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Pseudospinodal critical phenomena, renormalized instantons, and the one-loop equation of state
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A field-theoretic renormalization-group analysis of the Landau-Ginzburg P free energy inside
the coexistence region is presented. Real and imaginary contributions to the free energy arising
from spatially uniform and spherical-droplet functional saddle points are determined to first order
in a=4 —d by solving a Jacobi equation in the Wentzel-Kramers-Brillouin approximation. An ana-
lytic, uniform approximation for the entire coexistence region is obtained, and the theory is renor-
malized explicitly. Inside the coexistence region, for d (4, two independent length scales arise: a
correlation length that diverges along a mean-field pseudospinodal line and a new length (which we
associate with the internal correlation volume of a single droplet) that diverges along an experimen-
tally inaccessible line of P fixed points. The critical region, effective critical exponents, and pseu-
dospinodals are discussed.

I. INTRODUCTION

Renormalization-group techniques' have been suc-
cessfully applied to the determination of critical ex-
ponents and the equation of state for second-order phase
transitions above the critical temperature, T, . Below T„
there exists a region of the phase diagram where the
mean-field free energy develops two minima, a metastable
and a stable one. Concomitant mean-field equations of
state, e.g. , the van der Waals equation of state, divide the
coexistence region into metastable and unstable regions,
separated by a well-defined spinodal curve along which
thermodynamic quantities exhibit power-law singularities
similar to those observed close to the critical point

The starting point of many investigations of the region
inside the coexistence curve is provided by the droplet
model, extensively studied by Fisher, whereby droplet-
like Auctuations of the stable phase in a background of
the metastable phase are analyzed nonperturbatively.
According to the classical droplet model and its vari-
ants, ' the imbalance between the surface and volume
terms in the free energy of formation of a droplet of the
new phase results in an essential singularity of the free
energy at H=O. Analytic continuation around the essen-
tial singularity, which is superimposed on a branch point,
makes the contribution of the droplet-like Auctuations to
the free energy imaginary.

Droplet-like Auctuations are assumed to play a key role
in the decay of the metastable state via nucleation. A
field-theoretic description of nucleation close to coex-
istence was developed by Langer, where the droplet was
identified with the nonuniform solution of the Euler-
Lagrange equation associated with a P free energy dis-
cussed by Cahn and Hilliard. The field-theoretic droplet
model reproduces the qualitative features of the classical
droplet model, albeit with a slightly di6'erent prefactor to
the dominant essential singularity. ' Langer also

showed that the decay rate of the metastable state is pro-
portional to the imaginary part of the free energy. Unger
and Klein extended Langer's analysis and considered nu-
cleation close to the pseudospinodal. (One of the results
of this work is a uniform expression for the imaginary
part of the free energy for the whole coexistence region. )

Both treatments, however, are mean-field calculations
and, thus, nonapplicable to the critical region.

Houghton and Lubensky' studied nucleation near
coexistence and close to a critical point by imposing a
match condition" that forced Auctuation corrections to
the instanton saddle point to be finite. Their calculation,
however, is not easy to extend to the region close to the
pseudospinodal; the match condition they used does not
exponentiate the logarithms that appear naturally in the
renormalized expression for the real part of the free ener-
gy and is inappropriate for regions where the magnetiza-
tion is small with respect to the temperature.

The interpretation of the imaginary part of the free en-
ergy as a nucleation rate suggests that the mean-field spi-
nodal cannot be reached experimentally; measurements,
however, deep inside coexistence may be extrapolated to
define a pseudospinodal curve. Pseudospinodals have
been observed in experiments' and in computer simula-
tions. " An estimate of spinodal Auctuations based on
the Ginzburg criterion' shows that the spinodal is
"smeared" for d & 6. Similarly, a study of a coarse-
grained free energy' showed that the position of the
pseudospinodal depends on the coarse-graining length.
The absence of a sharp spinodal is reinforced by analytic
calculations' that demonstrate a gradual transition in
the kinetics from nucleation and growth to spinodal
decomposition.

Since mean-field theory becomes more accurate as the
interaction range tends to infinity, the existence of spino-
dals has been discussed in connection with the inter-
particle interaction range. Monte Carlo simulations'
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and theoretical investigations' show that the mean-field
spinodal can be approached arbitrarily closely by making
the interaction range sufticiently large.

In this work we extend Langer's field-theoretic calcula-
tion to the whole coexistence region, and, by appropriate-
ly renormalizing the free energy, to the critical region;
our final expression for the complex free energy incorpo-
rates both droplet-like and critical fluctuations. It should
be stressed that our calculation is a static one, and thus,
should be viewed as accurate only with regards to phe-
nomena on a time scale shorter than the nucleation
time. ' In a later work, a time-dependent version of the
theory will be analyzed.

As is commonly done, we consider a model Landau-
Ginzburg free energy for a system with a scalar, continu-
ous order parameter P in d =4—e spatial dimensions:

f3F=Id r —,
'

~
VP ~

+ ,' rP + —,u P —KP—

where H is an external field that couples to the order pa-
rameter and z is the reduced temperature. The associat-
ed partition function is obtained by evaluating a function-
al integral over all possible field configurations, weighted
by the Boltzmann probability distribution,

Z(K ):JD [P]e—

The appropriate thermodynamic potential becomes

PA —= —ln[Z(K)].

(1.2)

In the study of critical phenomena, the partition func-
tion is usually evaluated by the method of steepest des-
cent, expanding about a local free energy minimum. For
temperatures below T„ the free energy develops two spa-
tially uniform minima, a metastable and a stable one. The
usual perturbative analysis of fluctuations, either via a
Wilson-type or a field-theoretic renormalization-group
transformation, considers only single-well fluctuations ex-
plicitly. Not surprisingly, the low-order expansions miss
the essential singularity at coexistence, since the effect of
the absolute minimum is included only perturbatively. In
a sense, the perturbative expansions about a local
minimum are similar in spirit to the calculation of Pen-
rose and Lebowitz, ' who analyzed metastable states by
considering only a constrained class of uniform order pa-
rameter fluctuations.

Spatially nonuniform fluctuations are included in the
evaluation of the partition function by considering anoth-
er functional extremum of the free energy, which appears
only inside the coexistence region. As was first pointed
out by Langer, the new saddle point, which has a spatial-
ly nonuniform order parameter, has one unstable direc-
tion. This nonuniform field configuration, which has
been given numerous names in the literature (e.g. , instan-
ton, kink, soliton), is identified with the critical droplet
that, at least close to coexistence, is responsible for nu-

cleation. The instanton contribution to the free energy is

purely imaginary.
In Sec. II we describe the nonuniform order-parameter

profile and we consider fluctuation corrections to the two
previously described saddle points. We show that the

one-loop fluctuation contributions to the partition func-
tion may be evaluated by solving a Jacobi differential
equation. ' When the WKB approximate solutions are21,22

used, the resulting expression can be explicitly renormal-
ized (here, by using the field-theoretic approach to the re-
normalization group and by subtracting divergences in
minimal subtraction' ). Note that while the calcula-
tion of the one-loop correction to the partition function
via the solution of the Jacobi equation is not new, as far
as we know, it is the first time that it has been applied to
the general d-dimensional problem in polar spherical
coordinates and where the renormalizability of the result-
ing expression has been explicitly demonstrated.

The perturbative expressions are made consistent with
the renormalization-group equation by writing them in
crossover form in Sec. III ~ We show that a consistent way
to treat Auctuations inside the coexistence region requires
that the scale parameter, which can be identified with a
coherence length for nonlinear effects, be decoupled from
the correlation length (i.e., g', where y is the suscepti-
bility). As a consequence, deep inside the coexistence re-
gion we find a new line along which the scale parameter
diverges. This new curve, which we call the universal spi-
nodal curve, is always inside the unstable region of the
phase diagram (y(0), and is a line of P fixed points (i.e.,
the corresponding exponents are nonclassical). The rela-
tive positions of the pseudospinodal and the universal spi-
nodal curves determine the nature of the observed singu-
larities far away from the coexistence curve. We show
that the pseudospinodal is a mean-field line, although
crossover from mean-field (at coexistence) to critical, to
mean-field (at the pseudospinodal) behavior can be ob-
served close to T, (cf. Fig. 5). We evaluate the expression
for the instanton contribution to the partition function,
and find that the nucleation rate, which is proportional to
the imaginary part of the free energy, decreases rapidly as
the critical point is approached. Moreover, close to the
critical point, the normalized imaginary part of the free
energy, whose maximum occurs deep inside coexistence,
becomes a universal function. Section IV summarizes our
results and discusses possible extensions and limitations
of our work. The appendices contain various technical
details.

