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An interatomic potential for silicon is proposed, which is a significant improvement over the
Stillinger-Weber model. This potential is valid for clusters with more than six atoms, where 7
bonding is not significant because of the large degree of coordination. Guided by ab initio electron-
ic calculations, we introduced four-body interactions to the potential, which were essential to give
good agreement with the melting point of the crystal and the geometries and the energies of the

ground and low metastable states of silicon clusters.

I. INTRODUCTION

Clusters constitute an intermediate state for a material
between the atom and crystal. Their study becomes in-
creasingly interesting because their structure and dynam-
ical behavior can explain phenomena as crystal growth,
surface reconstruction, and properties of the correspond-
ing amorphous material.

A model which describes the interaction between the
atoms by an empirical potential has the advantage that
the dynamical behavior of the clusters can be studied. In
other words, numerical experiments can be conducted
which simulate collisions between clusters, their fragmen-
tation, or the deposition of clusters on a substrate of the
same or other material, at different temperatures. There-
fore the development of such analytical models is particu-
larly useful.

Unfortunately, the construction of the proper analyti-
cal potential is not easy. Any potential-energy function
F, which describes the interactions among N identical
particlzles, can be written as an N-body expansion of the
form

F(1,2,...,N)= 3 Vvii+ 3 V)
1<i<N 1<i<j<N
+ > Vi, j, k)
1Si<j<k=N
+ -+ Vy(1,2,...,N) . (1

We hope that only a small number of terms of this expan-
sion will be needed to successfully approximate the real
interactions. In some cases (e.g., rare gases) only the
two-body term is required. On the contrary, this is not
true for semiconductors, where the strong covalent bonds
cannot be described by a two-body term.

Several attempts have been made to develop an analyti-
cal model for silicon. Pearson, Takai, Halicioglu, and
Tiller proposed a potential with a long-range two-body
term, and a nonseparable three-body term.> The
Stillinger-Weber potential has also a nonseparable three-
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body term which is short ranged.’ This potential has
been used to reproduce the melting of the silicon crystal,
and its advantages will be discussed later in detail. More
recently, Tersoff has developed a potential with only a
two-body term, which depends on the coordination num-
ber of the atom.* In this way the other many-body terms
are effectively expressed by the two-body term. A
modification of this model was proposed by Dodson.’
These models succeeded in reproducing some of the bulk
and surface properties of the crystal.

Finally, Biswas and Hamann developed a potential for
silicon which fits the local-density approximation (LDA)
results for several different lattice structures. They have
also tested this potential in small Si clusters.® Their re-
sults show that this model can only coarsely fit the ener-
gies and the structures of the Si clusters, which have been
found from ab initio calculations. The Stillinger-Weber
potential has also been used for dynamic calculations in
small clusters of silicon,”® but it has not proved to be a
successful approximation in this case. More specifically,
if the Stillinger-Weber potential is used, the ground states
of the small clusters have qualitatively different struc-
tures than those found from ab initio calculations.® '°

In this study we develop a potential which models pri-
marily the small silicon clusters (7-100 atoms in size)
without losing some important properties of the crystal.
In other words, our potential produces ground states (ab-
solute minima) of the small neutral clusters with struc-
ture and energy, which are very close to the ab initio re-
sults.” The same potential yields the correct crystalline
structure for the ground state of the solid silicon (in the
diamond structure), and approximates its melting point.

There are only few experimental results for silicon clus-
ters to compare with the computations. These include
the mass spectra of charged clusters Si. *,'! or Si,
where magic numbers are observed. Also, the energies of
the ground state of the dimer Si,, and the trimer Si;, have
been found experimentally.!>!? These values are used to
properly scale the energies of the larger clusters which
were computed by Hartree-Fock calculations.
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This paper is organized as following. In Sec. II we
present the form of the new potential, and analyze the
qualitative features of the interatomic interaction which
are included in the form of the function describing this
interaction. In Sec. III we discuss the strategy which is
followed to select the parameters of the potential. Final-
ly, in Sec. IV we present the results concerning the
ground states of the clusters, which are found when our
potential is used.

