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New disordered phase of a ferromagnetic binary Ising system
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The phase diagrams and the temperature (or field) dependences of magnetizations in a binary Is-
ing ferromagnetic alloy consisting of spin- —, and spin-1 components with a crystal-field interaction

are investigated by the use of an efFective-field theory with correlations. We find a new disordered
phase in which the transition temperature (or magnetization) reduces to zero when the crystal-field
interaction takes a large negative value. The magnetization process in the new disordered phase is
examined. VVe find that it exhibits phenomena similar to, but with important diff'erences from, those
of metamagnets, even though all the exchange interactions have a positive sign.

I. INTRODUCTION

In the last few decades the magnetic properties of
binary random substitutional alloys have been studied in-
tensively from both bond and site perspectives. The bond
model considers all lattice sites to be equivalent, but the
interaction energy between each pair of adjacent sites is
randomly assigned one set of possible values. In the site
model the lattice sites are randomly occupied by two
difFerent species of magnetic ions, and the interaction be-
tween two ions is determined entirely by the species of
these ions. In particular, the phase diagrams that may
occur in these systems have been examined. ' However,
most works have not discussed the effects of crystal-field
interactions on the transition temperature (or phase dia-
gram).

Qn the other hand, a regular spin-1 Ising model with a
crystal-field interaction has been extensively investigated.
It is well known in the system that there exists a tricriti-
cal point at which the phase transition changes from
second order to first order, when the crystal-field interac-
tion takes a large negative value. ' The change of phase-
transition order is due to the competition between the
positive exchange-interaction term and the negative
crystal-field interaction; when the value of the crystal
field becomes larger than the internal field, each spin in
the system is apt to orient perpendicular to the internal
field.

In previous work the role of crystal-field interaction in

an amorphous ferrimagnetic alloy consisting of spin- —,

and spin-1 components has been examined by the use of
the efFective-field theory (EFT) with correlations. Then,
the effect of crystal-field interactions on transition and
compensation temperatures has been studied for the sys-
tem with a fixed composition. A number of interesting
phenomena are observed there for the behavior of the
two quantities, which arise from both the crystal-field in-
teraction and the random distribution of exchange bonds.

In this work, within the EFT, we investigate the mag-
netic properties of a binary substitutional ferromagnetic
Ising system consisting of spin- —,

' and spin-1 components
with a crystal-field interaction. In particular, the change
of transition temperature with composition is studied.
We find that a new disordered phase may appear in the
phase diagrams, when the crystal-field interaction takes a
large negative value. The new phase consists of two types
of spins: spin-1 atoms go into the s'=0 state and spin- —,

'

atoms take on the values s'=+ —,
' randomly. The magne-

tization process in the disordered phase is examined. It
may exhibit phenomena similar to, but with important
differences from, those of metamagnets, even though all
the exchange interactions have a positive sign.

The outline of this work is as follows. In Sec. II we
briefiy present the formalism of the EFT, as applied to
the binary ferromagnetic alloy in a honeycomb lattice. In
Sec. III, we study the phase diagrams of the system. In
Sec. IV the temperature (or field) dependences of total
and sublattice magnetizations are investigated.

II. FORMULATION

We consider a binary ferromagnetic alloy of the type A 8, in a honeycomb lattice, which is randomly occupied by
two diff'erent species of magnetic ions A and B (sz =

—,
' and sit = 1). B ions have the crystal-field interaction. The Hamil-

tonian of the system is given by

y[~gg5gg ~Jg ++Jia~tit~JJt +Jgit(~/g fiJit +~tJt~Jg )]s sag;gJ
l, J

+kg(s, ') 5,~g, Hg(6;~+5 J—i)s g;,

where the J; are the interaction energies between type-i and type-j sites, the s are spin variables, which can take values
s'=+ —,

' for the A ions and s'=+1,0 for the B ions, and the first summation is over all nearest-neighbor pairs. g, is a
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random variable which takes the value of unity or zero, depending on whether the site i is occupied by a magnetic atom
or not. 5 is the crystal-field interaction parameter. 5; (a= A or B) expresses that a site i is occupied by a type-a ion.I is the applied magnetic field. In the random average denoted by ( )„, the averaged value of g; has a restriction