II. MEAN-FIELD INSTANTONS
AND RENORMALIZED PERTURBATION THEORY

A. Single-instanton approximation
and fluctuations about the instanton

The nonuniform order parameter corresponding to the
saddle point configuration of the mean-field free energy
will be written as

m(r) =mo+5m(r), (2.1a)

where mo is the metastable solution of the mean-field
equation of state and 6m(r) is the so-called instanton
configuration. We shall consider only spherically sym-
metric droplets, for which the Euler-Lagrange equation
becomes
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5PF d —1= —8„6m — 8,5m +xo6m
terms of the eigenvalues the Gaussian determinant be-
comes

where

xo —=~+ —ma
2

2

+—m6m+ —5m =0,9 Q

2 ' 3!
(2.1b)

(2.1c)

(p;"')=g[ "]'

n, 1

(2.4a)

2 1+——1 I (1+d —2)
d
2

where g& is the degeneracy of the lth d-dimensional spher-
ical harmonic; i.e.,

is the inverse mean-field susceptibility.
For d )2 the boundary conditions are easily deter-

mined to be (a) 5m(r) —+0 as r~ ~, since the instanton
describes a droplet of the stable phase in a background of
the metastable phase; and (b)

gi(d)—: I"(d —1)I (1+1)
for I ~1. (2.4b)

Note that the product over the eigenvalues includes both
bound and continuum states.

Using these results, the one-instanton partition func-
tion becomes

asm
By

so that the instanton remains finite at the origin. Unfor-
tunately, except in d=1, a closed form solution to Eq.
(2.1b) does not exist. Following Cahn and Hilliard it will
be solved variationally below [cf. Eq. (2.9)].

In the one-instanton approximation, the partition
function is given by the sum of the contributions from the
two saddle points,

Z1
Z (H) =Zo 1+

Zo

Z1=e '+[A, ' '] ' 1+nl,
where

(2.5a)

(2.5b)
Z(H) =Zo+Z,

= e det(PFo '
)

—1/2 with

with

—PI' I
—1/2

+e ' det(PF'i ')

5 PF
5$(r, )5$(r2) y=y {„)'

(2.2a)

(2.2b)

2=~i =—II
n ~n, l

pb, F{„'=pF, pFO—

(2.5c)

1=0,1. Henceforth, pFO and pF, denote the free ener-
gies at the metastable minimum, i){i=ma, and at the in-
stanton extremum, {I)=—m(r), respectively. The deter-
minants arise from Gaussian integrations about the cor-
responding extrema and correspond to the usual loop ex-
pansion [Eq. (2.2a) is just the one-loop expression for the
free energy'].

Perhaps the most common way to evaluate the deter-
minants is by calculating the eigenvalues' ' ' ' ' ' of the
operator defined in Eq. (2.2b); for the iI) model, this re-
sults in a Schrodinger-like equation of the form

g2 d 15 + l(l+d 2) + yi g{i)qi
r r 2 i n I nh n I&

= J' dr ,' I V5m I—'+-,'xo5m'

+ (ma+5m /4)
u5m

3t
(2.5d)

W{,0'(L)
(2.6)

The calculation of the eigenvalues from Eq. (2.3a) for a
general order-parameter profile is a formidable task. The
product over the eigenvalues, however, may be calculated
in a simpler way because, as is discussed in Appendix A,
the quantity AI is given by the ratio

(2.3a)

i =0, 1, where

xi =x (r) =r+ —[ma+—5m (r)],
2

(2.3b)

and where xo was defined in Eq. (2.1c). In writing Eq.
(2 3a), we have separated the equation in spherical coor-
dinates and have used the fact that the rotational "ener-
gy" for angular momentum 1 is l(1+d —2)/r2. ~4 In

1 (1+2 —2)
y2

(2.7a)

with boundary conditions

limA'i'(r) =cir'.
r~O

(2.7b)

where A[I' are solutions of the Jacobi differential equa-
tion ' evaluated at L, the radius of a spherical box that
encloses the system (L ~ ~ ). The Jacobi equation is

Br+ Br
1 —x; Ai' (r) =0,(i)
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The precise value of the parameter ci is unimportant
since it is independent of x; (cf. Appendix A); hence, it is
the same for the zero- and one-instanton problems and
cancels out of A I .

r =e' and A"(r) =e ' ' ql (z)

Equation (2.7a) thus becomes

(2.8a)

Q2gp —Q(z)%( =0,
az2

(2.8b)

where the "potential" is

Q(z) —=e 'x, (e')+ v, (2.8c)

B. WKB approximation

Here, the Jacobi equation will be analyzed in the WKB
approximation. This results in analytic expressions
which can be used in renormalizing the theory. The
singularity at the origin makes the naive WKB approxi-
mation break down at r =0 for d ) 1; however, the we11-

known Langer transformation remedies this; i.e.,

As a test of the WKB approximation we determined
some of the eigenvalues, A, '„'I [cf. Eq. (2.3a)] numerically,
and compared them with the first- and second-order
WKB approximations (also solving the required algebraic
equations numerically). As Table I shows, close to coex-
istence first-order WKB does not give a negative eigen-
value for l=0 and the overall agreement is fairly poor.
On the other hand, second-order WKB appears to be
quite accurate. Similar features were observed in com-
parisons of fully numerical with first- and second-order
WKB solutions to Eq. (2.8a), and it is the latter which is
used below.

In determining the eigenvglues and in all the numerical
work that follows the order-parameter profile was deter-
mined variationally. The solution of the Euler-Lagrange
equation, Eq. (2.1b), has been extensively analyzed close
to coexistence ' (where the familiar tanh profile, charac-
teristic of a one-dimensional interface, is obtained) and
close to the pseudospinodal. (Close to the pseudospino-
dal if the first derivative term is dropped the resulting
equation has a closed-form solution, although for d%1
no obvious small parameter justifies this. ) The trial func-
tj.on used combines the salient features of the solution in
the two limits; in particular,

with

dv—:I +——1.
2

(2.8d)

r —R
5m(r) =fimo c, 1 —tanh +cue "~~ ., (2.9a)

TABLE I. Comparison of numerical and WKB eigenvalues for ~= —1 and u /u *=0.9.

0
1

2
3
4
5
6
7
8
9

10
11
12
0
1

2
3
4

1st order WKB

(m) —(m)p,z= (m)...„—(m)p,
0.077 87
0.098 55
0.13986
0.201 71
0.283 98
0.386 49
0.509 04
0.651 38
0.813 22
0.994 24
1.19408
1.412 34
1.648 57
1.477 66
1.496 81
1.534 69
1.590 45
1.662 79

z =0.467
—0.228 79

0.064 25
0.498 96
0.738 45

z =0.018
—0.057 12
—0.001 67

2nd order WKB

=0.878

—0.020 84
—0.000 11

0.04128
0.103 27
0.185 71
0.288 43
0.411 22
0.553 83
0.715 97
0.897 32
1.097 50
1.316 12
1.552 73
1.448 29
1.467 69
1.506 03
1.562 34
1.635 15

—0.301 70
0.003 37
0.442 98
0.733 77

—0.057 70
—0.004 29

Numerical

—0.021 00
—0.000 23

0.041 26
0.103 38
0.185 97
0.288 87
0.411 83
0.554 60
0.716 87
0.898 30
1.098 51
1.31706
1.553 47
1.430 81
1.450 42
1.489 11
1.545 90
1.61929

—0.322 27
—0.001 43

0.443 64
0.710 32

—0.062 48
—0.004 16
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where 5m 0 characterizes the order in the droplet, g the
interfacial width, and R the radius of the instanton. The
last exponential part was included to ensure that 85m /Br
vanish at r =0. The interfacial width and 6mo were ob-
tained numerically, and the constants c; were determined
by the conditions

as r ~ nn (cf. Appendix 8).
The potential Q(z) either has no turning points, e.g.,

for large angular momentum, or two turning points,
creating an attractive well that may support bound states.
In the case of no turning points the second-order WKB
solution becomes

5m(r =0)=5mo and
85m(r =0) =0.