II. THE NEW POTENTIAL

It was explained in Sec. I that we are interested in
building a potential which will be a good approximation
for medium-size clusters of silicon, containing up to 100
atoms. We expect that this new potential will also fit the
dynamical properties of the crystal at least to the degree
that they were reproduced by the other potentials pro-
posed so far. In this spirit of the many-body expansion
method! we could use ab initio and experimental data of
Si, (Ref. 13) and Si; (Ref. 10) to construct the two- and
three-body terms in Eq. (1). Indeed, a three-body term
was obtained in the form of Sorbie-Murrell function from
the ab initio data of Si;. Then the structures and energies
of larger clusters were obtained and compared with avail-
able data.® A disagreement was found and this is attri-
buted to the predominance of the 7 bonding in small
clusters (2—4 atoms). In contrast, for clusters with more
than six atoms, the bonds are better described with sp3
orbitals. Therefore the use of a three-body term con-
structed from Si; in clusters with more than six atoms it
is bound to lead to unsatisfactory results. For this reason
we decided to produce a potential which is valid for clus-
ters with more than four atoms, surfaces, and the bulk
silicon. In particular, we modify the Stillinger-Weber po-
tential which gives good results for the crystal so that it
will fit cluster properties as well.

The Stillinger-Weber potential consists of a two-body
and a three-body term. The two-body term has the form

A _%_1 ea/(r~R), r <R
Vz(r)= 14
0, r=R 2)

where A4, B, a, and R are parameters properly chosen to
fit dynamic properties of the crystal. The exponential
term is a cutoff function, which smoothly vanishes at
r=R. This greatly reduces the computation time for
molecular-dynamics simulations, because the two-body
interaction between atoms, which have a distance be-
tween them larger than R, are neglected. The same cutoff
is also applied in the three-body term, which is of the
form

Vilrirj s )=h(ry,ry 0 ) Fh (rjr, 0,5)

+h(rki,rkj,9ikj), (3)

where r;; is the distance between the atoms / and j, and

;i is the angle between the vectors r; and ry. The
function 4 is given by the formula
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h (rij,rik,Gjik ):}Lexp[;}/(r’j_R)*l
+7(rg —R)™'(cosh;, +1)7,
4)

where A and y are two more parameters of the model.
This three-body term is repulsive, and vanishes for
cosf;;, = —+. Therefore, the three-body term of the
Stillinger-Weber potential expresses the tendency of sil-
icon atoms to form four sp; covalent bonds.

This simple model succeeded in reproducing some
basic properties of silicon crystal. In other words, it gives
the correct ground state of the crystal (diamond struc-
ture), approximates the melting point of silicon,® and
gives good estimates for some elastic properties of the
bulk.'* Nevertheless, it is not a good potential for model-
ing small silicon clusters. More specifically, it fails to
reproduce the energy and the correct structure of the
ground state of silicon clusters,”® which have been found
from ab initio calculations.’

The new potential which we have developed, even
though it retains the advantages of the Stillinger-Weber
model, also gives good results for small clusters. The
modifications we made on the Stillinger-Weber potential
are guided by the following two observations.

(a) The angle dependence of the three-body term is of
the form

AlcosO+1)* . (5)

The function (5) has only one parameter A, which is used
to control its second derivative at the minimum
6=109.47°. The proper choice of this parameter is essen-
tial for finding a value for the melting point of the crystal
close to the experimental one. The same parameter A
also determines the amplitude of the repulsive three-body
term for small values of the angle 8 (=60°). Note that if
the Stillinger-Weber potential is applied to the structure
of the ground state of small clusters which were found by
ab initio calculations, many three-body terms with the an-
gle 6 at about 60° appear. Therefore a choice of A which
gives good results for the melting point of the crystal may
not produce the correct ground states for the clusters.
For this reason we replace the term (5) by another of the
form

A{1—exp[ —Q(cos6+1)*1} . (6)

Figure 1 shows the plot of the function (6) where Q =5
and A=0.3. The parameter Q of the new form controls
the second derivative of the function (6) at its minimum,
while A determines the amplitude of the three-body term.
After this replacement the energies of the ground states
of the clusters approach those found from the ab initio
calculations.’

(b) The contribution of the repulsive three-body term
to the energy of the clusters increases slower than what is
expected from the ab initio results, as the average coordi-
nation number per atom is increasing. This is explained
if an important contribution from a four-body term is
considered, because the number of four-body terms be-
tween N atoms is N(N —1)(N —2)(N —3)/24, while the
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FIG. 1. Angle dependence of the three-body and four-body
terms of the new potential which is expressed by Eq. (6). The
parameters A and Q are selected to be equal to 0.3 and 5.0, re-
spectively.

