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First-principles calculations of dynamic permeability in porous media
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By starting from the linearized Navier-Stokes equation for the fluid and the elastic wave equation
for the solid frame of a porous medium, the first-principles definition of the frequency-dependent
permeability K(cu) and the recipe for its calculation are derived through the application of the homo-
genization procedure. It is shown systematically that, in the limit of wavelength much larger than
the typical pore size, the fluid may be regarded as incompressible in the permeability calculation,
and the solid-frame displacement acts as an additional pressure source term for the fluid flow. The
physics underlying the generic asymptotic frequency dependence of a{co) is introduced through its
analytic solution in the case of a cylindrical tube. To calculate re{co) for periodic porous media mod-
els, we have formulated a finite-element approach for the numerical solution of the incompressible
fluid equations at low and intermediate frequencies and of the Laplace equation at high frequencies.
The numerical results for the sinusoidally modulated tube, the fused-spherical-bead lattice, and the
fused-diamond lattice indicate a large range of values for the static permeability ao as well as the
other asymptotic parameters such as the tortuosity a and the surface length parameter A as defined

by Johnson et al. However, despite their variability, almost all the numerical data on periodic
models are shown to satisfy the approximate scaling relation lr(co) -=Ir&jico/coo), where co~ is a
characteristic frequency particular to the medium, and f is a universal function independent of mi-

crostructures. We advance arguments that delineate the physical reason for this scaling behavior as
well as the condition for its validity. The scaling prediction is then generalized to the case of ran-
dom porous media through both numerical simulations and the critical-path argument. Our theory
gives a simple explanation to the observed correlations in sedimentary rocks, and the scaling predic-
tion is supported by experimental ~(co) measurements on fused glass beads and crushed-glass sarn-

ples.

I. INTRODUCTION

Permeability is a general property of porous media. Its
importance in diverse areas of petroleum and chemical
industries, ranging from oil production from sedimentary
rocks to reaction in zeolites, has long been recognized. In
recent years, the study of permeability, especially its rela-
tion to the microstructure of a porous medium, was the
focus of much theoretical and experimental attention.
Among the various results of these studies, it was found
that (1) the product of the static permeability ao and the
electrical formation factor is directly proportional to a
"throat area" measurable by mercury intrusion experi-
ments, ' (2) in the high-frequency limit the permeability
is predicted to contain information about the volume-to-
surface ratio of a porous medium, ' and (3) a particular
combination of high- and low-frequency permeability pa-
rameters was noted to be nearly constant for a variety of
sedimentary rocks as well as laboratory-produced
porous-medium samples.

These findings clearly suggest that there exist some
generic relationships between the microstructure and the
dynamic permeability function «(co), defined phenomeno-
logically as U(co)= —[Ir(ro)/g]Vp(~), where U is the
average fIow velocity, g is the Quid viscosity, and p the
applied pressure. It is the purpose of this work to carry

out first-principles calculations of lr(ro) for a variety of
model porous media and to deduce from the results of
these calculations the geometric content of the function
a.(co). Our finding is surprisingly simple and may be ex-
pressed by the general validity of the scaling relation '

K(co)/Ko f (co/coo),

where mo is a characteristic frequency particular to the
medium and f is a universal function independent of mi-
crostructures. Physical arguments are advanced to clari-
fy the geometric meaning of this scaling behavior as well
as to delineate the general conditions for its validity. Be-
sides o6'ering a simple explanation for the observed corre-
lations in sedimentary rocks mentioned above, our scal-
ing relation, Eq. (1), predicts that there are only two in-
dependent microstructural parameters obtainable from
the measurement of a(ro). This prediction was indeed
verified by experimental results on fused-glass beads.

In what follows, the formulation of our approach is
given in Sec. II; calculation of Ir(co) for various model sys-
tems and the discussion of results are presented in Sec.
III. Section IV demonstrates the scaling aspect of our re-
sults and discusses its physical underpinnings. Section V
extends the scaling prediction to random networks of

39 12 027 1989 The American Physical Society



12 028 MIN-YAO ZHOU AND PING SHENG

permeable elements, and Sec. VI concludes with a discus-
sion of further topics.

II. FORMULATION

a, Eqs. (2a)—(2g) may be nondimensionalized as

l6)V=6 V o ln DI
o. = —pI+e2DV'v in D&,

(3a)

(3b)

Consider a fluid-filled porous medium with bicontinu-
ous solid and fluid networks under the excitation of an
external harmonic source with frequency ~. Since the
motions of solid and fluid are coupled by the usual hydro-
dynamic boundary conditions at pore surfaces, any exci-
tation of one component would inevitably be transmitted
to the other component as well. Therefore, the complete
problem necessarily involves the joint motion of both the
fluid and the solid components in which the local fluid ve-
locity v is governed by the linearized Navier-Stokes equa-
tion

—
~ up~ v =V.o.,

o. = —pI+2qD Vv,

l cop =XV v

(2a)

(2b)

(2c)

where p& is the fluid density, o. denotes the Quid stress
tensor, p the fluid pressure, g the fluid viscosity, K the
fluid bulk modulus, and

[DV'v ];i = —,
'

( 8;vi +BJ v;
——235;.V v ) .

