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First-principles calculation of crystal-field parameters in Nd~Fe, 48
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A new approach to calculating the crystal-field parameters in a perfect crystal based on real-space
charge distribution from energy-band calculations is formulated. The contribution from the
charges in the vicinity of the ion is evaluated numerically using a method of successive least-squares

fitting. The contribution from other ion sites is approximated by a point-charge model, but with

effective ionic charges obtained from the band calculation. The method is applied to the Nd2Fe&4B

permanent magnet. The crystal-field parameters up to sixth order are calculated for the Nd site.
The results are in good agreement with experimental analysis and are qualitatively different from
the existing theoretical values based purely on a point-charge model.

I. INTRODUCTION

It is well known that the crystalline electric field (CEF)
is of great importance in explaining almost all observed
properties related to local electrons in a solid, such as
magnetic resonance, magnetic structure, Mossbauer
effect, etc. Although the formalism of CEF has been
widely accepted, there is still a long-existing weak point
in the theory pertaining to the calculation of crystal-field
parameters (CFP). Historically, the first attempts were
made by using a point-charge model (PCM), ' which had
attracted a great deal of interest because of its extraordi-
nary simplicity. The PCM is by no means an exact
theory, however, as it depends essentially on some arbi-
trary assumptions. In performing a PCM calculation for
a specific system, one usually assigns a value for the
effective ionic charge to each ion in the crystal without
justification. The assignment of an effective ionic charge
is subject only to some weak constraints such as electric
charge neutrality; hence the actual values of the
effective charge used become quite arbitrary. Besides, the
CFP's obtained from a PCM calculation are generally far
from those expected from experimental analysis. In
some cases, the calculated values differ from the experi-
mental ones by an order of magnitude. It then becomes
necessary to attempt other remedial procedures in order
to bring the calculated values closer to the experimental
ones. The simplest way is to introduce a factor of less
than unity and call it a "screening factor. " Burns sug-
gested screening factors of 0.5, 0.1, and 0.05 for the
second-, fourth-, and sixth-order field terms of rare-earth
ions, respectively, based on empirical data. But the
"screening factors" are rather ad hoc entities and cannot
be made universal. In spite of these drawbacks, PCM is
still the prime method for calculating CFP. This is not
desirable because it does not reAect the realistic charge-
density distribution of an environment.

In the late sixties, one step further was taken in the
study of the crystal field. The effects of covalent bonding
between neighboring atoms on the CEF were investigat-
ed. ' The energy-level splittings due to the crystal Geld
were corrected by an inclusion of the covalency and

charge overlap between local electrons and those in the
outer shells. These studies had exposed some other
shortcoming inherent to the PCM. In that approach, the
environmental charges are always assumed to stay out-
side the region over which local electrons distribute,
while the covalency itself means the environmental
charges can penetrate into the local region. The covalen-
cy effect cannot be easily accounted for without some
fundamental revision of the theory. These investigations
did add something new to the theory of the crystal field
in addition to the PCM, but there is still no systematic
approach to calculate CFP realistically.

In 1979, Schmidt derived an expression for the direct
Coulombic contribution of conduction electrons to the
CEF in cubic rare-earth intermetallics. ' He attempted a
CEF calculation based on the charge distribution from
the Bloch functions obtained from angumented plane-
wave method (APW) band calculations. He even went
further and calculated the effect of exchange interaction
from the conduction electrons. " The discussion of ex-
change interaction is totally beyond the crystal-field for-
malism, because it does not have a static electric origin.
Schmidt's attempt is important because it relates the
CEF to the electronic energy bands in solids. The con-
cept of CEF is physically a simple one, but to formulate it
from first principles and put it into a computationally
tractable form is a nontrivial task.

In recent years, band-structure calculations based on
local-density-functional theory' ' have advanced to a
highly sophisticated form so that many ground-state
properties of simple solids can be accurately predicted. '

The valence-electron charge-density distribution obtained
from such calculations is usually of sufficient accuracy
that they can be used to evaluate other properties from
first principles. In this paper, we present a numerical
scheme to calculate CFP of a NdzFe&4B permanent mag-
net based on realistic energy bands. Our approach
differs from Schmidt's in that our numerical procedure is
not limited to a specific method of band-structure calcu-
lation and is therefore universal. This is because the
charge density of valence electrons can always be con-
structed from Bloch functions obtained by any method of
band-structure calculation.
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Our choice of NdzFei48 as a prototype material for
this study warrants some comment. Most investigations
on the CEF focus on systems involving some impurity
atoms in a host crystal such as transition-metal or rare-
earth elements in a typical ionic solid. In such systems,
the charge density is determined not only by the energy
bands of the host crystal, but also the wave functions of
the impurity states. Calculation of impurity states is,
generally speaking, more difBcult and less accurate than
the band structure itself because of the highly localized
nature of the impurity wave function and the complica-
tion involving impurity-impurity interaction. To avoid
this dif6culty, we confine ourselves to the study of CEF of
a perfect crystal. On the other hand, the crystal field of
the material must be experimentally well investigated
such that a meaningful comparison with calculated CFP
can be made.