180.0

three-body terms corresponding to the same N atoms are
N(N —1)(N —2)/6. Therefore the number of the four-
body terms increases with N faster than the number of
the three-body terms. For this reason we add to the po-
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for molecular-dynamics simulations does not increase too
much. Thus the four-body term introduces a better
counting of the three-body terms including some correla-
tion between them. After the four-body term was intro-
duced, the new potential provides a good approximation
for several properties of small clusters even though it has
only one extra parameter. These results are presented
and discussed in Sec. IV.

Hence we developed a potential which has the same
two-body term as the Stillinger-Weber potential (formula
2), but its three-body term has the form (3), where

h(rri,0u)=2As exP[?’(”rj_R)il'}‘V("ik —R) ']
X {1—exp[ —Q(cosb;; +1)*1} . (7)
Moreover, a four-body term was added of the form
Valrrrisr) =8 (rijs i, iy Oix 0t Ot
+g (s s> Oiji> Ot O

+g(rki’rkj»rkl’eikj’eikl’ejkl)

tential a four-body term, which is built from quantities +g (rys v P> 0t Otk O ) (8)
which have already been computed for the calculation of
the three-body terms. In this way the computation time where
J
g("fj»"ik’ril’ejikagjil’ekil ):)‘43"?{7’[(’0 _R)Al'Hrik _—R)71+(ri1 _R)_l]}
X (1—exp{ —Q[(cos8y +1)2+(cosh; +1)2+(cosb,; +1)°1) . 9)

In Sec. IIT we choose the parameters of the potential so
that the dynamic properties of the crystal are reproduced
as successfully as by the Stillinger-Weber potential. Fi-
nally, in Sec. IV the new potential with the parameters
found in Sec. III is applied in the case of small clusters.
Our calculations show that several properties of silicon
clusters are fitted.

III. A STRATEGY FOR SELECTING
THE PARAMETERS OF THE NEW POTENTIAL

To determine a good set of parameters for our model,
we followed the method used by Stillinger and Weber to
determine the parameters of their potential. More
specifically, the parameters of the two-body term are
selected such that the energy per atom E and the lattice
constant D of the crystal at zero temperature are equal to
the experimental values, namely, Eq=—4.63 eV and
D =5.43A.

The fitting of these two values determines two of the
parameters of the two-body term, preferably the A4 and
B, of which the potential is a linear function. The other
two parameters are kept the same as in the Stillinger-
Weber model, but they are expressed in standard units eV
and angstroms, instead of the reduced units which are
used by Stillinger and Weber. In other words, a=2.0951
A and R =3.771 18 A. If these values are given, 4 and B
can be found to fit the experimental values of E, and D.
Therefore, 4 =16.30076 and B =11.58113. Figure 2

—

shows the plot of the two-body term for the above values
of the parameters. Note that the two-body term of the
Stillinger-Weber potential does not reproduce the experi-
mental value for the energy of the crystal. More
specifically, the energy per atom for the diamond struc-
ture is —4.33 eV if the Stillinger-Weber potential is used,
which is 0.3 eV higher than the experimental one.

The three-body and four-body terms does not contrib-
ute to the energy of the diamond lattice because of the
special form of their dependence on the angle 8. The pa-
rameters A;, A4, ¥, and Q are chosen such that first, the
diamond structure is the ground state of the silicon crys-

-2.5 N
0.0 2.0 4.0

r

FIG. 2. Plot of the two-body term of the new potential [qu.
(2)]. Its parameters are A =1§.30076 eV, B=11.58113 A®,
a=2.0951 A,and R =3.771 18 A.
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tal, and secondly, the melting point of the crystal is about
2000 K. Our final choice of these parameters is A;=4.0,
A4=47.0, y=2.4, and Q =5.0. Figure 3 shows the equi-
potential curves close to the equilibrium position of an
atom in the perfect silicon crystal.

Using these values of the parameters, the energy per
atom as a function of the volume of the lattice is calculat-
ed for several structures. Figure 4 shows that the dia-
mond structure corresponds to the lowest energy per
atom. The fcc and bcce structures also have a low energy
per atom, which is only 0.1 eV higher than the diamond
structure. Even though the energy difference between the
diamond lattice and the structures with large coordina-
tion number (fcc and bec) is small compared to the results
found from local density approximation (LDA) calcula-
tions,'> this is necessary for finding a good estimate for
the melting point of silicon.