Br
(2.9b) A(1)(y) c vl/2yl

I I

It should be stressed that our qualitative results do not
depend on the choice of the trial function. (More accu-
rate numerical results will be obtained by using better tri-
al functions for the order-parameter profile. ) An obvious
problem with our trial function is that it gives incorrect
algebraic corrections to the dominant exponential decay

I

Xe 'S [—,1n(r)]+S [1n(r)]+S [—,1n(r)]
1 2 (2.10)

where the various exponential factors are defined in Ap-
pendix B. If there are two turning points, z„(zz, then
connection formulas must be considered. In the outer
region, z & z~, the solution thus becomes

—
S&[z&, ln( r) ] + S ( [In( r) ]—S& [z&, ln( r) ] S&[z&,(n(r)]+S([in(r)]+S2[z&, ln(r)]

A( (r)=r B([sin( )e ' ' ' +2cos (t)e ' (2.11a)

where

(t'=—SO[z„,za]+S2[zw za]~ (2.11b)

and Sz and the constant B( are given in Eqs. (B4) and

(85), respectively.
The Jacobi equation for the metastable minimum is a

modified Bessel equation, whose solution is

A( '(r) =c,I"(v+ 1)2 x ~ r ' "~ I,(x '~ r ), (2.12)

where I is the modified Bessel function of order v. In
our numerical work, in order to be consistent with the
approximations used in Eqs. (2.10) and (2.11a), when the
WKB expressions were used, we used the Debye asymp-
totic expansion for I (which is equivalent to the WKB
approximation). As before, only the second-order WKB
was in good agreement with the exact solution.

Since the metastable minimum has uniform order pa-
rameter, the Auctuation correction to the free energy

could have been analyzed in terms of a Fourier represen-
tation. ' For the sake of completeness, and as a check of
the Jacobi equation method, in Appendix C we use the
solution of the Jacobi equation to reproduce the standard

results. In particular, we show that, for any I, the
product of eigenvalues of Eq. (2.3a) is given by Eq. (C5),
which equals the solution of the Jacobi equation, Eq.
(2.12), up to unimportant multiplicative factors which are
independent of the thermodynamic variables (i.e., r and
x()).

In our numerical work, for closely spaced turning
points, i.e., when l is close to its maximum value for
which the attractive potential supports bound states, the
agreement of the second-order WKB approximation to
the instanton Jacobi equation, Eq. (2.7a), was poor. For
those values of l, rather than use the WKB approxima-
tion for closely spaced turning points the ratio A& was
determined by numerically solving the differential equa-
tion

g2+ 1 2V +2 1/2 v —
1 0

I (x(')~ r)
(]„—x (r)+x() Ai (r) =0, (2.13a)

with

A((r =0)=1 and (3„A((r =0)=0. (2.13b)

As is the case in d=1, ' the first term on the right-
hand side of Eq. (2.1la) is exponentially small for l&1
and I large; hence, only the second is needed for A|. On
the other hand, for l = 1, P = ry/2 (i.e., a Bohr-
Sommerfeld quantization condition), and re[lects the fact
that in an infinite system, translational invarj ance
guarantees the existence of a zero eigenvalue with eigen-
functions determined by the derivative of 5m (r ) (cf. Refs.
5, 21, and 22) [cf. Eqs. (B6) and (88)]. Furthermore, this
leads to an exponential divergence in the ratio A1 as
I.—+~. As is well known, ' ' it is a spurious diver-

gence, related to the way in which the eigenvalues corre-
sponding to translation in a finite system (with small but
nonzero eigenvalues) go to zero as I.~nn. It may be
eliminated by introducing collective coordinates,
5m, „,„,(r), and integrating over them to obtain

f2)[5m„,„,(r)]=Jd fdr= VJd, (2.14a)

Q/2J = OAF,'„' (2.14b)

where V is the system volume and the Jacobian, Jd,
which is related to the norm of the translational eigen-
functions, is reexpressed, using the virial theorem, as
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The importance of the overall factor of system volume
will be discussed at the end of this section.

Following Schulman, ' the remaining contribution to
2 I is obtained by dividing out the exponentially small ei-
genvalue and retaining the resulting well-behaved expres-
sion to give

VR;„"Jd( A )"

where

(2.15a)

C4 ) At{) I A IR j/ (2.15b)

[q ( )(L) q, (o)(L )]
(2.16)

As expected, the constant ch and other unimportant con-
stants drop out from the ratio. For closely spaced turning
points AI was calculated by solving the diA'erential equa-
tion Eq. (2.13a). Therefore, the single-instanton partition
function becomes

and where R;„ is a quantity with dimension of length
which was introduced to make Eq. (2.15b) dimensionless.
It will be identified with the instanton radius in the next
section. In Appendix 8 an expression for A ] in terms of
the second derivative of the order-parameter profile is
presented; cf. Eq. (B1 1).

For l =0 we found, in agreement with previous calcula-
tions, ' that the ratio is negative, since cos(P)(0. This
is a consequence of the fact that each translational eigen-
vector has one angular node and therefore there must be
a nodeless eigenfunction with lower energy; i.e., a state
with negative eigenvalue. The corresponding Gaussian
integration is performed by analytic continuation and it
makes the instanton contribution to the free energy pure-
ly imaginary.

For the other values of l our numerical work shows
that as H~O the position of the attractive well goes to
infinity, and therefore, the number of bound states for a
given / diverges. The sum over the bound states generates
logarithmic corrections to the instanton free energy,
which have been discussed by Langer and Gunther et
a/. We found, however, that by the time l —10 they were
corrections to an exponentially small quantity
[-exp( —100)], and thus unobservable (cf. Fig. 7). As
the system is moved away from the coexistence line the
number of bound states decreases rapidly (cf. Fig. 6); at
the pseudospinodal, where the position of the attractive
well is comparable to its interfacial width, only the nega-
tive eigenvalue and the translational states remain.

We rewrite the ratio A( in terms of (I)(('(L), the loga-
rithms of A(('(L ), i.e.,

The factor of +i is included because, as was mentioned
earlier, A Q is negative.

Up to now we have considered the single-instanton ap-
proximation to the partition function. In the so-called di-
lute gas approximation, ' ' a summation over nonin-
teracting, multi-instanton configurations exponentiates
the single-instanton result to give

ZI
PA = —ln[Z(H)]= —ln(Z0)—

ZQ
(2.18)

It is important to note that the exponentiation ensures
that the thermodynamic potential )()lA is extensive.

C. Renormalization

1. Metastab1e minimum

The first term in Eq. (2.18) is the usual expression for
the thermodynamic potentia1; it is given by the standard
perturbative analysis of the P free energy' (cf. Appendix
C). Specifically, if the free energy is renorm'alized in
minimal subtraction, the following relations of bare to
renormalized quantities (denoted by subscripts "R")elim-
inate the e ' poles, with a=4 —d,

(2m. ) 3"R1+ (2.19a)

and

Qg1+
26

(2.19b)

with

+ —,)x,~in(x, /)( ), (2.20a)

where the renormalized one-loop minimum, ( m ), is

Qg =K Qg, (2.19c)

where K is a quantity with dimension of inverse length
that was introduced in the process of dimensional regu-
larization. Since the coupling constant was redefined to
absorb various angular factors (Sd is the area of a d-
dimensional sphere), m and H are also rescaled by a fac-
tor of Sd' (2m. )

In terms of renormalized quantities the one-loop ex-
pression of the first term in Eq. (2.18) becomes"

(2m. )"ln(Z() )

S V
=—'~R (m ) (1——'u~ )8

+—u &m) (1——'u )
1 4

R 8 R

Z g(gy (0) +g~(&) )
R —d yg ' in iri

ZQ
(2.17a)

(m ) =m0 1 — ln(x, /)r ) + O(e ), (2.20b)

where the tree term, hF(„), is defined in Eq. (2.5d), and
the one-loop term, AI' „', is expressed in terms of the
solutio0s to the Jacobi equation

and

(2.20c)
pg~(&) ) gg (d)((p(1) q&(0))

l=Q
(2.17b)

Note that the tree terms are O(e ').
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2. Instanton extremum

Previous calculations of the instanton free energy con-
sidered ' ' the sum over I up to l*, a value beyond which
no bound states could be supported by the attractive well;
in particular, close to coexistence, l* was chosen to be
proportional to H '. Note that this incorrectly assumes
that the contribution from the continua of the zero- and
the one-instanton configurations to the partition function
cancel out. On -the other hand, if the sum is extended to
infinity, divergences appear which are reminiscent of the
uv divergences that result in the usual perturbative treat-
ment of the P free energy (the sum over l replaces the in-
tegration over wave vectors); this is not surprising since
letting I —+ao implies that a high wave-vector angular
cutoff goes to infinity.

