], we re-
place 2j + 1 by Nr IEf I by IEr li and ,'j (j—+1), which is
just Ro/(2j+1), by R r /Nr for a single crystal or
Rr/Nr for a polycrystalline sample. We find

16 n(0)e A gJPBH IEI'I R I
Sln'Q2

49 m k~ T

X ' cos'$2+2 sin+2
4c; ~r

r & . r
(3.2a)

6 2 cos'g2

EF ~r
(3.3)

G, (E-0)=— Rr gJPBH i I
N, IE„I I,T

and

a„Gr, (e-O)=„„G,r(s-O) .2 EF Rr gJPB

F I' I B
(3.2c)

By placing these results in the conductivities, Eqs. . (2.2)
and (2.3), and by setting U (0)/kF =III'/m, and
mu (0)=2EF we find the Hall conductivity in weak cou-
pling is

~N(0) ne 2A I
Er I

mc
(3.4)

By placing these conductivities in Eq. (2.1) we find the
Hall constant in the limit of weak coupling is

We set N(0)EF =3z/4 by using the free electron density
of states where z is the number of conduction electrons
per Kondo ion, and hr=NrI . The normal conductivity
Eq. (2.3) reduces to

2 &r gJPa
92

4c;

3mzNr IEr I

mc /Nr br
49 mN(0)ne .A IEr I

X cosg2+2 sinq2~r
EF EF

6—2 cosg2 — 3 —2- (3.5)

In the limit of weak coupling we can express the Hall
constant in terms of the normal resistivity faV

49~zN„"' IE, I

r
( r) —I

mc;

m'N(0)ne'A IEI I

'2

2IE„If r = —
—,",sing& cosq2+ sing2~r

49 Sln'g 2COS'g 2

and the magnetic susceptibility

(aiba)' Rrx'=
k~T

In terms of these quantities the dimensionless ratio

R~fr =&JPB
p X

is given as

fr =f'r" +fr"

where

(3.6)

(3.7)

(3.8a)

(3.8b)

(3.8c)

(3.8d)

6—2
I I

cosy'Er

~r
3 2 S1Il'g2 (3.8e)

IV. STRONG COUPLING

Now, let us see how these results are modified when we
go to the limit of strong coupling, specifically T=O K.
The Careen's functions Eq. (2.13) take the form

is the anomalous velocity contribution.
We note for T))Tz the ratio fr is relatively insensi-

tive to the effects of crystal fields, at least under the con-
ditions that Igzl ((1 and hr/IErI ((1 which make the
skew scattering term Eq. (3.8c) the dominant one.
Therefore we conclude that the main effects of crystal
fields on the extraordinary Hall effect are accounted for
by the changes of the resistivity (3.6), and of the suscepti-
bility, Eq. (3.7).

is the skew scattering contribution, and Go = — e singr+O(H ), (4.1a)
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(4. lb)

and

Bk G, =, (2e "sing„—A m /Nr )6, +0(K ),
F

(4.1c)

where we used (Bel, /Bk ) ~z =2EF /kF, 3 is a constant of
order one, and I = I Z is the magnetic Kondo resonance
scale where Z is a renormalization constant. ' At T=O
K the phase shift at the Fermi surface g„(0) is given by
the Friedel-Langreth rule

32 n(0)e A gzPaK Rr
H 49 I pile + 92

3~z sin [2gr(0) gz]
X

4c;Nr sin gr(0)

+ 2 singr(0)cos[3gr(0) galP )fc

Am
cos[2gr(0) —gi]&r

(4.3)

where we have neglected the term 6G i /kF in Eq. (2.6) be-
cause the dominant term, BkG, -(EF/I ")G, IkF where
EFII'))1, is much larger. The normal conductivity
Eq. (2.3) at T =0 K is

irnf (0)
gr(0) =

&r
(4.2)

r 2 AN(0)ne fi 1
~N

sin gr(0)

so that the resistivity is

(4.4)

where nf (0) is the number of electrons in the 4f state at
T=O K. This is one in the absence of mixing. In the
Kondo regime nf(0) is less than but close to one. By set-
ting v(0)lkF =A'Im and v (0)=2EF Im we find the Hall
conductivity Eq. (2.2) at T =0 K is

r Nz mc;p"= -sin g„(0) .
irN(0)ne vari

(4.5)