The numerical simulation of the melting of the silicon
crystal is conducted on a cubic cell of silicon with 64
atoms, where periodic boundary conditions are con-
sidered. The volume of this cell is not constant as in the
work of Stillinger and Weber, but can change under con-
stant pressure. This molecular-dynamics simulation un-
der constant pressure is done following the method of
Andersen.'® This method considers the volume as one
more coordinate of the system. Therefore a term of the
form PV is added to the potential energy of the system,
and the corresponding term (M /2)[d (V!/3)/dt]? is add-
ed to the kinetic energy of the system. The factor M is a
mass corresponding to the mass of the piston which ap-
plies the constant pressure on the crystal. It can be
shown that the values of quantities which are calculated
during a numerical experiment of this type as time aver-
ages are independent of the value of M.!'® The advantage
of doing the numerical experiment under constant pres-
sure is that not only does it become more realistic, but
also it simulates quantities (e.g., specific heat under con-
stant pressure) which can be measured experimentally.

The melting of the crystal cell with 64 silicon atoms
was studied under constant pressure of 1 atm. The
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FIG. 3. Equipotential lines close to the equilibrium position
of an atom in the crystal. The distances are measured in
angstroms and the energies in eV.
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FIG. 4. Energies per atom for several crystal structures as a
function of the relative volume V/V,. V, is the experimental
volume of the silicon crystal at zero temperature.

dependence of the melting point on two of the parameters
A4 and Q of our model was examined. The phase diagram
where the average potential energy (®) is plotted as a
function of the temperature T is constructed for two
cases. In the case (i) A,=50 and Q =7, while in case (ii)
A4=47 and Q =5. Figure 5 shows the phase diagrams
corresponding to these two cases. The local minimum of
each of these curves, noted by MP, is considered as the
melting point of the crystal, while the local maximum,
noted by SH, is considered as the maximum temperature
where superheated solid exists. Note that the second
choice of parameters has decreased the melting point by
650 K compared to case (i).

The melting point for the case (ii), which corresponds
to our final choice of parameters, is about 2050 K. This
value is similar to the one found by Stillinger and Weber.
Moreover, our estimate for the latent heat for melting is
0.3 eV/atom, while Stillinger-Weber’s value is 0.31
eV/atom, and the experimental value is 0.52 eV/atom.
These results show the similarities of our model to the
one of Stillinger and Weber. The differences with the ex-
perimental values (the melting point of silicon is 1683 K)
may be attributed to both this strategy for constructing a
model for silicon and the unrealistic conditions for the
numerical simulation of melting. Indeed, the periodic
boundary conditions which are valid even after the melt-

1.1 _
(1)
MP > (11)
<®> ) SH
0.0 —L
0.0 0.1 0.2 0.3
T
FIG. 5. Phase diagrams which show the melting of silicon
crystal. Curve (i) corresponds to the choice of parameters

A4=50 and Q =7, and curve (ii) corresponds to A,=47 and
Q =35, mean potential vs temperature.
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ing, for a small size crystal can cause a considerable
overestimation for the melting point.

It is also interesting that our model reproduces some
properties of liquid silicon. More specifically, the specific
heat of the liquid is found to be 6.8 kcal/mol, while the
experimental value is 7.4 kcal/mol.

Another interesting property of the liquid is that its
atoms have an average number of first neighbors greater
than 6, while the first neighbors for an atom in the solid
is 4. To check if this property is reproduced by our mod-
el, we considered successive shells of increasing radius
and width 0.2 A around each atom, and count the num-
ber of the neighboring atoms in them. Then the average
number of particles N in a shell of radius 7 is plotted as a
function of r. The integral of the function N (r) for
r =ry, where rg is the value of r corresponding to the first
minimum of the function N (r), is the average number of
first neighbors for an atom of the system. Figure 6 shows
that if the system is in the solid state, the average number
of the first neighbors of its atoms is about 4, while if the
system is in the liquid phase this number becomes about
6.5.

Therefore our model reproduces many of the proper-
ties of the solid and the liquid silicon as successfully as
the Stillinger-Weber model does. Several of the quanti-
ties which are determined by these numerical experi-
ments compare well with experimental values, even
though some properties of the liquid are very much
influenced by the periodic boundary conditions which are
used to facilitate the computation. This potential with
the set of parameters which are selected to fit properties
of the bulk is used in Sec. IV to simulate some properties
of small clusters of silicon.

N (r)

o©
(o)

FIG. 6. Average number of neighboring particles per atom as
a function of the distance between them for (a) the solid state
and (b) the liquid state of silicon at temperature 7" =2050 K.
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IV. GROUND STATES OF SMALL SILICON CLUSTERS

The great advantage of our potential over the
Stillinger-Weber model and the other model potentials,
which were proposed so far to simulate silicon, is that it
gives good results for small clusters (larger than 6 atoms).
More specifically, it produces ground states for the small
clusters with energies and structures similar to those
found from Hartree-Fock® or LDA (Ref. 15) calculations.
Moreover, it gives energies for other structures of meta-
stable states which are also in agreement with the ab ini-
tio results. Therefore this potential is a good model for
simulating dynamic properties of the clusters.