It is well known how to subtract these divergences. As
in the preceding section, we shall use the field-theoretic
minimal subtraction approach to the renormalization-
group, after dimensionally regularizing all divergent
quantities. Moreover, we shall renormalize the free ener-

pbF;'„' =PbFwKB+phF. b

where, in the WKB approximation,

(2.21a)

gy in an e expansion about d =4.
The free energy is made finite by renormalizing each

extremum separately and taking the difference of the re-
sulting expressions. As expected, in the thermodynamic
limit, the same renormalization constants renormalize
each contribution. Furthermore, in Appendix C, we car-
ry out the renormalization procedure for the uniform
order-parameter extremum by renormalizing the %KB
solution to the Jacobi equation; we show that the stan-
dard P results are obtained in the thermodynamic limit
when the sum over l is replaced by an integral. The same
procedure renormalizes the instanton extrernum.

The first step in the renormalization procedure is the
subtraction of the additive temperature renormalization
shift which eliminates the terms that diverge as I"
Then, by adding and subtracting the term which becomes
marginal at d =4, the one-loop corrections become

GO

PbFw'Ks—:g — 4'i "(~ ) —C&P'( ~ ) —1 dr [x (r) —xo] — [x (r) —xo]2 0 2(/+1) 8(l +1)3 + O(e), (2.2lb)

and

i=o 8v I (l+1)I (d —1)

(2.21c)

The sum over l in Eq. (2.21b) is finite and is evaluated at d =4. In addition, the integration limits were extended to
infinity since the integrands decay exponentially. Note that the second-order WKB terms [cf. Eqs. (B3) and (B4)] seem
to introduce marginal divergences in the summand as l —+ ~. However, an integration by parts shows that the diver-
gent terms vanish. The sum in Pb,F',&,

' is marginal and is evaluated in an e expansion; this gives

I (l+d —2)
I=0 I+——1 I (1+1)

2

'(1+ye) + O(e), (2.22)

where y =0.57721.. . is Euler's constant. It is worth noting that if the sum is replaced by an integral, the value of the
marginal operator is e '(1+e/2).

The E poles are eliminated by redefining r and u (there is no wave-function renormalization in a one-loop calcula-
tion); as expected, the previously presented relations of bare to renormalized quantities eliminate them. Substitution of
Eqs. (2.19a) and (2.19b) in Eq. (2.5d), addition of the one-loop terms [cf. Eqs. (2.21) and (2.22)], and e expansion of the
integration measure gives

S 3

PbF,'„'+PbF,'„'=
d R;„' J dr r 1 —e ln(r/R;„) —,

' ~V5m
~

+ ,'x05m +—, (mo+5m/4)(2~)'

,'[y+,'+in(iver/2)][x (r) xo] +4PbFwKri +O(e)

(2.23a)

where

x (r) —xo=2uiimox05m+u~(xo+ui, mo)5m +u~5m (mo+5m/4).

In obtaining the last result we used the following expansion:

(2.23b)
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1

I (d —1)
2Sd

1 —eln(2)+ — + O(e ).
(2~)" 2

(2.24)

Since the integration measure was expanded, we make the ansatz that R;„,a yet unspecified measure of the instanton
size, multiplies the d =4 free energy, cf. Eq. (2.23a), so that the expected instanton volume dependence is obtained non-
perturbatively for all d. In the finite sum, Eq. (2.21b), renormalized quantities trivially replace bare ones because the
difference is of higher order in e and, for the same reason, they are multiplied by R;„. Henceforth, all quantities will be
renormalized and we shall drop the "R"subscripts.

Close to the pseudospinodal, the instanton radius grows, (R -xo ' ), and the in(i~r) term in Eq. (2.23a) introduces
logarithmic divergences; since, as we show later, 5m(r) is proportional to xo, the terms linear and quadratic in 5m(r)
diverge logarithmically [cf. Eq. (2.23b)]. The divergences may be rewritten by adding and subtracting terms containing
ln(xo). Subsequently, by using the Euler-Lagrange equation, Eq. (2.1b), the term proportional to 5m in Eq. (2.23b) can
be expressed in terms of 5m and 5m . With this, Eq. (2.23a) becomes

PbF' '+PhF' ' = S
d R;„' f dr r [1—@in(r/R;„)],'~V5m

~

+ —,
' x, + —(x, +u(m ) )in(x, /x. ) 5m

(2'�) o
In 2 2 t 4 t

u5m
3f

1+ In(x, /~ ) ((m )+5m/4)3u

—
—,'[y+ —,'+in(rx, '~ l2)][x (r) x, ] +4P—bF~~iKB

(2.25a)

where (m ) and x, were introduced earlier [cf. Eqs. (2.20b) and (2.20c)], and where x(r) is henceforth defined using
( m ). Observe that the shift to the true one-loop minimum eliminates the divergence that arises from the term propor-
tional to 6m, and the other terms modify the tree free energy density.

The one-loop corrections to the free energy density

P5f =
—,
' ~V5m

~
+ —,

' x, +—(x, +u (m ) )1n(x, /v ) 5m + [1+—'u ln(x, /a )]((m )+5m /4) (2.25b)

are the logarithmic corrections to the real parts of the corresponding X-point vertex functions, I ~, in the ordered
phase; these diverge as x, ~0. They are eliminated, however, when the real part is made finite (see Sec. III). Further-
more, the coeScient of 5m is, up to the finite term u (m ) /4 [which may be added and subtracted from Eq. (2.25a) if
desired], the perturbative expression of I I,

' in the ordered phase.
The instanton profile can be chosen to extremize the free energy functional with the free energy density given in Eq.

(2.25b); any O(1) modifications to the free energy density will result in order e'~ changes of the instanton [5m is
0 (e ' )]. However, since the instanton is an extremum, the corresponding corrections to the free energy will be O(e)
and thus of higher order in the e expansion.

Hence, the instanton is now defined with respect to the real part of the one-loop free energy; in particular, the shift to
(m ) ensures that m (r) decays to the one-loop value of the average order parameter and its defining equation uses the
the one-loop inverse susceptibility.

One of the remaining logarithms in Eq. (2.23a) is eliminated by choosing R;„(cf.Ref. 31) to satisfy

f dr In(vr)r P5f
ln(~R;„) —=

dr r P5f
0

(2.26)

where P5f is the instanton free energy density, Eq. (2.25b). Thus, the final expression for the renormalized instanton
free energy is

PAFIoi+Pb, F( S
„R,„' 4Pb, Fiw'K~+ f dr r —,'~V5m

~

+—,
' x, + —(x, +u(m ) )1n(x, /~ ) 5m

u6m
31

1+ ln(x, /a. ) ((m )+5m/4)3u

—
—,'[y+ —,'+ln(rx, ' /2)][x (r) —x, ] (2.27)
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Application of the virial theorem ' on the free energy
density, Eq. (2.25b), shows that the Jacobian, Eq. (2.14b),
may be expressed as

S
d R;„ I dr r P5f (r),

(2ir) o
(2.28)

where 5f is given in Eq. (2.25b). The corrections associ-
ated with Eq. (2.28), when exponentiated, are easily
shown to be O(e) and can thus be dropped.

Combining Eqs. (2.27) and (2.28) we obtain the final re-
normalized expression for the instanton partition func-
tion,

(2.29)

2xp 1/25m(r)~ 5m(xo~ r)
Amp

(2.30)

Equation (2.29) can be used throughout the coexistence
region and it smoothly extrapolates between the previous-
ly studied limits, H —+0, coexistence, and x, —+0, pseudo-
spinodal. However, since it was derived in an e expan-
sion it contains logarithmic divergences (which will be el-
iminated in the next section by considering renormaliza-
tion-group fiows). For the moment, only its mean-field
limit will be compared with previously established re-
sults; the behavior in either limit is easily found by di-
mensional analysis based on the appropriate dominant
length scale.