By placing these conductivities in Eq. (2.1) we find the
Hall constant at T =0 K is

gJPa m
RH(0) = —

—,",Rr sing2sin gr(0)
I * AN(0)ne A

r
X c;sin[2gr(0) —g2]+

37TZ

4N Ci 2 EF Am
sm g„(0) 2 smgr(0)cos[3gr(0) —g2] — cos[2gr(0) —g2]

I

(4.6)

At T=O K the magnetic susceptibility is

(gjpii) sm gr(0)
yr(0) = R~ (4.7)

fr(0)=f r (0)+f r" (0),
where

sm[2gr(0) —gz]f„(0)= —Iir smg2
Nrsin gr(0

aIld

32& EFf r" (0)= — — 2 singr(0)cos[3gr(0) —g2]49z I'
Am.

cos[2g„(0)—g2]

(4.8a)

(4.8b)

(4.8c)

so that the diinensionless ratio f„,see Eq. (3.8a), at T=O
K is

sensitive to the effects of crystal fields as rejected by
gr(0) and N„. That is to say, with respect to the case
without crystal field for which g =irnf(0)/(2j+1) this
is now replaced by gr(0), and 2j+1=6 (for cerium) is re-
placed by Xz. We conclude that for T « Tz the changes
in the resistivity p and susceptibility y Eqs. (4.5) and (4.7)
are unable to completely account for the effects of crystal
fields on the Hall constant. As we will see in the next sec-
tion, while py is always reduced by the crystal field, the
Hall constant can be enhanced by the increase of f r" (0).
On the other hand, it must be pointed out that fr(0) is
independent of the orientation of the magnetic field with
respect to the crystal axes. %'hen the orientation is
changed (suppose the current remains fixed in one direc-
tion) the anisotropy of the Hall constant RH is fully ac-
counted for by the anisotropy of the susceptibility, i.e.,
RH(h) depends on h in the same way as yr(h) does.
Similarly, if one compares the Hall constant of a polg-
crystalline sample R H with that of a single crystal RH(h)
one expects

are the skew scattering and anomalous velocity contribu-
tions, respectively.

In contrast to the results for T ))Tz the ratio fr(0) is

RH(h)

RH

gr(h)
(4.9)
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V. CRYSTAL-FIELD DQUBLKT

II +-& =a I+-', &+b
I
+ —', &+c I+-,' &, (5.1)

To obtain an idea of the magnitude of these crystal-
field efFects, we consider a crystal field with rhombic sym-
metry; the 4f j=—', state of cerium, for example, is split
into three doublets. We focus on the ground doublet
which is written as

and

r =—'
p

12( 5 2 3b2+ 1 2)2
y(z) 35 2 2 2

4 [( Sa2 3b2+ 1c2)2
35 2 2 2

+ —,'(2&Sab+3c ) +16b c ),

(S.7a)

(S.7b)

(5.7c)

where a +b +c =1. To simplify the calculation for
single crystals we assume the magnetic field is parallel to
the local symmetry z axis. In this case there is no need to
rotate the field operator Oo(h), see Eq. (2.17a), because it
acts on states [Eq. (5.1)] written in the same axis of quant-
ization, i.e., 2)o'" (h, z) =5 0 in Eq. (2.22) and
Oo(h)=J), =J, . We first calculate the orbital factor Ri.
which fixes the reduction of the product py. From Eq.
(2.14) we write Rr as

sin rj„(0)
r (0)=r

sin n. (0)
(S.ga)

sin 21i(0)
r (0)= ,'r—2'(z) T 2(z) S 2 (())

(S.gb)

ail d

where we set Nz =2, and j=—', . At T=O K. we find from
Eqs. (4.5) and (4.7) that with respect to the case without
crystal field p, y(z) and y are, respectively, multiplied by

For the crystal-field doublet, Eq. (5.1), we find

&I ~IJ, III3&= yml&mlra&I2fi ), , (5.3)

so that

a=+ m

—2( 5a2 3b2+ 1c2)2
2 2 2 (5.4)