In this section our results for the ground state of small
silicon clusters are compared to the ab initio results and
the ground states found from other analytical models.
We used the method of simulated annealing to determine
the minimum of the clusters. This method determines
the global minimum of a function with many variables if
a sufficiently large number of trials is done. The number
of trials needed depends on the number of variables of the
function. Therefore if the number of variables is large it
may be required that an extremely large number of trials
be computed. Nevertheless the method tends to give a
structure with energy close to the energy of the absolute
minimum even in the cases where it fails to produce this
minimum itself.

In this way we determine the energy and the structure
of the ground state for 7 to 15 atoms. Figure 7 shows the
structure of the absolute minima for the clusters with 7,
8, 9, and 10 atoms. These are very similar to the struc-
tures published in Ref. 17, where the ground states were
found by the Car-Parinello method. This method is a
combination of the local density approximation and
molecular dynamics. More specifically, we found a struc-
ture of the absolute minimum of Si; which is exactly the
same as in Ref. 17. The ground state of Si; is described in
Ref. 17 as a bicapped tetragonal bipyramid. We found
this structure, too, but in our result the two extra atoms
which cap two of the sides of the bipyramid are close to
each other so there is an interaction between them. The
ground state of Siy is described in Ref. 17 as a strongly
distorted tricapped octahedron. The same figure can also
be described as a distorted tetracapped triagonal bipy-
ramid, which is a structure similar to what we found as
the ground state of Si,,.

Finally the absolute minimum of Si,, which is given in
Ref. 17 is a tetracapped triagonal prism. Our results
show a slightly different ground state for Si,,. More
specifically, the structure we found is a distorted tri-
capped triangular prism with one more atom interacting
with the two atoms of an edge of the prism and the two
nearby extra atoms, which are not elements of the prism.
Therefore the structure of the ground state of Si,, is basi-
cally the same as that found by the Car-Parinello method,
but the tenth atom is not placed over one of the triangu-
lar basis of the prism, preferring to interact with four
atoms instead of three. Note that in Fig. 7 lines are
drawn between atoms which are less than R =3.771 18 A
apart.

The energies per atom for the clusters of size 5 to 15
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FIG. 7. Ground state of silicon clusters with 7, 8, 9, and 10
atoms. Lines are drawn between atoms which are less than
R =3.77118 A apart.

are shown in Fig. 8. Our results are noted by a +, while
an * marks the corresponding values for the Stillinger-
Weber potential as it is given in Ref. 8. The mark X
shows the values found by the new Biswas-Hamann mod-
el. The # notes the ab initio values found by Ragha-
vashari, and O notes the same results after they have
been scaled to fit the experimental values for Si, and Si;.
Our results not only approach very much the scaled ab
initio values, but also they show a similar to the ab initio
results increase for the energy per atom as the size of the
clusters grows.

Figure 9 shows the fragmentation energy for the clus-
ters with 5-15 atoms, which were determined from our
potential (solid). The fragmentation energies for clusters
of the same size which are calculated from the Stillinger-
Weber potential are also presented in the same figure
(dashed line). Note that the two higher peaks of the
curve corresponding to the new potential coincide with
the two of the magic numbers which are shown in the
mass spectrum in Ref. 11 for the range of masses between
5 and 15 atoms. On the contrary, the fragmentation en-
ergies corresponding to the Stillinger-Weber potential do
not correlate with these magic numbers.

The third peak of the solid curve of Fig. 9, which cor-
responds to a cluster with 12 atoms, does not correspond
to a magic number. It is not certain what is the reason
for this disagreement between our model and the experi-
mental results. First it should be noted that we treat neu-
tral clusters, while the mass spectrum in Ref. 11 is pro-
duced from positively charged particles. Another possi-
ble explanation, which is also discussed in Ref. 8, is that
the magic numbers correspond to clusters with maximum
fragmentation temperature and not to maximum frag-
mentation energy. In other words, the stability of clus-
ters should be studied in relationship to the dynamics.
Finally we must keep in mind that the method of simulat-
ed annealing does not necessarily determine the absolute
minimum of the clusters, but it probably gives a state
with energy close to the ground state. Hence this peak in
the fragmentation energy for the Si;, may be artificial.