Close to coexistence the dominant length scale is the
instanton radius, which, for d 2, diverges as H . It is
easy to show that, as in the case of the classical droplet
model, the tree free energy diverges as H '" ". More-
over, the prefactor of Eq. (2.29), i.e., logarithmic correc-
tions to the free energy, diverges like H "' ' . The
later exponent is in agreement with that of Gunther et
a/. for 2 & d & 5, d&3; for d =3 the contribution of pla-
nar surface capillary modes become marginal, ' ' intro-
ducing extra logarithmic corrections. Since the free ener-
gy, Eq. (2.27), was renormalized by e expanding the de-
generacy factors, gr(d), the special nature of d =3 is not
observed. Furthermore, numerically, it is only a logarith-
mic correction to an algebraically divergent quantity
(which appears in an exponent. )

Close to the pseudospinodal, in mean field, the only
relevant length scale is the mean-field correlation length,
xo '~ . (Note that in the mean-field limit xo equals x, .)
The rescaling of 5m by

shows that the only dimensionless parameter is
2xo/3um o, which goes to zero at the pseudo-
spinodal; hence, a trivial scaling form for the instanton
profile is obtained. Using this it is easy to show that the
tree free energy vanishes as -xp " . Since R;„ is pro-
portional to the mean-field correlation length the prefac-
tor goes to zero as xp' " ' . Thus, close to the pseu-
dospinodal the instanton contribution to the partition
function goes to zero algebraically for d & 6 and exponen-
tially for d )6.

Spinodal nucleation, i.e., nucleation close to the pseu-
dospinodal, far from the critical region has been studied
by Unger and Klein. Even though we find the same qual-
itative features, algebraic decay (exponential decay) for
d &6 (d ) 6), our exponents for the prefactor differ; in
their calculation of the Jacobian, Eq. (2.14b), the norm of
the translational eigenvectors was determined by in-
tegrating a one-dimensional order-parameter profile in
d= 1, whereas we used the virial theorem for a general
dimension d.

It appears that d =6 is a critical dimension for spino-
dal nucleation. It has been suggested that the pseudo-
spinodal corresponds to a fixed point of a P free energy
(this is essentially a consequence of dropping the quartic
term of the free energy close to the pseudospinodal; how-
ever, the P theory is unbounded from below and it has
an imaginary fixed-point coupling constant). Neverthe-
less, we have shown explicitly that, for a system with a
critical point, no new renormalization constants are in-
troduced by the P operator. In fact, it has been proven
quite generally that the P composite operator does not
introduce independent renormalization constants because
it is related to lower-order operators by a Ward identi-

34

III. EQUATION OF STATE
INSIDE THE COEXISTENCE REGION

A. Renormalization-group equation
and match conditions

As was mentioned earlier, the process of dimensional
regularization introduces an arbitrary scale v. The re-
quirement that the bare theory be independent of that
scale leads to the renormalization-group equation' for
the renormalized, dimensionful, X-point vertex functions,
I R '; in particular, the renormalization-group equation
for H is

8 a+P„+P, +P +y H(u , i',rm xii) =0,
~uR BVR ™R (3.1)

where the one-loop Wilson functions for the dimension-
less variables, ~=m, m =m~ ' ', and u, are

O'TR

p, =l~ = 7'(2 —
—,'uii ), —

B
(3.2b)

Bu
p„=K — Q ii ( 6

~
1lg ) p

uR

B
(3.2a)

BmR
P =a = —m 1 ——

m (3.2c)
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8 ln(Z~ )

B
(3.2d)

H«»=p +' M(a'p)I T(imp)+ ,'U—(s'p)M (~p)

+ ,' U—(imp)X,(~p)ln[X, (~p)] I

and Z& is the wave-function renormalization constant,
which is one to one-loop order. (Note that the derivatives
with respect to ~ are taken holding the bare parameters
fixed. )

The renormalization-group equation is a quasi-linear
partial differential equation and may be solved exactly.
Specifically, for the Wilson functions given in Eqs.
(3.2a) —(3.2d), any function of

U(~) =us' 1+ (~' —1) (3.3a)

T(~)—:rs. 1+ (x' —1)
9

—1/3

(3.3b)

M(~)= (m &~' (3.3c)

solves Eq. (3.1). Here, (m & is the dimensionless aver-
age order parameter and u*=2el3 is the value of the
coupling constant at the nontrivial fixed point. U(i~),
T(a ), and M(l~) are fiowing coupling constant, tempera-
ture, and magnetization, respectively, and equal the cor-
responding renormalized, dimensionless variables at
K —1.

Perturbative expressions for the vertex functions be-
come consistent with the renormalization-group equation
by rewriting them in terms of the flowing quantities [cf.
Eqs. (3.3a)—(3.3c)], and e expanding the difFerences. The
resulting vertex functions are not only exact solutions of
the renormalization-group equation, but they are also ex-
pressed in a form appropriate for the study of crossover
effects.

In addition to the transformation properties implied by
the renormalization-group equation, quantities must
transform correctly under changes in the length scale,
e.g. , x~~p,' namely, they must transform according to
their canonical dimensions. Specifically, the general solu-
tion of Eq. (3.1) for an arbitrary length scale transforma-
tion is

H(u, r, (m ),a)=p "exp f y (U(x))
1 X

XH[U(Kp), T(Kp), M(Kp)],

where dH is the canonical dimension of H.
The equation of state inside the coexistence region was

determined by differentiating the thermodynamic poten-
tial, Eq. (2.18), with respect to (m ), thereby obtaining a
complex expression for H. The real part is the standard
one-loop, crossover form of the equation of state, whereas
the imaginary part, which is discussed in Sec. III C,
arises from the instanton contribution.

1

B. Real part of the equation of state

If the foregoing discussion is applied to the real part of
the equation of state, we find that

where

+o(e ), (3.4a)

X, ( sp)—:T(sp)+ ,' U(~—p)M (Irp), (3.4b)

which is the standard result. ' Of course, this result as-
sumes the validity of the perturbative expressions, and in
general, will break down near a critical point or line. On
the other hand, since p is arbitrary, it can be adjusted
such that only perturbative expressions in noncritical re-
gions are needed —the connection to the critical region is
established through dimensional analysis and the
renormalization-group equation.

The connection between the scale parameter p and the
thermodynamic variables is called the match condi-
tion. ' '" The match condition is not completely arbi-
trary, but it is easy to show that any match condition
written in terms of U(~p), T(imp), or M(l~p) (i.e., without
explicit a dependence) will give functions that satisfy the
renormalization-group equation exactly. Note, however,
that if the match condition couples p to m, various per-
turbative results for the crossover forms of thermo-
dynamic functions will satisfy the usual derivative ther-
modynamic relations (e.g. , X=8m IBH) only perturba-
tively in e.

Previously reported expressions for the real part of the
equation of state in the critical region, although derived
in different ways, may be written in terms of a match con-
dition. The equation of state presented by Brezin et al.
implicitly assumes that p is eliminated via M(~p)=1.
(Equivalently, m was chosen to be the independent vari-
able that parametrizes the characteristics. ) Another pos-
sible choice is T(~p)= l. Both choices do not exponen-
tiate the logarithm in Eq. (3.4a) and they become mean-
ingless when r or (m ) equals zero. Rudnick and Nel-
son" proposed a uniform approximation that exponen-
tiates the logarithms by requiring that X,(ap)=1. Their
condition makes explicit the connection between the crit-
ical and the noncritical theories by evaluating the pertur-
bative expression in a noncritical region, since their con-
dition requires that the mean-field susceptibility (which is
a measure of the strength of single-well fiuctuations) be
finite. Et is noteworthy that the Nelson-Rudnick equation
of state at the fixed point is exactly the same with the one
derived from the linear parametric model, with the nor-
malizations chosen by Wallace, and the same as the
n = 1 equation of state proposed by Horner and
Schafer; the equation of state derived by I.awrie is
similar to the latter for n = 1.

The simplicity of the Nelson-Rudnick condition is very
appealing; unfortunately it cannot be used everywhere in-
side the coexistence curve because the corresponding
equation of state sooner or later exhibits unphysical be-
havior Since, for. d (4, T(ap) and U(xp)M (sp) fiow
differently as p~~ [cf. Eqs. (3.3)], there exists a finite
value of the scale parameter, p=p*, beyond which a real
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FICx. 1. Scale parameter determined by solving the Rudnick-
Nelson match condition for ~= —0.50 and u/u*=0. 90. The
real solution to the match condition disappears at p, where

ap/B(m &= ~.