The displacement u of the solid frame, on the other hand,
satisfies the elastic wave equation

~ p, u=V-~,

~=Cpu, (2e)

where p, is the solid density, ~ is the solid stress tensor,
and C is the fourth-rank elastic tensor. The variables u
and v are coupled at the fluid-solid interface by the
boundary conditions for the continuity of displacement,

v = Lcou

and the continuity of traction,

n o. =n ~ (2g)

where n is the unit normal of the fluid-solid interface.
The general solution of Eqs. (2a)—(2g) for any nontrivial

pore geometry would be dif5cult, if not impossible. How-
ever, in actual cases of interest one may almost always
identify a dimensionless small parameter e in the problem
that would enable significant simplifications for the per-
meability calculation. This small parameter is the ratio
between two length scales in which the small scale a is
given by the typical pore size, and the large scale L is
given by the product of the fluid sound speed
co = }/E /p/ and an intrinsic viscous relaxation time
r=pfa /g, i.e., @=a/cor. Here ~ has the physical
significance as the time scale at which the inertia1 force
density inside a pore, pa/~, equals the viscous force den-
sity, q/~a. It follows that for co) 2~/~ the inertial effect
dominates, and vice versa for co(2~/w. For water in
sedimentary rocks with a =1 pm, e is on the order of
10

By expressing time in units of ~ and length in units of

loop =E V v ln Dy

—pm u=e 'V.~ in D, ,

~=Ca 'V'u in D, ,

v= —icou on BD&=BD, ,

n o. =n-~ on BD&=BD, .

(3c)

(3d)

(3e)

(3g)

Here p= p, /p&, C is in units of E, and p, a. , and r are in
units of Lrj /p&a following the assumption that the
macroscopic pressure gradient should be on the same or-
der as gu/a in accordance with Darcy's law. This last
assumption will be justified by our consistent derivation
of Darcy's law from Eqs. (3a)—(3g).

The existence of a small parameter in Eq. (3) means
that we can apply the well-known technique of homogeni-
zation that would enable us to derive not only the equa-
tions governing the macroscopically measurable quanti-
ties (such as the average Quid velocity U), but also the re-
cipes for calculating the phenomenological parameters
(such as the permeability ~) from microstructures. The
technique basically consists of three steps. First, the ex-
istence of two length scales in the problem is explicitly
recognized by writing all the field variables v, u, o. , ~, and
p as a function of e plus the two spatial scales x=r/L
and y=r/a. The fie1d variables are then expanded as a
power series in e. For example,

v, (x, y) =vo(x, y)+ev, (x,y)+E~vz(x, y)+ . (4)

V, op

oo= poI ~ (6b)

Vy vp= 0

Vyup=O .

(6c)

(6d)

Equation (6d) tells us that uo=uo(x), i.e., uo is a function
of x only. Equation (6b) shows that o 0 is proportional to
an identity matrix (where po may be regarded as the
externally applied pressure), and when this information is
combined with Eq. (6a), we conclude that o o=cr(x) also.
Next, Eq. (6c) indicates that as far as the Quid is con-
cerned, to the lowest order it may be regarded as in-
compressible on the y scale. This is physically reasonable
since for co((e ', the acoustic wavelength A, ))a, which
implies compressibility effect is on the order of

Second, the gradient operation V is divided into two
parts, one acting on the x scale and one on the y scale:

V~@V +Vy .

Third, by equating terms with the same power of e, we
get a hierarchy of equations for the quantities vo, v&, up,
u&, o.o, o.

&, pp, pI, etc. For our purpose the relevant
lowest-order (e ') equations are
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a/A, -e((1. The relevant boundary condition relating
up and vp is given by

Vp = l COUp (6e)

Before writing down the next order equations we
would like to follow Biot, and Burridge and Keller, in
expressing vp in terms of up and a relative Quid displace-
ment w

v0= —ico[ua(x)+w(x, y)],
Since V .u0(x) =0, the condition V~.va directly translates
into

To summarize, the homogenization procedure has
given us the following three results. First, it shows that
the Quid may be regarded as incompressible on the pore
scale. Second, it shows that the solid frame displacement
may be regarded as a source term and therefore does not
enter the generic problem of permeability calculation.
Third, it justifies Darcy s law from first principles. We
should note here that in the above, only part of the start-
ing equations have been examined under the homogeniza-
tion procedure. Consideration of all the equations would
lead to Biot's equations as shown by Burridge and Kell-
er.

V w=0 (8a) III. PERMEABILITY CALCULATION

V cr&+.co w= —(V„o+a. cou0),

cT ] P ]I icoDVyW

By substituting Eq. (9b) into (9a), we get

—
V~pt icoV~—w+co w= —

( —V„pa+co u0) .

(9a)

(9b)

(9c)

Since p, and w are solutions to a set of linear equations,
they may be formally expressed as linear operators acting
on the source term ( —V„pa+co2u0), i.e.,

p, =P(x, y). ( —V„pa+co u0),

w=W(x, y) ~ ( —V p0+e u0) .

(10a)

(10b)

with the simple boundary condition

w=0 on dDf=BD, .

In terms of w, the e order equations from Eqs. (3a) and
(3b) are

A. Analytic solution for a cylindrical tube

The simplest case of permeability calculation would be
that for a cylindrical tube with radius 1. The examina-
tion of its analytic solution can yield a physical under-
standing of the velocity profile as a function of frequency
and the generic asymptotic frequency dependence of «(co)
that follows. For a tube, Eqs. (1 la) and (lib) reduce to a
vector equation with I~e, . From symmetry, we expect
W to be diagonal with S;,=w and P=p, e, as the only
nonzero components. That means Bp, /dr =0, or
p, =p, (z). From translational invariance we also expect
Bp, /Bz =constant, and the constant can be taken to be
zero if we regard Bp, /dz as that part of the pressure gra-
dient which represents the correction to the (constant)
applied pressure gradient. Also, the incompressibility
condition becomes Bw/Bz =0, or w =w(r). Equation
(1 la) can therefore be written as (with subscript y
dropped),