For a polycrystalline sample the orbital factor is given
by Eq. (2.21). This can be written as

(5.5)

where we used 0+, =+(I/&2)J+. For the doublet
wave functions [Eq. (5.1)] we find

R —1[2( 5a2 3b2+ 1c2)2
3 2 2

+(2v'Sab+3c ) +32b c ] . (5.6)

To compare the single-crystal and powder-averaged or-
bital factors we consider axial crystal fields where only a,
b, or c is nonzero. For a or b nonzero the powder-
averaged Rz is —,

' that of the single crystal, while for
c&0, Rr is enhanced by —", or nearly sixfold due to
powder averaging. The enhancement comes from the
matrix element ( —,'IJ+ I

—
—,') that is not present in the

single-crystal orbital factor, see Eqs. (5.2) and (5.5). Even
though there is a large enhancement
R„(a=b =0,c= 1)=—", , the orbital factor is still small
compared to the free 4f j =—', electron value Ro= —", .
That is, the overall reduction for a powder-averaged
I+—,

' ) crystal-field doublet is —,",, .
For the crystal-field doublet Eq. (5.1) and for T))T~

we find from Eqs. (3.6) and (3.7) that, with respect to the
case without crystal field, the magnetic resistivity p, the
susceptibility for h along z, y(z), and the susceptibility of
a polycrystalline sample y are, respectively, multiplied by

sin 2)r(0)
r (0)=-,'r' ~ sin2) (0)

(5.8c)

where n „(0)=2rnf (0)/2 and 3)~(0)=2rnf (0)/6 Th.e
reduction factor for the product py is derived from the
above results in a straightforward manner.

In addition we have calculated the factor fr [Eq.
(3.8a)] for a crystal-field doublet. For T ))T~, as stated
in Sec. III, fr is insensitive to the effects of crystal fields,
and approximately takes the same value as in the case
without a crystal field. For T «Tz, f„(0) depends on
the degeneracy of the crystal-field ground doublet. For a
doublet, fr (0) is obtained from Eq. (4.8) with X„=2and
2)„(0)=2rnf(0)/2, whereas the corresponding ratio f (0)
in the case without crystal field is obtained from Eq. (4.8)
with

N =2j+1=6 and 2)/(0)=2rnf(0)/6 .

We have also calculated the ratios f t"(0)/f'"(0) and
f r" (0)/f~'"(0) as a function of nf (0) in the range
0.8 & nf (0) & 1 and for 2)2= —0. 1 rad, which is typical of
the order of magnitude of the phase shifts q2 derived
from experimental data.

In Fig. 1(a) we display the results of our calculation for
the skew scattering contribution to the Hall constant.
For the majority of the range of nf(0) studied, i.e.,
nf(0) (0.97, we find f i- (0)/f '"(0) is less than one, i.e.,
the crystal field reduces the skew scattering contribution
to f for T «Tz. In a very narrow range of nf(0),
0.97 (nf (0) & 1, we find the crystal field changes the sign
off '"(0), i.e. , the skew scattering contribution is negative
at low temperatures [the value nf (0)=0.97 is for
g2= —0. 1 and slightly diferent values would be obtained
for other values of 2)2].

Most cerium Kondo systems appear to correspond to
the range nf (0) & 0.97 for which the skew scattering con-
tribution remains positive. For these systems the reduc-
tion of f'"(0) by the crystal field is necessary to quantita-
tively account for the experimental results. As an exam-
ple we consider CeA13 for which a good fit with experi-
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0.6-
I',(o)

t

sk
i(» 0.2j

(a}

av
'(o)

av
1Io)
0g

0.9
g, (0}

mental data is obtained with the values y& =0.075 K/T
for T&)Tz and y2=0. 097 K/T for T & Tz where the
coef5cient y is defined as

gJI ~J(i +1)f
&H/pX =— (5.9)