FIG. 2. Rudnick-Nelson one-loop equation of state for the
scale parameter of Fig. 1; at p the susceptibility B(m )/BH,
vanishes.

nonperturbative solution of the match condition disap-
pears. Moreover, the solution disappears in a completely
unphysical way, it is easy to show that at p' the inUerse
susceptibility diverges. Figure 1 depicts the scale param-
eter, determined by the Rudnick-Nelson match condi-
tion, as a function of m, and Fig. 2 the corresponding
one-loop crossover form of the equation of state. Note
that at p* the susceptibility, Bm /BH, vanishes, and
Bp/Bm = ~.

We propose a modification of the Nelson-Rudnick con-
dition which exponentiates logarithmic singularities, to

I

the appropriate order in the e expansion, and which, for
T(T„has a nonperturbative solution up to the point
where p diverges. Our match condition modifies the tern-
perature and the coupling constant terms in an
dependent way so that the two terms of the mean-field in-
verse susceptibility [cf. Eq. (3.4b)] diverge in the same
way, and so that it reduces to the Nelson-Rudnick condi-
tion in an e expansion. (A similar redefinition of ~ and u
was obtained by Lawrie. )

There exists a whole family'of such match conditions;
one possible choice is

a+ U(ap)T (Irp)
a+ U(l~p)

—[P{~p )—1/2] /2

+1U( )M2( )
a+ U(KP) T'(Kp)

a+ U(ap)

—3[P(~p ) —1/2] /2

(3.5a)

where

1 U (I~p)
2 4 —U(ap)

(3.5b)

and P(lcp) is a crossover form of the order-parameter crit-
ical exponent. ' The match condition reduces to
T(ap) =1 for (m ) =0. The exponents in Eq. (3.5a) were
determined by requiring that the overall factor of the
scale parameter be p, two being the canonical dimension
of the inverse susceptibility; the same exponents are ob-
tained by naively exponentiating the logarithms in the
one-loop perturbative expression for the inverse suscepti-
bility. The arbitrary nonuniversal parameter n was intro-
duced to ensure that Griffiths's analyticity is satisfied.
It is easy to show, however, that the equation of state is
universal to the appropriate order in an t expansion,
[BH/Ba=O(e )]. Even when @=1 our numerical results
suggest that the choice of a is not very important. Final-
ly, the term containing the logarithm can be dropped to
O(e) in Eq. (3.4a). The resulting equation was used with
numerical solutions to Eq. (3.5a) (with a= 1) and the re-

suit is shown in Figs. 3 and 4.
Figure 3 shows a typical phase diagram for a system

described by a P" free energy, and Fig. 4 presents a phase
diagram for a free energy with an independent cubic in-

teraction term. We find that inside the coexistence re-
gion there exists a new curve, which we call the universal
spinodal curve, along which p diverges (for a system
without a cubic interaction term the universal spinodal
curve is, by symmetry, the H =0 line). It is a line of P
critical points that is always inside the unstable region
(y(0). For d ~4, and in the mean-field limit (e.g. ,

a~0), the pseudospinodal and the universal spinodal
curves coincide. Since mean-field theory becomes exact
for infinite-range interactions, our results for the infinite-
range limit agree with previous works. '"

The scale parameter p is finite along the pseudospino-
dal curve, except at T, . It should be distinguished from
the correlation length, defined as y', which diverges
along the pseudospinodal. According to the interpreta-
tion of the renormalization-group transformation, p is a
measure of the size of the correlation volume where Auc-
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1s

C. Imaginary part of the equation of state

The instanton contribution to the equation of the state

p( &F(0) +ZZ( & )
)H =+' [R "(PbF' ' )" '" '" ]m —&

~( ) in ln

(3.7)

where the instanton partition function, Eq. (2.29), is writ-

ten in crossover form by expressing, in an e expansion,
the renormalized parameters in terms of the Bowing
quantities, and repeating the steps presented in Sec. II C.
Note that the logarithms in the expression for the free en-
ergy density, Eq. (2.25b), provide the necessary ln(s. )

terms to convert the order e ' terms (the tree free energy
terms), into crossover form. The remaining terms are
0 (1) and, thus, trivially convert into crossover form.

The quantities that appear in Eq. (3.7) are expressed in
terms of the crossover form of the free energy density,

f35f (~p, r) =,' ~V„5M ~
+—X,(~p)+ [X,(~p)+ U(~p)M ]in(X, (~p)) 5M

+ 1+ 1n(X, (vp)) (M+5M/4), (3.8a)

where r = r/p is a dimensionless variable and 5M is expressed in terms of the dimensionless variable, 5m =6m ~
by

5M =5m (r )(~p)' (3.8b)

Thus, in terms of the free energy density, we obtain

( o )
S

PbFI„'= ~ J dr r P5f (~p, r),
(2~)d R;„o (3.8c)

PaF'" = Sd

(2'�) R;„
4f3bFiw'&B ——' I dr r [y+ —'+ln(rX, (vp)' /2)][X (vp, r) —X, (ap)]

0
(3.8d)

The expression for 136,F'w'KB is trivially written in cross-
over form because it is a one-loop term. As before, the
ratio in(R;„/p) is defined in Eq. (2.26) where the free en-
ergy density is replaced by its crossover form, Eq. (3.8a).

Houghton and Lubensky' analyzed the imaginary part
of the free energy close to coexistence by imposing
M(xp)= l. As we mentioned in the Introduction, this
match condition does not exponentiate the e expanded
logarithms and is inappropriate when the magnetization
is comparable to the reduced temperature, whereas the
match condition introduced earlier, Eq. (3.5a), is free of
these difficulties. Furthermore, as in the case of the real
part of the equation of state, it eliminates the explicit log-
arithms in the free energy density, Eq. (3.8a), thereby re-
ducing the defining equation of the instanton to the same
functional form as the original Euler-Lagrange equation,
Eq. (2. lb), except that the solutions of the
renormalization-group Aow equations replace renormal-
ized variables.

In our numerical work, whose results are presented in
Figs. 6—9, the instanton was determined by extremizing
the free energy functional with the free energy given in
Eq. (3.8a). Even though the coeKcient of the quadratic
term is not the full one-loop perturbative expression for
I' ' (it lacks the term U M /4), it is thermodynamically
consistent with Eq. (3.4a). Namely, for a given r, the in-

t

stanton disappears at the value of ( m ) where the numer-
ical derivative of H, after the match condition is imposed,
vanishes. Moreover, numerically; the difference associat-
ed with this term is small.

The WKB expression in Eq. (3.8d) was evaluated using
the crossover form (i.e., where r, (m ), and u were re-

20 u/u =- 0.10

15
—1.0x10

10

0.0 O. Z 0.4 0.6 0.8 1.0

m —m, m„, —m,
FICx. 6. Angular momentum, l*, beyond which the attractive

potential of the Jacobi equation, Eq. (2.8b), has no real turning
turning points.
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free energy {instanton contribution), at d =3. For each tempera-

' ~

re e data were normalized to unity t tha eir maximum value.
As discussed in the text (cf. Table II) h
hen

a e, t e maximum value, and
ence nucleation rates scaleen, as ~~~ . (aj u/u =0.10; (b)

u/u =1.00. The lower ra h
t ree curves for iffe

g p, which is a superposition of
different temperatures, shows that when h

r ends to inanity, the imaginary part of the free
energy is a universal function.

placed by T, M, and U, respectively) of the two-turning
point, second-order WKB expression for 1=0, 1 [cf. Eqs.
(2.11) and B(ll)]. For 2~I ~ I'+5 h I" '

, w ere is the max-
imum angular momentum beyond which the~ n w ic t e attractive
po en ia of the instanton Jacobi equation E . (2.8b) has
no turning points, slightly better results were obtained by
numerically solving Eq. (2.13a) with x0 replaced b X

orresponding subtractions remain the
same. The crossovossover, no-turning point, second-order
WKB formulas, Eqs. (2.10), were used for the remainin
contributions to the sum over I.