N

FIG. 8. Comparison of the energy per atom for the ground
state of clusters between the different classical models and the
ab initio results. The marks O and # correspond to the ab ini-
tio results after scaling and before scaling, respectively. The
marks *, X, and + correspond to the Stillinger-Weber poten-
tial, Biswas-Hamann potential, and the new potential proposed
in this paper, respectively.
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FIG. 9. Fragmentation energy for silicon clusters. The
dashed curve corresponds to the results of the Stillinger-Weber
potential. The solid curve corresponds to our results.

Therefore we developed a potential which describes the
structure and energy of silicon clusters more successfully
than any of the other analytical models proposed so far.
We plan to use this potential for doing molecular-
dynamics simulations for clusters the results of which
may be compared with future experimental data.

V. CONCLUSIONS

In this study we propose an analytical potential for sil-
icon which gives good results for small clusters. More-
over, the same classical potential fits some dynamic prop-
erties of the bulk silicon. Therefore, it can be used to de-
scribe the growth and the first fragmentation of silicon
clusters (Si, —Si, _; +Si).

The new potential, which is presented in this paper, is
a modification of the Stillinger-Weber model. In other
words, a four-body term is added to their model, and the
angle dependence of the three-body and four-body terms
has been changed. These modifications result in a quali-
tative improvement over the previous models for silicon.
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More specifically, good values for the energy of the
ground states of the clusters obtained for a large range of
the parameters of the three-body and four-body terms.
Therefore these parameters can be selected to fit proper-
ties of the crystal.

We choose to select the values of these parameters
such that the melting point of the bulk silicon can be ap-
proximated. The validity of the numerical experiment
which simulates the melting of the crystal can be ques-
tioned. Nevertheless, this strategy for selecting the pa-
rameters is probably the best if the dynamical properties
of silicon are to be studied.

After the parameters of the potential are chosen to fit
properties of the crystal, the model is used to determine
the energies and structures of the ground states of small
silicon clusters, where a good agreement with the results
of ab initio electronic calculations is observed.

Several parameters of our potential were taken from
previous studies of the Stillinger-Weber model. We have
not attempted to vary these parameters but we expect
that more satisfactory results could be obtained by slight-
ly different values for the parameters. The study of the
influence of these parameters on dynamical properties of
silicon clusters is left for future work and to this effect
new experimental measurements will be very useful.

It is very important that by introducing only two extra
parameters we have succeeded to fit a large number of
new properties, i.e., the structure and energies of the
ground state and low metastable states of small clusters.

ACKNOWLEDGMENTS

The authors are grateful to Professor H. Biittner for
many useful discussions and a critical reading of the
manuscript. Part of this work is supported by the Euro-
pean Economic Community Stimulation Program ST2J-
0032-1-GR.

1J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A.J. C.
Varandas, in Molecular Potential Energy Functions (Wiley,
New York, 1984).

2E. Pearson, T. Takai, T. Halicioglou, and W. A. Tiller, J.
Cryst. Growth 70, 33 (1984).

3F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

4J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

5B. W. Dodson, Phys. Rev. B 35, 2795 (1987).

%R. Biswas and D. R. Hamann, Phys. Rev. B 36, 6434 (1987).

7E. Blaisten-Barojas and D. Levesque, Phys. Rev. B 34, 3910
(1986).

8B. P. Feuston, R. K. Kalia, and P. Vashishta, Phys. Rev. B 35,
6222 (1987).

9K. Raghavachari, J. Chem. Phys. 84, 5672 (1986); K. Raghava-
chari and V. Logorinsky, Phys. Rev. Lett. 55, 2853 (1985).

I0R. S. Grev and H. F. Schaefer, Chem. Phys. Lett. 119, 111
(1985).

111, A. Bloomfield, R. R. Freeman, and W. L. Brown, Phys.
Rev. Lett. 54, 2246 (1985).

12K. P. Huber and G. Herzberg, Constants of Diatomic Mole-
cules (Van Nostrand/Reinhold, New York, 1979).

13C. Chatillon, M. Allibert, and A. Pattoret, C. R. Acad. Sci.
Ser. C 280, 1505 (1975).

14M. D. Kluge, J. R. Ray, and A. Rahman, J. Chem. Phys. 85,
4028 (1986).

I5SM. L. Cohen, Phys. Scr. T 1, 5 (1982).

16H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

7P, Ballone, W. Andreoni, R. Car, and M. Parrinello, Phys.
Rev. Lett. 60, 271 (1988).