The value of pi is accounted for by Eq. (48) of Ref. 2, or
equivalently our Eq. (3.8c), with i)2= —0.078 rad, in-

dependent of any assumption about the crystal field. The
ratio y2/y, and thereby y2 is accounted for by using our
results for a doublet ground state, i.e., from Eqs. (4.8b)
and (3.8c),

y~ f'r" (0) sin[2ilr(0) —i)~]

f r" ( T» Tk ) sin i)r(0)
(5.10)

with rjr(0)=1.33 rad. This corresponds to n/(0)=0. 85,
which is a plausible value for the number of f electrons.
In contrast the experimental data for CeA13 cannot be ac-
counted for by the expression for y2/y, in the absence of
crystal-field effects:

r2 f' (0) sin[2r)J(0) —i)z]

f'"( T )&T„) 3 sin rl (0)
(5.11)

For realistic values of n/(0) this expression predicts
values of y2/y& that are too large. In the same way the
experimental results for CePtSi (Ref. 10) yield y i-0.028
K/T and y2/y, = 1.2. They can be accounted for only by
a doublet ground state with il2-0. 029 and n/(0) =0.87.

To summarize, in the absence of crystal fields one

FIG. 1. Crystal-field e6'ects on the contributions from skew
scattering and anomalous velocity to the coefficient fr, Eq.
(3.8a), for T (& T~ and for a doublet ground state. (a)

f r" (0)/f, '"(0) vs the number of f electrons n/(0). (b)
fr"(0)/f (0) vs n/(0) The .calculations were based on Eq.
{4.8) with Xi- =2, X, =6, and g2= —0. 1. The results are weakly
dependent on the value of g2, e.g. , the dashed line indicates the
shift of the curve in {a)when g2 is reduced by a factor of 10.

would expect a significant increase for f or y below Tz,
e.g. , see Fig. 1 of Ref. 5. With the crystal field we can un-
derstand why the values of f or y are not significantly
different above and below Tz. Therefore, in general, it is
necessary to include the effects of the crystal field for a
quantitative interpretation of the data on the Hall con-
stant.

The case of CeCu6 (Refs. 1 and 11) is less clear. Here
the Hall effect exhibits a positive maximum at 10 K, be-
comes negative below 3 K, and presents a negative
minimum at about 0.1 K. One could posit that the
change of sign is that expected for f below T~ in the case
where n/(0) is very close to one. However, the change of
sign is no longer observed when La is substituted for Ce,
and the effects of coherence at low temperatures are
suppressed. Thus we are inclined to ascribe the change of
sign to the development of coherence. If the behavior of
R~ only at relatively high temperatures is interpreted in
our single impurity model of skew scattering we find

yi-0. 082 K/T and y~/yi-0. 82,

which is consistent with a doublet ground state with
i)z= —0.09 and n/(0) =0.87.

Finally with ilz- —0. 1 and for the range 0.8&n/(0)
~ 1 the anomalous velocity contribution to the Hall con-
stant is negative without crystal fields and positive for a
crystal-field doublet. Data on the anomalous velocity
contribution exist only for CeCus Al alloys this in-
dicates a positive sign in agreement with out results for a
crystal-field doublet. The absolute value of the anoma-
lous velocity contribution, which is significant only for
T & Tz, is enhanced at low temperatures by the crystal
field as shown in Fig. 1(b).

VI. SUMMARY

We have calculated the effects of the crystal field on
the skew scattering and anomalous velocity contributions
to the Hall effect for incoherent Kondo systems. Our re-
sults are summarized as follows.

(1) For T&) Tz the Hall constant is affected by the
crystal field in the same way as the product of the mag-
netic resistivity p and the susceptibility g. In other
words, the coefficient fr [Eq. (3.8a)] is independent of the
crystal-field splitting.

(2) For T « Tz not only are p and y, but also f„(0) is
affected by the crystal field. If the crystal-field ground
state is a doublet the skew scattering contribution to f is
generally reduced by the crystal field, while the anoma-
lous velocity contribution is enhanced. It is worth noting
that f depends only on the degeneracy of the ground
state, so that if the applied field is rotated the anisotropy
of the Hall constant RH is fixed by the anisotropy of the
susceptibility g. '

(3) It is necessary to take into account crystal-field
effects in order to obtain a quantitative interpretation of
the Hall effect data in Kondo compounds such as CeA13,
CePtSi, and CeCu6.
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