In recent years, Nd2Fe&48 has received world-wide at-
tention because of its extraordinary properties as a high-
performance permanent magnet. ' CEF in Nd2Fe&48 is
considered to play a pivotal role in determining many of
its unique magnetic properties. There are abundant
theoretical evaluations ' ' and experimental mea-
surements' ' ' available with somewhat convicting
data among different groups. Lastly, Gu and Ching have
recently reported the first realistic calculation of energy
bands in Nd2Fe&48 and related compounds. It is only
natural to extend such investigations on Nd2Fe&48 to in-
cluding a calculation of CEF using the wave functions
from the band structure. Some preliminary results have
been presented earlier.

The organization of this paper is as fo11ows: In Sec. II,
we redefine the CFP so as to take into account the effect
of penetration of environmental charges into the 1ocal re-
gion. In Sec. III, we outline the procedures for calculat-
ing the contributions from two different space regions:
the first from the charges on other sites and the second
from those in the local region surrounding the ion. The
approximations involved in the numerica1 evaluation are
discussed. In Sec. IV, we present our results of CFP at
the Nd sites in Nd2Fe&48 and compare them with several
experimental measurements and analysis. Some conclud-
ing remarks are given in the last section.

II. THE DEFINITION OF CRYSTAL-FIELD
PARAMETERS

The CEF due to the environmental charges p(R) as
seen by a local electron is defined as

where (r, e, p) represent the coordinates of the local elec-
tron, and R describes the environment which gives rise to
the field The integral in. (1) extends over the whole crys-
tal and the environmental charge density is given by

p=pc pa ~

where p, is the electric charge density in the crystal,
whereas p, is the charge density of the free atom corre-

sponding to the ion at the site where the crystal field is
taken.

In the usual treatment of crystal fie1d theory, the
Legendre polynomials are used to expand the factor
1/lr —Rl and the environmental charges are always as-
sumed to be outside the region where the local electrons
distribute. With this assumption, the integration in (1)
must be carried out under the condition r &R; thus the
ambiguity in the Legendre polynomial expansion as to
whether r &R or r)R is removed. This leads to the
following expression of crystal field:

V=BzoOzo+BzzOzz+B&o04o+ +B66066 . (3)

The Bzo B22 B40,B66 are known as crystal field pa-
rameters and 0„,the Stevens operators. In the PCM,
the integral in (1) is reduced to a lattice summation and
CFP can be explicitly written as follows

(4)

Here 0& is the Stevens factor, A„ is a numerical factor
which appears in front of the bracket of tesseral harmon-
ics as defined in Ref. 1, so in our notation y„A„ in (4)
is equal to A„ in Ref. 1. (r") is the radial average of r",
and

2n +1,. i
R"+

represents a lattice summation in which Z„(e,@)

stands for the tesseral harmonics, and q,- is the effective
ionic charge on each site. The expression (4) is exactly
the same as defined by Hutchings. '

Although it is difficult to give a precise description to
the charge penetration in CEF theory as mentioned
earlier, one can certainly refine the definition of CFP by
partially taking this effect into account. This can be done
without much complication if one starts with the distri-
bution of the real environmental charge density. In prin-
ciple, the charge penetration brings about changes both
in Coulornbic and exchange interactions. The latter is to-
tally beyond the CEF theory and will not be addressed.
For a proper modification of the Coulombic field, all we
need to do is remove the condition r & R in the expansion
of (1). At first sight, this may lead to the invalidation of
the definition of CFP, because of the ambiguity as to
whether we should take r" or r " ' to be averaged in
Eq. (4). Here we shall suggest a simplification which al-
lows us to evaluate the change in Coulombic field approx-
imately while keeping the traditional formalism of CEF
theory intact.