By substituting Eqs. (10a) and (10b) into Eqs. (9c) and
(8a), we get the generic equations satisfied by the opera-
tors P and W

r +r +icor w +zBw c)w . z 1

r2 Br CO

=0. (14a)

—V P—icoV W+co W= —I, (1 la)

V .W=O (1 lb)

with W=O at the Quid-solid interfaces. Given the solu-
tion W, the dynamic permeability «(co) may be directly
calculated by noting that the average Qow rate U can be
obtained from Eq. (10b) by averaging w over the pore
scale y

By making the transformation of variables

r'= &i cur,

1w'=w+
CO

we get

(r') +r', +(r') w'=0 .c) w, Bw

a(r') (14b)

U= ic0(w) = —ice(W(—yx)) .( —V„p +co u ) .

(12)

This is the Bessel equation of order zero. Since w has to
be regular at r =0, we get

Equation (12) may be regarded as the generalized Darcy's
law for elastic porous media since it teHs us that the elas-
tic solid displacement acts as an additional excitation
source in the form of co u0. Comparing Eq. (12) with the
usual form of Darcy's law, we get

«(c0) = —iso(W(x, y) ) (13)

as the definition of the dynamic permeability tensor.
«(c0) is expected to reduce to a scalar in the case of uni-
directional, isotropic, or simple-cubic microstructures.

w'=cJ0(r') =cJ0(&ivor),

or

1
w =w' — =cJ0(&i&or)—

CO N2

C = [J0(

&ice�)

]

so the final solution is given by

The requirement of w =0 at r =1 means that

(15a)

(15b)

(16a)
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Jo(+i~r)
2

1
Jo(&i co)

From Eq. (13), the dynamic permeability is given by

i i Jo(+ichor)
K(CO) = 2mrdr 1—

%CO 0 Jo(&i io)

2 Ji«~~)1—
&ice Jo(&iso)

(16b)

(17)

For a tube of arbitrary radius a, Eq. (17) still applies pro-
vided that a(co) be measured in units of a and co be mea-
sured in units of g/pf a .

A side result of the analytic ~(co) solution is the veloci-
ty profile in a tube, —iiow, where w is given by Eq. (16b).
A plot of the real and imaginary parts of the velocity for
four difFerent frequencies is given in Figs. 1(a)—(ld). At
low frequencies, the real part has a parabolic profile as

expected. The small imaginary part, which represents
the out-of-phase inertial effect, increases linearly with fre-
quency because it represents acceleration. At co, =5, the
real and imaginary parts cross in magnitude and for
co) co, the imaginary part always dominates. The ~,
therefore represents the frequency at which the inertial
effect overtakes the viscous effect. The profile of the
imaginary part at high frequencies, as seen in Figs. 1(c)
and 1(d), is described by a rather Hat central region with a
small maximum and then a steep decline close to the
wall. The Aat central region may be identified as the zone
for wave propagation. On the macroscopic spatial scale,
its amplitude is modulated sinusoidally. The maximum
amplitude is seen to decrease linearly with frequency be-
cause for a given force, displacement ta-cu so that
U = —icon -ice . The real part, on the other hand, is

~ —
1

nearly zero everywhere except for a layer near the wall.
The thickness of this boundary layer represents the
viscous relaxation length l =+2'/pfco. The co '~ fre-
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FICx. 1. Fluid-velocity profile in a cylindrical tube at four dN'erent frequencies: (a) co=0. 1, (b) co= 5, (c) co= 100, (d) m= 1000. Fre-
quency is expressed in units of g/pfa. The square denotes the real (in-phase with applied pressure) part of the velocity, and the cross
denotes the imaginary (out-of-phase) part of the velocity.
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quency dependence may be easily verified by visual in-
spection of Figs. 1(c) and l(d). The maximum of the real
part in the boundary layer is seen to decrease as co ', and
the average of the real part should therefore have a fre-

I

quency dependence of co
' -co '=co . Since the per-

meability is nothing more than the average velocity, the
above discussion implies the following asymptotic fre-
quency dependence in restored units

AS +iBS (p&/q)co, co—+0,
CS ' (g/p/) co ~ +iD (q/pI )co ', co~ oo

(18)

B. Numerical solutions for periodic models

To calculate a.(co) for periodic porous media with arbi-
trary unit-cell microstructures, we have to solve Eq. (11)
numerically. This is accomplished by formulating a
finite-element approach as follows. Consider an action
functional with the following form

6=fd r' co
l

2

aw

Bx

2 2
Bw

a:

+ —,'co w, w, +(e, —Vp, ) w, (19)

where z is the direction of the applied pressure, w,
denotes the row vector ( W, , W,~, W„) in the W matrix,

p, is the z component of the P vector, e, the unit vector
in the z direction, and the integration is over the pore
space in a unit cell. By dropping the z subscript and set-
ting the functional variation 66 to zero, we get

56= f d r( iroV w+a)—w+e Vp) 5w— .