(2)

where (g; „)„=p is the concentration of A ions.
As discussed in our previous work, ' within the EFT, the averaged total and lattice magnetizations for the honey-

comb lattice with a coordination number z =3 are given by

M = s,.' =1V po. + 1 —p m (3)

o.=«~ =„»„

= 'p cosh D +2o. sinh
2

m=«s, ' ii»„

3

D +(1 p)[q c—osh(J~~D)+m sinh(J~~D)+1 q] . F—(x+h)
x=0

(4)

p cosh

'3
~~B

D +2o sinh D +(1—p)[q cosh(JiizD)+m sinh(Jii&D )+ 1 q] G—(x +h)J~B
2 2

with

F(x ) =—,
' tanh —x

r

2 sirih(Px )

2 cosh(Px ) +exp(Pb )

where p= 1/k&T, h =pH, and & is the total number of magnetic atoms. D =BIBx is a differential operator. The
operator q is given by

J~B J~B
p cosh D +2o. sinh D

2 2

3

+(1 p)[q cosh—(JJi&D)+m sinh(J~iiD)+1 —q] E(x+h)
x=0

with
2 cosh(Px ) (9)

2 cosh(Px ) +exp(Pb, )

As discussed in a great number of works, ' these equations can be easily calculated by applying a mathematical rela-
tion er p(x) =p(x +y).

III. PHASE DIAGRAMS

Here we are interested in studying the transition temperature of the system. For H =0 the usual argument that the
sublattice magnetizations tend to zero as the temperature approaches a critical temperature allows us to consider only
terms linear in sublattice magnetizations for Eqs. (4) and (5). The sublattice magnetizations then reduce to

with

(A, —1)o+B,m =0, A~o+(B~ —1)m=0, (10)

r 2

A i =6p sinh D p cosh D +(1 p)[qocos—h(J~~D)+1 —qo] F(x)
r 2

D +(1—p)[q, cosh(J„~D)+1 —q, ] F(x)Bi =3(1—p)sinh(J„iiD) pcosh

x=0

x=0

A2 =6p sinh
~AB

D p cosh

2
~~B

D +(1—p)[qocosh( J~~D)+ 1 —qo] G (x)

2
~~BBz=3(1—p)sinh(Jii&D) p cosh D +(1 p)[qocosh(J&—&D)+1—qo] G(x)

2 x=0
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where qo is determined from
3

JAB
cfp p cosh D +( 1 —p)[qpcosh( J~zD )+ 1 —qp] E (x) (12)

The critical boundary characterizing the ferromagnetic-
phase stability limit is determined by

(A, —l)(82 —1)=A2B, . (13)

By solving Eq. (13) numerically, we find the phase dia-
grams shown in the following.

Figure 1 shows the change of transition temperature
with p for the system with a selected value of 6, when the
exchange interactions are taken as J~„=J~~ =J~~ =J.
The figure clearly expresses some interesting results,
when the value of 6 becomes larger than 5=J; for in-
stance, the curve labeled 6= 1.5J has no solution for the
concentration p below p =0.48. Moreover, the curve la-
beled 6= 1.4J shows an anomalous behavior, for which
no solution of (13) can be obtained in the region of
0. 14 &p (0.37S. In other words, the transition tempera-
ture for the system with b, = 1.5J (or 6= 1.4J) reduces to

zero in these regions of p, indicating that the system is in
a new disordered phase with T, =0.

Before discussing the physical background for the
characteristic behaviors of Fig. 1, we present another re-
sult in Fig. 2; the change of transition temperature with

is plotted for the system with J~~ =J„~=J~z =J,
when p is fixed at p =0.3.

Now, it is well known that the regular spin-1 Ising
model with a crystal field b, given by the Hamiltonian

%= —J g s,'sj'+b, g(s,'. ) ',
E,J

(14)

where s,.'=+1,0, exhibits a tricritical point at which the
phase transition changes from second order to first order,
when the value of 6 takes a critical value b =6, . ' For
H =0, the Hamiltonian (1) reduces to (14), when p is
given by p =0. As discussed in the previous works ' (or
see the Appendix), for p =0 the critical surface charac-
terizing the ferromagnetic-phase-stability limit is deter-
mined by

1.5 1.5 m =(1 a)lb .—

The second-order phase-transition line is determined
from a =1. The right-hand side of (15) must be positive.