The me maximum angular momentum valu I* '
h

coexistenc
in ig. . It is seen that I* increases very rapidl 1y coseto

'stence. Moreover, even when I*—10 the d
free ener

~ ~ ~

e roplet
gy, shown in Fig. 7, is so large that any logarith-

mic corrections to the free energyrg ' are impossi e to ob-
serve. The one-loop crossover form of the ima inar art
of the free ener at d =gy, a =3 and for diferent temperatures
and coupling constants, is presented in Fi . 8. In a

e mean-6eld result, the imaginary part of the
free energy vanishes exponentially at coexistence and
algebraically (exponentially) at the pseudospinodal for

ima in
tern becomes macroscopically unstable [Re( )=

g' ary part of the free energy vanishes.
The curves ines in ig. 8 are normalized to unity at their
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TABLE II. Maximum value of the imaginary part of the free
energy.

Q/Q
0.10
0.10
0.10
1.00
1.00
1.00

1
—1.00
—0.01
—0.0001
—1.00
—0.10
—0.01

max(lZ] /Zo )

1.148 X 10
3.033 X 10
2.646 X 10-"
1.166X 10-'
1.849 X 10-'
2.930X 10-'

maximum, and their maximum value is presented in
Table II. As the critical point is approached the imagi-
nary part of the free energy (and thus the nucleation rate
of the metastable state) decreases rapidly. Moreover, as
the scale pa'rameter increases, or the coupling constant
approaches u*, the imaginary part of the free energy
obeys scaling and tends to a universal function.

The maximum of the imaginary part of the free energy
obeys a scaling law which is determined by noticing that
the crossover from the spinodal region to the coexistence
curve occurs when the free energy is of order unity.
Hence, the dependence of the maximum on thermo-
dynamic variables is determined only by the factor R;„,
cf. Eq. (3.7), which behaves like ~r~ "(here v is the usual
critical exponent that relates r to the correlation length).
This is the usual scaling law for the free energy density.
The exponent extracted from the data of Table II is 1.8,
in agreement with the prediction of the scaling law in the
critical region for d=3 and v=(2 —e/3) '. Figure 9
shows the imaginary part of the equation of state, ob-
tained by differentiating the free energy shown in Fig. 8.
As before, our results give a universal function for the
imaginary part of the equation of state when u = u ' or
sufIiciently close to T, .

IV. DISCUSSIQN AND CGNCI. USIGNS

We have presented an equilibrium calculation of the
one-loop, crossover form of the equation of state inside
the coexistence region that incorporates

fluctuations

about both spatially uniform and nonuniform states.
Single-phase fluctuations about a local free energy
minimum were treated according to the standard
analysis. Droplet-like fluctuations of the new phase,
which correspond to a spatially nonuniform, instanton
free energy extremum were analyzed, and, in agreement
with previous calculations, their contribution to the free
energy was purely imaginary. As Langer has shown, the
imaginary part of the free energy may be interpreted to
be the nucleation rate of the metastable system and the
instanton is the field-theoretic description of a nucleating
droplet. We showed how the instanton contribution to
the free energy is renormalized by evaluating the one-
loop fluctuation corrections as a solution of a Jacobi
differential equation, which was solved by second-order
WKB, and by renormalizing the resulting expression. In
agreement with the result of Brezin et al. we found that
the usual P renormalization constants sufficed to make
the free energy finite. The resulting analytic expression

extrapolates smoothly between the two previously studied
limits; close to coexistence ' the imaginary part vanishes
exponentially whereas close to the pseudospinodal it
vanishes algebraically (exponentially for d) 6). In the
mean-field limit and close to the pseudospinodal our re-
sults are in qualitative agreement with the work of Unger
and Klein, but, as discussed in Sec. II, our exponents
differ.

Perhaps, the main surprise of this work is that a con-
sistent analysis of fluctuations inside the coexistence re-
gion requires that the scale parameter be decoupled from
the correlation length (defined as g' ), thereby introduc-
ing two independent length scales. The scale parameter,
which appears naturally in the field-theoretic approach to
the renormalization group, is a measure of the coherence
volume associated with nonlinear processes which typify
the critical point. Its value was determined by introduc-
ing an e-dependent modification of the Rudnick-Nelson"
match condition.

The real part of the inverse susceptibility and the imag-
inary part of the free energy vanish at the pseudospino-
dal, along which the scale parameter remains finite (ex-
cept at T, ). The scale parameter diverges along a line of

critical points, which we call the universal spinodal
curve, that lies inside the unstable region of the phase di-
agram. Since the scale parameter determines how non-
classical critical exponents are, the position of the univer-
sal spinodal, which is experimentally inaccessible,
governs the apparent singularities deep inside coex-
istence. In agreement with earlier work, the pseudospi-
nodal is a mean-field line, because the real part of the in-
verse susceptibility has an accidental pole.

We stress that the scale parameter is different from the
thermal correlation length, which diverges at the spino-
dal. Here, the size of droplet-like fluctuations is linked to
the thermal correlation length, and hence, the charac-
teristic size of the droplets diverges at the spinodal (in
much the same way as originally discussed by Cahn and
Hilliard). Moreover, as has been found before, ' ' '

their contribution to the extrapolated thermodynamic
quantities vanishes at the spinodal; what remains are the
critical-point fluctuations, which are not droplet- or
cluster-like (at least not in any obvious manner), and
which have a typical correlation length equal to the scale
parameter.

Previous works ' analyzed the existence of spinodals
and the corresponding validity of mean-field theories in
connection with the range of the interaction potential. In
our analysis if the infinite-range limit is taken before fiuc-
tuations are considered, the essential singularity at coex-
istence disappears (in agreement with Langer's result ),
and the universal spinodal coincides with the pseudo-
spinodal. Thus, the usual mean-field results are obtained.

It has been argued that the spinodal corresponds to a
fixed point of a P free energy. However, we have shown
that, for systems with a critical point, no new P renor-
malization constants appear to be necessary, and that the
universal spinodal curve, which is determined by the P
fixed point, governs the singularities. Furthermore, even
though d=6 appears to be a critical dimension for nu-
cleation close to the pseudospinodal ' (since the rate at
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which the imaginary part vanishes changes from algebra-
ic to exponential), no new ir divergences were found for
4&d &6. Thus, for d)4 critical Auctuations may be
treated perturbatively.

It should be emphasized that the present calculation is
based on a static treatment of fluctuations inside the coex-
istence region; thus, it must be considered as accurate
only for timescales short in comparison with the nu-
cleation time. ' In particular, lines that lie inside the
coexistence curve (the pseudospinodal and the universal
spinodal curve), and appear sharp in a static analysis, are
expected to become diffuse once the dynamics of the sys-
tem is considered. In fact, preliminary results, based on
a nonequilibrium generalization of this static theory that
incorporates the two length scales but not nucleation,
suggest that the universal spinodal curve is smeared. De-
tails will be presented in a future publication.
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APPENDIX A:
Derivation of the Jacobi equation

We generalize Schulman's derivation ' of the Jacobi
equation to a local, spherically symmetric potential in d

'2
a5y,

=hagi(d) f dr r"
1

where

+ Vi(r)5/i(r), (Ala)

V( )
d i l(l+d —2)+

( )
r

(A lb)

and the degeneracy gi(d) was defined in Eq. (2.4b). Since
the l components of 5$ decouple, it suffices to consider
any one of them; moreover, we shall drop the subscript
"I"to keep the notation simple.