+f d r(V.w)5p —fdS w5p

+ f d S Vw 5w(i co }=. 0 . (20a)

The last two terms of 5G are integrals over the surface of
a unit cell, consisting partly of Quid-solid interfaces and
partly of Auid-Quid interfaces at the unit cell boundary.
The contribution over the Quid-solid interaces is identi-
cally zero due to the boundary condition that w=O on
BD& =dD, (therefore 5w=0 also). For unit-cell surfaces
that have Auid-flu&d contact, we apply the periodic sym-
metry to the quantity w and 6p and then note that the
normals to the surface must be opposite to each other at
two ends of the cell. That means the surface contribu-
tions are identically zero, yielding

—Vp —icoV' w+~ w= —e,
V w=O

(20b)

(20c)

which are exactly the equations to be satisfied by w and p.

where A, B, C, D are dimensionless constants and S
denotes the cross-sectional area. Indeed, the asymptotic
expansion of Eq. (17) verifies this form with the values of
A =(8m) ', B =(48vr ) ', C=(2n.)', and D =1. For
straight tubes of noncircular cross sections, dimensional
analysis tells us that only the shape constants 3, B, C,
and D are changed in Eq. (18). The calculation of these
shape constants has been discussed by Norris. '

—Vp+co w= —e,
V.w=O .

(21a)

(21b)

The boundary conditions on w consist of w.n=O at
BDf BD„where n is the surface normal, and the re-
quirement that w be periodic at Auid-Quid cell interfaces.
By taking the divergence of Eq. (2la) and using Eq. (21b),
we get a Laplace equation for p,

+2p —0 (22}

with the boundary conditions of (Vp —e) n=O at
"r}DI="r)D, and Vp —e being periodic at fiuid-fiuid cell in-
terfaces as required by Eq. (21a) and the condition on w.
To obtain accurate solutions at high frequencies, we
therefore use the finite-element approach to solve Eq. (22)
in the pore space, with the action given by

6=—,'fd rVp Vp. (23)

Once the solution of p is obtained (up to a constant,
which may be fixed by letting the pressure value at a par-
ticular boundary node equal to 0), the value of w is ob-
tained as

1 1
(Vp —e)= Vp, ,

CO CO

where we denote the total pressure gradient, the sum of
applied and Row-induced gradients, as Vp, . The value of

By discretizing the pore space into tetrahedron ele-
ments and associating four variables p&, exp wyp wzp
with each node P, the action A may be approximated by
a finite sum. Setting the derivatives 86/Bw;&=0,
BG/Op&=0 then results in a set of linear simultaneous
equations which may be arranged in a band format so
that we can apply the fast band-matrix solver. " It should
be noted here that the finite-element approach is especial-
ly well suited to this problem because the Aexibility of the
discretization scheme makes it easy to adapt to the odd
geometry of the pore space as well as to the special re-
quirement tQat the behavior near the wall must be well
resolved so as to capture the effects of the boundary lay-
er. However, since the boundary-layer thickness de-
creases as frequency increases, at very high frequencies
the solution accuracy inevitably suffers. To overcome
this problem, we follow the work of Johnson et al. in
noting that the viscous term icuV w in the Navier-Stokes
equation is negligible compared to the inertial term co w
at high frequencies (except near the wall). Therefore, for
the bulk of the Quid one can write
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fVp, ed'r
= co

' =PG. 'co ', (25)
V

where Vis the unit cell volume and we have assumed that
(w) is in the direction of applied pressure e (which must
be true for pore geometry that is isotropic, simple cubic,
or uniaxial), P denotes the porosity, and u is defined as
the tortuosity factor that has the following physical
meaning. On the macroscopic scale, we have the equa-
tion

imp = KV (ice—w) = Klr(—co)V p/g .

Since the imaginary part of ~(co) dominates at high fre-
quencies, we write x(co) =ia g/copI. This yields a wave
equation

co p+[(K/p/)/a]V p =0
in which the sound speed is given by QK/p//&a
=ca/&a, r One way to interpret this result is that the
efFective distance of travel for the wave between two
points is increased by &a due to the tortuosity of the
path.

The a factor is easily related to the electrical conduc-
tivity 0. of a porous medium. That is, since 0. is given by
the average of the electrical current density divided by
the unit applied field, we have

f crDV4 ed r
~—1 (26)

V

w obtained in this fashion is always real, which means
that

lim [Im~(co)]=co(w e)

where + is the electrical potential, era the conductivity of
the pore Quid, and I'" is denoted as the formation factor
that comprises the geometric information measured by
electrical conductivity. Since @ satisfies the Laplace
equation with the boundary condition that VN n=O (no
normal current), 4& is exactly analogous to p. Therefore,

F=P 'a . (27)

d
w + l cow —l cow0, (28)

with the boundary conditions that w=O at /=0, and
w =wa at g= ~. The solution is

w=w0[1 —exp( V'incog—)] . (29)

The real part of ~(co) is therefore given by

Equation (27) shows that the limiting behavior of
1m[~(co)] can be completely determined by electrical
measurement. This fact was first pointed out some time
ago by Rayleigh' and Brown. '

What about the real part of v(co) in the limit of m~ ~?
Since the real part of v(co) arises purely from the bound-
ary layer, to extract its behavior we have to define a local
coordinate so as to resolve the variation of w inside the
layer. Because the boundary-layer thickness is small, we
can treat the pore surface as locally Bat without incurring
much error. Let us define g as the coordinate normal to
the surface, and w, Vp, =~ w0 as the displacement and
pressure gradient parallel to the surface. Here by w0 we
denote the value of Vp, /co at the boundary obtained
from the solution of the Laplace equation. From Eq.
(20b), the equation for w is then

lim [Res(co)]= —+ 1m(w e) =co(Im[(wa e) exp( —+ice/)])