1.0

1.0

0.5 0.5

0.5

JAB = J
JBB

1.0 0.5 0.0
0.5 1.0 1.5

FIG. 1. Phase diagrams in T-p space for the binary fer-
romagnetic Ising alloy in a honeycomb lattice (z =3), when 5 is
changed. The exchange interactions are fixed as J»=J&z
=Jaa=J

FIG. 2. Behavior of transition temperature vs 6 for the sys-
tem with J» =J» =J» =J, when p is fixed at p =O. 3.
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If this is not the case, the transition is of first order, and
hence the point at which a = 1 and b =0 is the tricritical
point.

For p =0, as shown in Fig. 3, the tricritical point is
given by 6=6, = 1.4245J and the dashed line denotes the
first-order phase transition. The change of order of phase
transition at the tricritical point results from the com-
petition between the crystal-field interaction and the
internal field at each site; when the crystal field is larger
than the internal field, each spin orients perpendicularly
to the z direction suddenly at the transition temperature,
so that a first-order phase transition (or discontinuity)
may appear in the magnetization curve.

As previously discussed, the relation (13) from which
Figs. 1 and 2 are obtained just corresponds to the relation
a = 1 of (15). From the relation (13) alone, therefore, we
could not determine the tricritical point, even if it exists
in the system with a concentration p near p =0. On the
other hand, for the bond-diluted system with
J» =J„z=0 and J» =J Benayard et aI. ' proved that
the coupled equations (5) and (8) can be written in the
form of (15). Then, they showed that the tricritical point
decreases from that of p =0 with 1 —p. In this way, for
the curve of Fig. 2 there is a possibility of the existence of
a tricritical point, especially in the region of 6 larger
than 6=J, although for finite values of Jzz, J~z, and J~z
we cannot rewrite the coupled equations (4), (5), and (8)
in the form of (15). [A preliminary calculation indicates
that the cross in Fig. 2, which is obtained by writing (4),
(5), and (8) in the form of (15), may approximately corre-
spond to the tricritical point, and that below the cross the
curve may have no physical meaning, as in Fig. 3.]

1.5 1.5

We are now in a position to discuss the results of Fig.
1. The curve labeled 1.5 in the figure has a value larger
than b, =b, , for the system with p =0 (or the regular
spin-1 system). When B ions with ss = 1 are replaced
with A ions with s„=—„spins of the remaining 8 ions
then continue to take the s'=0 state, so that spins of A
ions are forced to take randomly the states s'=+ —,

' be-
cause of the exchange interaction J~~. Until the concen-
tration p =0.48, therefore, the transition temperature
reduces to zero. Above that concentration, the exchange
interaction Jzz becomes dominant, spins of 3 ions are
apt to take the z direction, and hence the transition tern-
perature has a finite value.

On the other hand, looking at Fig. 2, the cross is given
by 6=1.325J. The curve labeled 6=1.35J in Fig. 1 has
a value larger than b =1.325J, which implies that the
point at p =0.3 in the curve labeled 1.35 may not have
any physical meaning, since the point may correspond to
that of a first-order phase transition. That is to say, the
curves labeled 1.35 and 1.4 in Fig. 1 are simply obtained
from the relation (13) [or the condition a =1 of (15)] and
hence at some concentrations near p =0 the possibility of
satisfying the tricritical condition remains in the curves,
although we could not determine the points.

In Fig. 4 the phase boundaries of the alloy with

2.0-

1.5

Z=3
P = 0.0

JBB=J
1.0 1.0

1.0

0.5 0.5
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0.5
I

1.0
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I

1.0 0.5 0.0
FIG. 3. Curie temperature vs 6 for the regular spin-1 Ising

system in a honeycomb lattice (z =3). The solid circle on the
curve denotes the tricritical point obtained from the framework
discussed in the Appendix.

FIG. 4. Phase diagrams of a binary ferromagnetic alloy of
the type A~8& ~ with z =3, when b, is changed. The exchange
interactions are then taken as J» =Jzz =J and J» =0.1J.
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J~„=J~~=Jand J„~=0.1J are plotted as a function of
p, by selecting the value of A. As is seen from the figure,
for the curve labeled 6=1.0J, the transition temperature
reduces to zero in the region of 0.33 (p & 0.56. %'ith the
increase of 6, the region at which the transition tempera-
ture reduces to zero becomes wider, but the curve on the
left-hand side labeled b, /J~ 1.0 means that the curve
takes almost the same values for this whole range of A.
For the curve on the right-hand side with 6/J larger
than unity, the possibility of a tricritical point remains, as
previously discussed. On the other hand, when 6/J is
smaller than unity, the region in which the transition
temperature reduces to zero does not appear.