We interpret the functional integral, Eq. (1.2), by the
standard ' discretization, whereby it is given as the
N —+ ~ limit of an N-dimensional integral with I, =AN,
keeping L fixed. For d&1, the discretization of Eq. (Ala)
poses some problems because it involves a derivative mul-
tiplying a function of r. It is well known that in such
cases the discretization is not unique; we use the so-called
Stratonovich choice ' to obtain

dimensions. The one-loop correction to the mean-field
free energy is given by the functional integral over the
second-order variation of PF, Eqs. (2.2). By decomposing
the fluctuations into d-dimensional spherical harmonics
and using their orthonormality property we obtain

fdr, drzPF '5$(r, )5$(r2)

0 Br

2

+V(r)5$ (r) = g —,'I(hj )" '+[A(j+1)] 'I —(5P +, —5P ) +b V 5P
j=1

5P A(N)5$—, (A2)

where 5$~—:0 for j ~ 0 or j ~ N + 1, and T denotes matrix transpose. The matrix elements of A (N) are

—' I[5(j+1)) '+2(b, ') '+[A(j —1)] ')+6 V

,'[(bi )" —'+(bj) '], for i =j+1,
0 otherwise.

for i=j,
(A3)

Thus, the Auctuation correction to the discretized functional integral becomes

5Z= lim (2n.b, )
' +" Jd5g, . . d5$& exp .— 5$ A(n)5&(

1

&—+ oo

= lim I 2m ' det[ A (n)] IX~ oo

(A4)

The matrix A (n) has a very simple form; its elements are all zero except those along the diagonal and the two adja-
cent lines. As a consequence, a recursion relation may be derived for D„=—det[ A (n)]; ' namely,

2D„=A„„D„)—A„„—)D

with D, —:0 and Do —= l. Equation (A5) further simplifies if we write

(A5)

D„=L„gg,

with
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(A6b)

to obtain

(gn)d ' [b(n+1)] '

( )+ [&(n —1 ] '
(L L )+ V L ()

262

The last factor of 6 in the Gaussian determinant, Eq.
(A4), is eliminated by defining

A( r):hL„— (A8a)

BA -+ V(r)A(r) =0,
r Br

with boundary condition

(ASb)

for r =En. In the limit 6~0 the difference equation be-
comes a differential equation for A(r),

1/2 v So[—oo ln(r& )]+S2[ oo' 3 ]
B& =cIv r&e (85)

where primes denote derivatives. The expressions for the
case with turning points are slightly more complicated
because S2 has a pole at the turning point; however, they
are reproduced in many standard books on applied
mathematics, see, e.g., Ref. 26 (whose notation we fol-
low).

In terms of Eqs. (81)—(84), the constant B&, cf. Eq.
(2.11a), is

A(0) =0. (ASc) 2. Translational modes

For d&1, the differential equation has a singularity at
the origin that invalidates the usual derivation of the
second boundary condition. ' Here we obtain the second
boundary condition by considering the original difference
equation, Eq. (A7), for b, —+0 with n b, -o (1). In this lim-
it, the term in x;(r) [cf. Eq. (Ala)] can be dropped. The
solution to the resulting difference equation is indepen-
dent of 6 and x, , and is easily shown to behave as n ' for
n ))1. This implies that

The calculation of the almost zero translational eigen-
value ko", is an example of a boundary shape perturbation
analysis for a system with Dirichlet boundary condi-
tions. The method is well known ' ' and gives

'P)(L)P)~(L)

where

(87)
A-chr, (A8d)

and
as r ~0 with cI independent of x; the constant c& is unim-
portant because it cancels out from the ratio AI .

Therefore, the Gaussian determinant in the functional
integral,

lim [Adet(A )],

equals the solution of the Jacobi equation, evaluated at
the system size, I., up to unimportant multiplicative con-
stants [cf. Eq. (A6a)].

(88)

Moreover, the expression for the contribution of the
translational modes to the Jacobian, cf. Eq. (2.15b),
simplifies considerably because the Jacobi equation for
the metastable minimum is exactly solvable, cf. Eq.
(2.12), and P) is an exact solution of the Jacobi equation
for the instanton extremum, i.e.,

APPENDIX 8: SECOND-ORDER %KB )
() I (89)

1. General expressions

EB

So(t„,ts)= dz Q(z)'

So(t„,ts ) =f dz[Q (z)'~ —v],

(8 la)

(8 lb)

S,(ts ) = —
—,'ln[Q (ts )], (82)

5Q~(ts )
Sz(t„,ts) —

3~q +S2(t„,ta)~
48Q(t~) ~

With

(83)

The expressions used in Eqs. (2.11) are defined as fol-
lows"

Thus,

I d —1

))) (L)P, (0)2 I 1+—

X (x,'"r. )' ""r„,(x,'"L ).
-

(810)
Note that the explicit factors of L, must cancel exactly in
Eq (810). Si.nce the order-parameter trial function, Eq.
(2.9a), does not give the correct algebraic correction to
the dominant exponential decay as L, ~~, the second-
order WKB solution to the 1=1 Jacobi equation was
used in Eq. (810). This substitution gives

(8 1 la)

S2(t~, rs ) = —,', f dz QIi(z)Q (z) where the constant do 1, expressed in terms of the previ-
ously defined quantity B) [cf. Eq. (85)], is
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d/2

0 $ ~ /2 ] C I X O

2 d
~ d/4

{2~)'"

Xexp —So[ti), ln(L)] —S2[ti),ln(L)]+ xo L .,

(Bl lb)

and tz is the outer turning point. Note that 8& in Eq.
(Bl lb) is evaluated at v=d /2.

where j „are zeroes of a Bessel function of order v.
Thus, the product over the eigenvalues may be written,
up to an unimportant multiplicative constant, as

oo oo

n~'", .'-rr rr 1+ .', (C4)
I n I=on =1 Jvn

Use of the infinite product representation of a Bessel
function gives

APPENDIX C: Q4 FREE ENERGY WITH UNIFGRM
ORDER PARAMETER IN POLAR

SPHERICAL COORDINATES

xoI.
rI 1+
n=1 Jvn

=I (v+1){—'x' L) I (x' L)

(C5)

1. Product of eigenvalues

2 d —18„+ i)„+Kv „
pe

I (I +d —2) 0
2 v, nr

The eigenvalue equation, Eq. (2.3a), for a system with
uniform order parameter, expressed in polar spherical
coordinates, becomes

Finally, comparing Eq. (C5) with Eq. (2.12) shows that,
for a given value of the angular momentum, the evalua-
tion of the product of the eigenvalues and the exact solu-
tion of the Jacobi equation are equal up to unimportant
multiplicative factors independent of the thermodynamic
variables.

where the eigenvalues are

X."„'=x, +~2. „.

(Cl)

(C2)

2. Renormalixation

The one-loop fluctuation contribution to the tree free
energy is

jv, n
Kv, n (C3)

I

xo and v are defined in Eqs. (2.1c) and (2.8d), respective-
ly.

The solution to Eq. (Cl) is r' " J,()r, „r), where
J (x ) is a Bessel function. Since f „vanishes at r =L,

ln[det(Pb, FO
'

) ]=+ln(AP„' ).
I, n

(C6)

We shall use Eq. (C5) for the product of the eigenvalues.
Moreover, the uniform Debye asymptotic expansion
{whose first term is just the first-order WKB approxima-
tion to the Jacobi equation), will be used for the modified
Bessel function. For l ~ ~ the sum becomes

' ]/2
xol

gin(A, I„')=gg, (d) I 1+
' ]/2

xol.—l ln 1+ 1+
l2

xo 2

——' ln 1+4 l2 (C7)

where g&(d) is the degeneracy factor, Eq. (2.4b), and terms independent of the thermodynamic variables were dropped.
An upper cutoff A was introduced to make the sum over l finite at d =4. For large values of l the sum may be replaced
by an integral and the thermodynamic limit becomes transparent by the following rescaling of the integration variable,

I ~l(xo L )

which gives

(Cga)

gin(A, ' ')=x" L dl I '[(1+I )' —in[1+(1+I )' ]I+0(L" ')Il )„—Xo

In deriving Eq. (C8b) the following asymptotic expansion of the degeneracy factor was used:

(C8b)

g&(d)- I' ', as Il(d) (C9)

Note that the last term on the right-hand side of Eq. (C7) drops out in the thermodynamic limit. By subtracting the
I divergences and e expanding the marginal term at d =4, we rewrite Eq. (C8b) as

g(0) d/2Ld f (&/2)2
4d (d —2)I"(3—e/2)

In Cartesian coordinates, the usual pertuIbative expression for the Auctuation correction is

VSd (g) d, x o
gin(A') „')=

d I dq q
' ln(q +xo) —ln(q )—

(2ir)" q

(C10)

(C 1 la)
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which, in an e expansion, gives
y L dSd

(C12)

(g{ )) d/ y
4d(d 2—)rr

(Cl lb)

where V is the system volume and Sd is the surface area
of a d-dimensional unit sphere. Since

the two expressions, cf. Eq. (C10) and Eq. (Cl lb), are the
same. Thus, for the case of a uniform order-parameter
extremum, when the sum over l is replaced by an in-

tegral, the renormalized %KB solution of the Jacobi
equation reproduces the standard P results.
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