=Im —f dS(w0 e)f dgexp( &incog—)
BD~ =BD 0

=Im —f dS(w .e)(ie)
V aD~ =aa,

1 /2

f, , dsw, e

co f dSVp, e f d'rVp, e (ta (30)

where we have specified the surface integral to be only over the Quid-solid interface where there is a boundary layer, and
substituted Vp, /co for wa and again assumed that ( w) is in the direction of applied pressure. If we define a length pa-
rameter A as

f Vp, edS f Vp, ed'r2 —'

aD& =aa, pore
(31)

lim Re@(~)=
v'2~

Qp —+ oo Aa (32)
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The A parameter and its significance as a weighted measure of volume-to-surface ratio were first pointed out by
Johnson et al. Eqiiations (31) and (32) complete the Laplace-equation formulation for the calculation of v(ai) in the
limit of co~ 0O. Since, at low frequencies, the real part of ~(co) is given by its static value Ko and the imaginary part
necessarily varies as ~ due to its inertial origin, we can write, in restored units, the general asymptotic behavior of
K(CO),

Kp+ lC) (pf /'g )co) cd~0

[&2P/(aA)](glpf )'~'co '~'+i (P/a)(q/pf )co ', co~ m . (33)

In the above we have outlined the approaches for the
numerical evaluation of a(co). In Fig. 2 we show the
three models on which the numerical calculations have
been implemented. The first one is a cylindrical tube
with sinusoidal modulation of its cross section, i.e.,

S(z)=~a [1—(5/2)(1 —coskz)]

where a is the maximum radius, 5 is a modulation param-
eter, and k gives the modulation periodicity. The second
model is formed by the remains of spheres of radius
a (1+5)after six caps of height a5 are cleaved off so that
they can be fitted on a simple-cubic lattice with lattice
constant 2a. The third model is sim&lar to the second one
except the spheres are replaced by octahedrons of half-

diagonal a (1+5) with six caps of height a5 cleaved off'.

It is noted that 5 is a parameter that controls the porosity
P and the microstructure in all three models. In the fol-
lowing figures we give a sampling of results from the
finite-element approach for the solution of the Quid equa-
tions and the Laplace equation. Due to the symmetries
of models II and III, considerable computational saving
and accuracy were achieved by solving for w and p in
only one-eighth of the unit cell. The number of nodes
and their distribution in the solution region were varied,
with attention paid especially to the throat and the near-
wall areas, to examine the accuracy and convergence of
the solutions. For narrow throats, up to a total of 5X10
nodal points were used to guarantee the variation of the

\ l
I

MODEL I

Y

MODEL Ill

FIG. 2. Cross-sectional view of the pore geometries for the three periodic models.
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TABLE I. List of model parameters, the calculated asymptotic constants Kp, C&, A, and o., and the values of F& and F2 for the
three periodic porous-media models.

Model ap/a 'P C) /a
CXKp

2
F

A'P
aKp

0.00
0.10
0.20
0.30
0.40
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

1.000
0.9050
0.8200
0.7450
0.6800
0.6250
0.6012
0.5800
0.5612
0.5449
0.5313
0.5200
0.5112
0.5050

0.125
0.111
0.939
0.748
0.548
0.358
0.273
0.199
0.136
0.857
0.487
0.238
0.921
0.234

x 1O'
x1O'
X 10
x10-'
x 1O-'
x10-'
x 1O-'
x 1O-'
x 1O-'
X10
X 10
X 10
X 10
X 10

0.208 x 10-'
0.165 x 10-'
0.121 X 10
0.807 X 10
0.469 x 10-'
0.227 X 10
0.144 X 10
0.846 X 10
0.450 X 10
0.212 X 10
0.842 x 10-'
0.264 x 10-'
0.574 x 10-'
0.647 x 10-'

1.000
1.007
1.032
1.082
1.173
1.327
1.446
1.608
1.834
2.163
2.666
3.504
5.086
8.842

1

1.000
0.947
0.885
0.812
0.729
0.636
0.584
0.529
0.470
0.408
0.344
0.277
0.209
0.140

0.750
0.752
0.752
0.751
0.751
0.750
0.749
0.753
0.754
0.749
0.751
0.752
0.752
0.748

2.828
2.832
2.844
2.855
2.877
2.919
2.939
2.957
2.975
2.998
3.019
3.038
3.054
3.071

0.0
0.1

0.2
0.25
0.3
0.35
0.38

1.6
1 ~ 8
1.9
1.95

0.4764
0.3282
0.2020
0.1492
0.1041
0.0677
0.0504

0.4253
0.2839
0.2212
0.1928

0.2065 x 10-'
0.1013X 10
0.3910X 10
0.1995X 10
0.7838 x 10-'
0.1482 X 10
0.1923X 10

0.4091 X 10
0.6277 x 10-'
0.9764 X 10
0.1405 X 10

0.931 X 10
0.266 x 10-'
0.492 X 10
0.150X 10
0.300 X 10
0.207 X 10
0.108 X 10

0.198X 10
0.936x 10-'
0.503 x 10-'
0.937x 10-'

1.487
1.929
2.599
3.239
4.854
9.285

24.06

1.725
2.277
2.889
3.527

0.464
0.401
0.282
0.221
0.149
0.095
0.063

0.575
0.404
0.328
0.293

0.681
0.744
0.807
0.861
0.993
0.986
0.825

0.585
0.440
0.218
0.034

2.647
2.685
2.797
2.749
2.409
2.512
2.924

4.838
7.300

13.83
28.42

solutions to within a few percent when the distribution
and number of model points were varied. For the 6=0
case in model II, our value of Kp was checked to be within
2.5%%uo of the one previous known calculation' of Kp.