In Fig. 5 the change of critical boundary with p is de-
picted for the system with J»=J»=J and J»=5J,
changing the value of A. In this case, because of the
strong exchange interaction J„z, the region at which the
transition temperature reduces to zero may appear when
the value of 6 takes a value larger than 6=h„as shown
for the curve labeled 6=2.0J.

Thus, an important conclusion of this section is as fol-
lows, although we have not studied the possibility of a
tricritical point: In a binary ferromagnetic alloy of the
type 3 8& a new disordered phase, in which the tran-
sition temperature reduces to zero, may appear when
spin-1 ions with a crystal-field interaction larger than
6=J is randomly mixed with spin- —,

' ions. The region of
p in which the new disordered phase appears is strongly
dependent on the value of exchange interaction J„~. In
the new disordered phase, the spins of the 8 ions go into

the s'=0 state and the spins of the 3 ions are forced into
random occupation of the states s'=+ —,'.

IV. MAGNETIZATION

In this section let us study the magnetization curves
and the magnetization process by solving Eqs. (3)—(5) and
(8) numerically, especially for the binary ferromagnetic
system with J„„=J~~ =J~s =J (Fig. 1).

In Fig. 6 the temperature dependences of total and sub-
lattice magnetizations under H =0 are shown for the sys-
tem with p =0.7. As is seen from the curves labeled a
and b, the saturation magnetizations of o. and I for 6=0
and 6=J are given by o.=—,

' and I =1, so that the total
magnetization at T =0 K is given by M =0.65K. On the
other hand, when the value of 6 is larger than 6=J, the
total magnetization at T =0 K decreases from
M =0.65K, as in curves c and d. In particular, as is seen
from the dashed curve labeled c, the sublattice magneti-
zation I at T =0 K is depressed greatly from I =1. It
implies that the spins of the 8 ions with s~ =1 deviate
greatly from the z direction because of the large value of

In Fig. 7 the temperature dependences of total and sub-
lattice magnetizations for the system with p =0.3 are de-
picted for the two values of 6 (6=0 and J), when 0 is
taken as 0 or 0. 1J. As seen from the curves, the behavior
of M in finite applied field is normal.

On the other hand, as shown in Fig. 1, when the value
of 6 becomes larger than 6=J, the phase diagram may
exhibit a number of characteristic behaviors, although
the forms of the phase-boundary lines near p =0 cannot

1.0

2.0 2.0

Z=3

P =0.7

0.5

1.0 1.0

JBB=J
0.5 1.0

$.0 0.5 0.0

FIG. 5. Phase diagrams in the T-p space for the binary fer-
romagnetic alloy with z =3, when 6 is changed. The exchange
interactions are then taken as Jqz =J~~ =J and J&z =5J.

FIG. 6. Magnetization curves for H=0 in a binary fer-
romagnetic alloy of the type A~B, ~ with z = 3 and p =0.7,
when 6 is changed as follows: a, 5=0; b, 6=J; c, 5=1.5J; d,
6=2J. The exchange interactions are taken as
J»=J»=J»=J (see Fig. 1). Solid lines de~ote the total
magnetization. Dashed and short-dashed —long-dashed lines are
sublattice magnetizations m and o. for 6=0 and 1.5J.
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1.0 1.0

kgT= 0.05J

0.5 0.5

1.0

FATg
2.0 0.1 0.2

FIG. 7. Temperature dependences of total (solid lines) and

sublattice (dashed lines) magnetizations for the binary ferrornag-
netic A~B, ~ alloy with p =0.3 and z =3, when b and H are
selected as follows: a, 6=0 and H =0; a', 5=0 and H =0.1J;
b, 6=J and H =0; b', 6=J and H =0.1J. The exchange in-

teractions are then taken as Jzz =J&z =Jzz =J.

FIG. 8. Magnetization processes in the new disordered phase
of the binary ferromagnetic A~B, ~ alloy with p =0.3,
6= 1.5J, and z =3, when T is changed as k& T =0.05J, 0.3J, or
0.5J. The exchange interactions are then taken as
J~„=J~~ =J~~ =J. See Fig. 1.

be believed because of the possibility of a tricritical point.
However, the appearance of the new disordered phase in
which the transition temperature reduces to zero is
correct. In order to examine the physical content of the
disordered phase, the magnetization process is examined
in Fig. 8, especially for the system with p =0.3 and
5= 1.5J, which is in the new disordered phase of Fig. 1.