In Figs. 3(a)—3(c) we show the frequency dependence of
calculated ~(ai) for the three models at several values of
5. Without exception, our results all confirmed the gen-
eric asymptotic frequency dependences given by Eq. (33).
It should be noted that in the calculations the finite-
element solutions of the incompressible Quid equations
were carried to frequencies just past the crossover fre-
quencies. The nodal points near the wall were adjusted
so that there is always a fixed number of them within the
viscous boundary layer l -co ' . These solutions were
then matched to the Laplace equation solutions at high
frequencies. Smooth matchings were always obtained. In
Figs. 4(a)—4(d) we plot the variation of the four asymptot-
ic parameters Kp C~ A, and a for model II as a function
of the porosity P. Since at P, =0.0349 the throat pinches
ofF, u diverges and the values of Kp, C&, and A aPProach
zero as P~P, . In Table I all the calculated values of Kp,

C, , A, and o., for the three models are listed. It is noted
that there is a large variation in their values ranging from
10 —1 for Kp/a, 10 —10 ' for C&/a", 0. 1 —1 for
A/a, and 1 —20 for a.

IV. SCALING BEHAVIOR OF ]c(co)
AND ITS PHYSICAL INTERPRETATION

A succinct way of displaying all our calculated results
is to scale ~(co) by Irp and scale co by a characteristic fre-
quency cop=gP/(pfi~pa). This would result in a new set
of asymptotic parameters for K(co), where I~=i~/~p, and
677

=CO/COp

1+lF co, co~0,
&2F '

co +i (34a)

Here

CXKp
2

c,y
' (34b)

1/2
A

CXKp
(34c)

This transformation of the variables essentially makes
Kp=1 and a=1 so that the low-frequency real part and
the high-frequency imaginary part of all the data would
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collapse to the same limiting curves. Comparison with
Eq. (33) shows that the dimensionless parameters F& and
Fz now play the role of (C& ') and Aa, respectively. If
F& and F2 should remain constant under microstructural
variations, then R(co) would exhibit umversal asymptot-
ics. In Figs. 5(a) and 5(b) we plot all the numerical data

for the three models in scaled variables K(co). It is seen
that in spite of drastic porosity and microstructural vari-
ations, the scaled data points of all except the two lowest
porosity cases of model III, collapse to a single set of
curves for the real and imaginary parts not only at high
and low frequencies, but also in the transition region as
well. That means, first of all, F, and F2 are nearly con-
stant for most of our data, which is indeed the case as
seen in Table I. In fact, we would like to note here that
the near constancy of F2 in a variety of sedimentary
rocks has been observed by Johnson et al. , which is
indeed remarkable in view of the diversity in rock's pore
geometry. However, the constancy of F, and F2 only im-
plies the universality of asymptotic characteristics. If we
neglect the two exceptions of model III for the moment,
the fact that K( co ) also has universal intermediate-
frequency crossover behavior indicates that a(co) is a scal-
ing function with only two parameters, Ko and coo, which
constitute the total geometric content of the dynamic
permeability.

The implications of the scaling behavior are that, on
the one hand, the dynamic permeability is a poor micro-
structure probe for porous media since there is only a
limited amount of geometric information obtainable form
a(co); yet on the other hand, it means that there is an un-
derlying simplicity about the dynamic permeability
which we would now like to show. Of course, this simpli-
city should also explain the reason for deviation from the
scaling behavior as demonstrated by some of the model
III results. The case of the periodic model will first be
addressed. The random porous media case is discussed in
the next section.

For periodic models, the behavior of the overall system
is identical to that of the unit cell. %e can therefore
focus our attention on the permeability of a single cell.
The fluid flow rate Q at any pore cross section may be
written as

cdpg8 lg Q =SU =S[(a/P)/g](bp!bz) (35a)

)I

1O-'—
@ = 0.42

1O-4—

1O-'—

by invoking the definition of permeability ~. Here z is the
direction of applied pressure gradient and is assumed to
be parallel to the cylindrical axis in model I, and to one
of the three principal axes in models II and III, S is the
cross-sectional area, and the factor P normalizes the
value of ~ to just the pore-space volume (instead of the to-
tal unit-cell volume). If we write Q =R 'bp, then in
analogy with electrical systems

8 =[gP/(Sa)]bz (35b)

10 7—

10 '
I

10 103
I

1O4 1O'

can be regarded as Qow resistance. For the unit cells in
our models, S and R are both functions of z. Since the
resistors are in series, we can write an effective resistance
of the unit cell as

1 L dz
I. o S(z)a(z)

(36a)

FIG. 3. Numerically calculated permeability as a function of
frequency. Cl —real part, 1'—imaginary part. (a) Model I. The
modulation periodicity is taken to be k =m/5a. (b) Model II.
(c) Model III.

from which one gets from Eq. (35b)

(36b)
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(s-'&&s& '

(s ')'(s)

(37a)

(37b)

&z&s-'&
( (s —3/2 )
&s-'&&s&

D

(37c)

(37d)

In deriving Eqs. (37a)—(37d) we have assumed that the
shape constants A, B, C, and D do not vary as a function
of z, which is valid for model I and approximately valid
for models II and III because the shape constants gen-

where ( ) denotes averaging. By approximating each
small segment Az of the pore space as a straight tube, we
can use the asymptotic behavior of a(to), Eq. (18), to get
the asymptotic parameters ~~, C, A, and a of ~,~. Ex-
panding in terms of co or co

' and retaining the leading
terms, we get the following geometric interpretation of
the parameters:

BD

2D &s-'&&s-'&
(2g (s —3/2)2

(38a)

(38b)

The important point to note here is that F, is a dimen-
sionless number whose value depends only on the shape
constants. For cylindrical tubes, F, =0.75. Since we do
not expect the shape constants to vary greatly (as Kp C&,
A, or a), F, is nearly constant. For model I, the calculat-
ed value is indeed very close to 0.75 as seen in Table I
since the cross section is always circular and therefore A,
B, C, and D have the cylindrical tube values. For models
II and III, on the the other hand, the cross-sectional
shape of the pores varies as a function of z and can devi-
ate significantly from circular. This results in the devia-
tion of I'& from 0.75. For model II the value ranges from
0.68 to 1, and for model III the value of I, is mostly

erally do not vary by orders of magnitude. In terms of
Eq. (37), F, and F2 are given by the following expres-
sions:

b
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O
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FICx. 4. The asymptotic parameters of model II plotted as a function of porosity P. (a) ~0/a~. (b) C, /a . (c) A/a. (d) a. At

/ =0.035 the pore spaces become disconnected.
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below 0.75. In contrast to F„the expression for F2, Eq.
(38b), is noted to contain the averages of the cross-
sectional areas as well as the shape constants. However,
all the averages involve S raised to a negatiUe power.
This is significant because if S were constant, then
F2=(2D/C A)' =&8=2.83 for cylindrical tubes, but
if S has very large variations, then (S "}=S,h", where
S,h is the area of the throat, i.e., the region of the smallest
cross section, and F2 would again be close to &8. There-
fore, from interpolation between these two extreme limits
we conclude that F2 is also nearly constant. Similar
reasoning shows that A, Eq. (37c), should be interpreted
as a volume-to-surface ratio for the throat region instead
as an average for the entire pore space. The above line of
argument clearly demonstrates that while the magnitudes
of Kp, C, , and e are determined by more than just the
throat area, yet in the scaled variables K and co, the func-

tion K(co) is dominated by the throat. Therefore, if the
throat region is straight-tube-like, then K(co) should ex-
hibit scaling behavior in the intermediate frequency range
as well. It follows that the criterion for the validity of the
scaling behavior is for the throat region of the pore space
to be straight-tube-like, defined more precisely as
dS/dz =0, where z is the normal distance away from the
throat. This simple geometrical interpretation of the
scaling behavior is noted to be self-consistent in the sense
that the criterion of dS/dz =0 is a requirement for Eq.
(36a) to be a reasonable approximation in the first place.
A situation that would clearly violate this condition is
where S(z) varies extremely fast as one moves away from
the throat, e.g. , two pores connected by a small hole
made in a thin sheet. In fact, for model III the throat
area has dS/dz%0, and we can clearly see the deviations
form the scaling behavior for the two lowest-porosity
cases where the throat size becomes small and the F„F2
values deviate significantly from 0.75 and &8.

To summarize, the main conclusion of this section is
that the transformation of the variables K=~/~o and
co=co/coo results in a function K(co) which is throat dom-
inated. If the throat region of the pore space satisfies the
criterion of dS/dz =0, then scaling behavior is expected
to hold and Kp and cop are the only two pieces of
geometric information obtainable from the unscaled x.(co)
function. However, if dS/dz is finite and large at the
throat, then scaling breaks down and the deviation of
ii(co) from the cylindrical-tube behavior is an indication
of how acute the knife edge is that defines the throat.

1O-'
10 4

10 '

10 '—
E

10 3—

1O4

V. RANDOM MEDIA SIMULATION AND
CRITICAL-PATH INTERPRETATION OF RESULTS

The knowledge about the unit-cell behavior in the
periodic porous models provides a basis for simulating
the behavior of random porous media. The question we
would like to answer is the following: Can the scaling be-
havior, if it exists for each unit, be preserved in a random
system comprising of a network of permeable elements,
each characterized by two parameters Kp arid cop random-
ly sampled from their respective distribution functions?
To this end we have considered a simple-cubic lattice
made from random permeable bonds. By using exponen-
tial, flat, and log-normal distributions for the parameters
Ko and coo, and then deducing the value of a(co) for each
bond ij (between nearest-neighbor nodes i and j) by

n
1O-4

I

10 2 102 104
a;~ (co ) =&co(ij )k(co/ceo(ij ) }

- FIG. 5. (a) The real part, and (b) the imaginary part, of the
scaled dynamic permeability R(Q). The model parameters from
which the data are generated can be found in Table I. All ex-
cept the two lowest-porosity cases of model III are plotted in
the open square (H) symbol. The two lowest-porosity cases of
model III are shown in the cross (+) symbol. It is seen that all
except the two cases of model III lie on the same curve. The
two exceptions both have small pore throats defined by sharp
knife edges. The physical reasons for the scaling behavior and
the deviation from it are discussed in the text.

[where the analytic cylindrical-tube solution is used for
R(co)], we have solved essentially the Kirchhoff equations
on 9X9X9 lattices. The results are shown in Fig. 6. The
scaling is generally excellent except for the small
differences in the low-frequency imaginary part and the
high-frequency real part. These differences are explain-
able in terms of the critical-path argument as shown
below. Compared with the cylindrical-tube solution, it is
noted that the random porous media generally have a
somewhat broader transition region for Fc(co).