In Fig. 8 the field dependences of total and sublattice
magnetizations are shown for the three fixed tempera-
tures (ksT=0. 05J, 0.3J, and 0.5J). At H=O, as expect-
ed, their magnetizations are given by zero. The total and
sublattice magnetizations at k&T =0.05J increase with
the increase of H, exhibit a discontinuity at H =0.066J,
and then approach their saturation values. For the tem-
perature k&T=0. 3J, the total magnetization exhibits a
discontinuity at H =0.115J, although it is smaller than
that for k&T=0.05J. For the temperature k&T=0.5J,
however, such a discontinuity disappears from the mag-
netization process. The results are very similar to those
found in metamagnetic materials, although in the usual
metamagnets the critical field at which the magnetization
changes discontinuously does not depend on the tempera-

8ture. In this way an interesting characteristic of Fig. 8 is
the temperature dependence of the critical field. The re-
sult implies that in the new disordered state the spins of
the 2 and B ions are more tightly bound in the s' =+—'

and s~ =0 states for the temperature k~ T =0.3J than for
the temperature k~T=O. OSJ, against thermal agitation.
On the other hand, the result for the temperature
k~ T =0.5J indicates that the states are easily broken un-

der the application of an applied field. The discontinuity
of magnetization in Fig. 8 comes from the spin Aip from
the s~=0 state to the s~=l state, similar to that of

metamagnets. On the other hand, the solid solution
CO(S„Se& „)z can be antiferromagnetic, paramagnetic, or
ferromagnetic, when 0&x ~0.5, 0.5 &x &0.88, or
0.88 ~ x & 1, respectively. " Adachi et aI."have suggest-
ed that the paramagnetic state for 0.5 &x &0.88 results
from the competition of ferromagnetic and antiferromag-
netic exchange interactions. In the paramagnetic state
they have observed an unusual magnetization process;
the transition field at which the total magnetization
shows a discontinuity depends on the temperature, as in
Fig. 8. Adachi et a/. have also noted that the dependence
of transition field on tel.perature resembles the phase di-
agram. of liquid-gas systems.

At first sight the magnetization process of Fig. 8 seems
to be similar to that of CO(S„Se, „)2 in the paramagnetic
state. However, as shown in Fig. 9, the magnetic behav-
ior is completely difFerent from that of CO(S, Se, )z. In

ig. 9 the dependences of critical field H, and gap width
b.M/N with temperature are plotted, where hM/N and
H, are the values of gap width and field at the point
where the total magnetization of Fig. 8 exhibits a discon-
tinuity. The change of H, with temperature is dramatic;
with increasing T it increases abruptly to the maximum
value near T=0.16J and then decreases, although the
change of H, in CO(S Se, )2 exhibits a monotonic in-
crease. Moreover, the gap width AM/N exhibits a de-
crease in two steps. The change of curvature is observed
at the point of the maximum value of H, . The value
b.M/X reduces to zero at k~ T =0.32J.

Thus, the new disordered phase exhibits unusual mag-
netization behavior. Experimentally, as far as we know,
such a disordered phase as well as the unusual magnetiza-
tion process has not been observed.
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0.15-

0.1 1.0

0.05— 0.5

0.1 0,2 0.3
kB~T„

0.4

FICr. 9. Temperature dependences of field H, and gap width
hM/N at the point where the total magnetization of Fig. 8 ex-
hibits a discontinuity.

aeter of the phase diagram, when a (negative) crystal-field
interaction is included.

In Sec. III we investigated the phase diagrams of a
binary Ising ferromagnetic alloy in terms of the relation
(13) [or a =1 in Eq. (15)]. However, in the phase dia-
grams obtained there, the possibility of a tricritical point
at which the phase transition changes from second order
to first order remains, especially for the curves near p =0,
when the crystal-field interaction becomes larger than
5=J.

In this work we have used the effective-field frame-
work. As discussed in Refs. 3, 6, 7, and 10, the approxi-
mation essentially corresponds to the Zernike approxima-
tion. ' This formalism is, from an analytical standpoint,
almost as simple as the standard mean-field approxima-
tion, and, because of neglect of multispin correlations,
shares with it the fact that the critical exponents are all
of Landau type. Nevertheless, we verify that its results
are quite superior to other effective-field theories, as
shown in Figs. 1 —9.

Finally, for crystalline mixed alloys there is surprising-
ly little experimental data to compare with the phase dia-
gram predicted theoretically. In fact, many transition-
metal compounds are of the Heisenberg type, and most
insulating magnetic alloys are antiferromagnetic. How-
ever, there may be a possibility of finding some charac-
teristics discussed in this work, namely the new disor-
dered phase. We hope that this work will stimulate fur-
ther experimental and theoretical work on the magneti(
properties of a binary alloy.

APPENDIX

V. CONCLUSIONS

We have studied the phase diagrams and the tempera-
ture (or field) dependences of magnetization of a binary
Ising ferromagnetic alloy AzB, consisting of spin- —,

'

ions A and spin-1 ions B with a (negative) crystal-field in-
teraction where all the exchange interactions have the
same sign, using the effective-field theory with correla-
tions. We find that a new disordered phase in which the
total and sublattice magnetizations are given by zero may
appear, when the crystal-field interaction becomes larger
than h=J. The region of p in which the disordered
phase appears is strongly dependent on the value of the
exchange interaction J~z. In the disordered phase the
spins of A and 8 ions are occupied by s~ =+—,

' and s~ =0
states, respectively. The magnetization process in the
disordered phase exhibits phenomena similar to but with

important differences from those of metamagnets.
On the other hand, the finding of the new disordered

phase is cause for further caution in studying the rnagnet-
ic phases of a binary alloy. Some authors ' have exam-
ined the various kinds of phase diagrams which may
occur in binary A B& Ising ferromagnetic alloys with
6=0 under H =0, in terms of the initial slope
[B(lnT, )/Bp] of the transition temperature T, with con-
centration p at the two points p =0 and 1. However, the
results obtained in this work clearly show that from the
initial slopes alone we cannot determine the overall char-

In this appendix we briefly review the spin-1 Ising
model with a crystal-field interaction on a honeycomb
lattice (z =3); As discussed in Sec. III, when p =0, the
Hamiltonian (1) for H =0 reduces to the Hamiltonian
(14). Then, Eqs. (5) and (8) are given by, with J~~ =J,
m = [q cosh(JD)+ m sinh(JD)+1 —q] G (x)~„ (A 1)

arid

q = [q cosh( JD) + m sinh( JD) + 1 q] E (x)
~

„—(A2)

m =Am+Bm

/=A +B m

with

2 =3[q cosh(JD)+1 —q] sinh(JD)G(x)~

8 =sinh (JD )G (x )
~

A'=[q cosh(JD)+1 q] E(x)~„—
8'=3[q cosh(JD)+1 —q]sinh (JD)E(x)~„

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

If we replace q in (A5) with the expression of (A4), we ob-
tain an equation for m of the form

We are now interested in studying the transition tem-
perature of the system. Expanding the right-hand sides
of (Al) and (A2), we obtain
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m =am +bm + (A9) with

The second-order phase-transition line is then deter-
mined by a =1. In the vicinity of the second-order
phase-transition line, the magnetization is given by

q, = f/(1 —e),
where the parameters e and f are given by

(A14)

m =(1 a—)/b . (A10) e =3[qocosh( JD)+ 1 —qo] [cosh( JD) —1]E(x)~„

The right-hand side must be positive. If this is not the
case, the transition is of the first order, and hence the
point at which a = 1 and b =0 is the tricritical point.

At this point, the parameter a is given by

f =3[qocosh(JD)+1 —qo]sinh (JD)E(x)~„

(A15)

(A16)

a =3[qocosh(JD)+1 —qo] sinh(JD)G(x) ~„=o,

where qo is the solution of

qo = [qocosh( JD)+ 1 —qo] E (x)~„

The parameter b is defined by

b =6q, [qocosh( JD)+ 1 —qo]sinh(JD)

X [cosh( JD)—1]G(x)
~ „

(A 1 1)

(A12)

(A13)

These equations can be easily calculated by the use of a
mathematical relation er p(x)=(x +y). The expression
of (A10) with (Al 1) and (A13) for z =3 has been derived
by Benayard et al. and Kaneyoshi.

In Fig. 3 the ferromagnetic critical line is plotted as a
function of h. The result has been obtained by Benayard
et al. and Kaneyoshi. In Fig. 3 solid and dashed lines
denote second-order and first-order transition lines, re-
spectively. The solid circle denotes the tricritical point
(k~ T, =0.6780J and b, , = l.4245J).
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