What can be the reason for the scaling behavior in ran-
dom systems'? Of course, if the distributions of the pa-
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10 '

the C& coefticient of the overall system is expressible as
the average of the individual C&'s:

(39a)

10

where we have taken ao(ij. )IP =~, /P from the critical-
path argument and noted that F, is a constant for every
permeable bond. If now we define

10-'
10 4

I

10 102 104

2a,K,

(c, )y

as a new constant for the system, we get the relation

(39b)

FIG. 6. Scaled dynamic permeabilities of 9X9X9 networks
of random permeable bonds plotted as a function of scaled fre-
quency. Data for the real part are shown as, the imaginary
part as +. The three cases represent (1) uniform distributions
of Ko( ij) and coo(ij ) in the interval (0,[1],(2) exponential distribu-
tions exP( —mx)/m with m = 1 for Kp(ij) and m =0.5 for cop(ij),
and (3) log-normal distributions exp[ —(1nx —p, ) /2cr']/
o.x&2m with @=3, o.=0.5 for Kp(ij) and @=0.3, o.= 1.5 for
~p(ij). The tube solution is shown by the dashed lines. The
slight differences in the low-frequency imaginary parts and the
high-frequency real parts reAect the difFerences in the constants
F& and F2 as explained in the text.

rameters are sharply peaked, one would expect the
overall system behavior to be similar to that of the indivi-
dual elements. On the other hand, if the distributions are
broad, we expect the critical path to dominate. That is, if
we regard two nearest-neighbor nodes ij of our network
to be connected if their ao(ij)) ab, then the overall per-
meability of the system is expected to be dominated by
Kg =K at which the connected nodes form an infinite net-
work. This argument, originally proposed by Ambegao-
kar, Halperin, and Langer' for the explanation of Mott's
exp[ —(To/T)' ] temperature dependence of the hop-
ping conductivity in disordered semiconductors, was sub-
sequently employed to explain the temperature depen-
dence of the tunneling conductivity in a variety of inho-
mogeneous systems, ' as well as the permeability-
formation factor correlation in sedimentary rocks. ' By
using this picture it becomes clear that the static perrnea-
bility is dominated by a few key linkages in the critical-
path network. Since, by definition, these key linkages
have to be )x, (co=0) but yet not ))a, (since otherwise
the critical path would be formed at a Ir,

' ) a., ), it follows
that they must have a relatively narrow distribution in
their Ko values. At high frequencies, a similar argument
would imply a narrow distribution of the a values for a
difFerent set of the critical linkages. The, K„a, would
therefore be the two scaling parameters for the system,
and the magnitude of ~(co) is expected to follow the scal-
ing behavior. For the phase, the imaginary part of a(co)
at low frequencies is always a small fraction of the static
permeability Ko. Therefore, either serial or parallel con-
nection of the critical a,.j(to)'s would result in the arith-
metic addition of their imaginary parts. ' That means

a,
F&

( )
F& (39c)

by treating P as a constant. That is, to the extent that a,
deviates from (a), the constant F, of the random system
would depart from the F& value of the individual ele-
ments. At high frequencies the real part of a(co) plays the
similar role as the imaginary part at low frequencies.
Therefore,

(~&=S,a!"( Ko
1/2

)

where it is now the e that is determined by the critical
path, and K ' is averaged. By defining

(A)'y2—
cKc

(40b)

we get

F2=
( 1/2)

1/2 2
Kc

(40c)

where P is again taken to be constant.
The above discussion shows that the random systems

should exhibit scaling behavior' but with modified
values for F, and F2. That means samples with the same
distributions of coo(ij ) and ~o(ij ) should have the same
R(co), but samples with different distributions of coo(ij )

and ~o(ij ) can differ slightly in their F, and F2 values as
seen in Fig. 6. This generalization has immediate impli-
cations for the explanation of observed correlations in
sedimentary rocks. For example, the product of the stat-
ic permeability and the formation factor can be expressed
as

K,a,
FI2

2

(41)

from Eq. (40b). By noting from Eq. (37c) that A is ex-
pressible in terms of (S "), we see that A is a volume-
to-surface ratio for the throat region, in agreement with
the conclusion of Katz and Thompson. ' Similarly, the
noted near constancy of F2 in a variety of rocks may be
interpreted as an indication that the condition for the va-
lidity of the scaling behavior is indeed satisfied in a plu-
rality of naturally occurring porous materials.
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In order to explicitly verify our scaling prediction, ex-
perimental measurements of a(co) have been performed
on fused-glass beads and crushed-glass samples. Excel-
lent agreement with the theory was found. We therefore
conclude that the scaling behavior may be regarded as
generally valid, with the static permeability and the
characteristic rollover frequency as the two geometric pa-
rameters characterizing the medium. Provided the
values of the two constants F& and F2 are known, the
knowledge of any two of the four asymptotic parameters
would therefore be sufficient to deduce the values of the
other two. That means if the tortuosity is determined
from the dc electrical formation factor and A is estimated
from volume-to-surface ratio, then Kp and C& may be in-
ferred with reasonable accuracy.

VI. CONCLUDING REMARKS

geometry, the problem becomes nontrivial, and its solu-
tion will be reported elsewhere. Another possible compli-
cation is the large Reynold's number that can result from
large pressure gradients. One would then be forced to
employ the full Navier-Stokes equation in the calculation
of x(co), and a whole new set of characteristics is expect-
ed. However, in our view the most intriguing topic for
future research lies in the regime where the pore size be-
comes comparable to the size of Quid molecules so that
the Quid can no longer be treated as a continuum. Due to
the widespread use of molecular sieves (such as zeolites)
in chemical industries, such porous materials are no
longer just laboratory curiosities. However, the theoreti-
cal study of their permeability behavior is expected to re-
quire the development of new theoretical techniques,
which is a problem presently under further consideration.

As we have made clear in Sec. II, a crucial assumption
that underlies our results is that the sound wavelength
k-I. =~cp &)a. At extremely high frequencies, this as-
sumption breaks down and one has to take into account
the compressibility of the Quid. Even in the simple tube
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