The local electrons, such as the f electrons in a rare-
earth element, usually have a maximum in their radial
distribution of charge density. We may introduce the
concept of an average orbital radius (r ) and approxi-
mate the charge density of local electrons as distributing
on a spherical surface of radius (r). With this radius
(r ), the environmental charges are either outside or in-
side this sphere. Their Coulombic potential can be easily
written as the sum of two different integrals. The CFP is
now redefined by adding these two contributions, one
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from the charge density inside the sphere which
represents the penetrating electrons, and the other from
outside the sphere:

B„=O (r")y„A„ if R ) (r ),
=0, (r-"-')y„W„ if R &(r),

y„=— J +, Z„(6,@)d~ if R ) (r), (8)nm 2n +] ~n+1 nm

y„=— fR "p(R)Z„(6,@)dr if R ((r), (9)
2n +1

where d r =R dR sin6d 6 d @. For Nd in N12Fe&&B, ( r )
is the average radius of the localized 4f electrons of the
Nd atom. All the symbols used in this modified definition
of CFP are the same as in the PCM.

Even though our assumption on the local electron dis-
tribution is oversimplified, we still expect the new
definition to be an improvement over the original one.
The original definition of CFP, which coincides with the
integral (8), should account for the main part of the CFP
because the integral covers a much larger space of the
charge distribution, but the integral (9) does bring about
appreciable addition in the region inside the sphere of lo-
cal electrons. In the case of rare-earth element, the aver-
age radius ( r ) is actually very small (0.6187 A in our cal-
culation), the improvement by integral (9) is comparably
unimportant. But for a strongly covalent system, the
contribution from integral (9) will be much larger. How-
ever, in that case, some additional modifications may be-
come necessary because the covalency affects not only the
Coulombic interaction, but also the exchange interaction
as well.

III. THE CALCULATION OF CRYSTAL-FIELD
PARAMETERS

Based on the new definition of CFP described above,
the main task for calculating the CFP boils down to the
evaluation of the integral over the whole crystal. This is
a rather formidable task even for a simple crystal, be-
cause the distribution of charge density in the real space
has to be constructed from the wave functions obtained
from band structure calculations. For Nd2Fe&4B, the
crystal structure is extremely complicated with 68 atoms
of three different kinds in a low-symmetry tetragonal unit
cell. Numerical integration over the entire crystal is
not practical and some approximations must be intro-
duced to reduce the calculation to a manageable level.

Our first approximation is to reduce the domain of in-
tegration so as to make the calculation practical. The en-
vironmental charge is determined by the difference be-
tween the crystal and the free atom charge densities, of
which the crystal charge density p, is more diFicult to
determine accurately. In general, p, consists of two
parts: (1) all core charges including the nuclei, which can
be considered as point charges; (2) valence electrons, the
spatial distribution of which is determined by the energy
band structure. It should be pointed out that p,
represents the whole electric charge distribution in a
crystal. For metals, the valence electrons are also the

Free Atom Charge Density

I
I

I I

I

Charge Density at Distance Charge Density at Distance
Charge Density in Neighborhood

FIG. 1. Sketch of environmental charge distribution near the
ion site and on the other sites.

conduction electrons. Once the p, is properly construct-
ed, the so called "screening" effect by the conduction
electrons is automatically taken into account.

In most crystals, the distribution of the valence charge
around a core is almost spherically symmetric, especially
when viewed from a distance. This suggests an idea that
we should draw a distinction between the environmental
charges which are in the vicinity of the ion under con-
sideration and those on other sites. Figure 1 depicts
schematically such a distinction. One can deal with these
two parts of charge density separately by different arith-
metics. The criterion for the division of these two types
of charge will be made clear later. We shall now discuss
the contributions from these two regions to CFP in more
detail.

A. Contributions from charge density
at distance (PCM calculation)

For charge density on other sites, we combine the core
and valence electrons surrounding it into an effective ion-
ic charge which is approximated as a point charge. This
is valid because the potential of a spherically symmetric
charge distribution is the same as that due to a point
charge when viewed from a distance. This means the
PCM is still applicable for this part of environmental
charge. In order to assign a value to each of these point
charges, we make use of the site-decomposed Mulliken
charges as obtained from the band-structure calcula-
tion. These numbers can be considered as the valence
electrons at each lattice site. So the effective ionic
charges in our calculation are

Q*=Q +Q, (10)

where Q represents the site-decomposed Mulliken
charge and Q, is the core charge including both core
electrons and the nuclei. It must be emphasized that the
effective ionic charges in (10) are realistic quantities ob-
tained from first-principles band-structure calculation.
This is in sharp contrast to the usual PCM calculations in
which effective ionic charges are arbitrarily assumed pa-
rameters.

Table I lists the effective ionic charges on all sites in
Nd2Fe&4B, taken from Ref. 23. For comparison, the as-
sumed values used in some PCM calculations ' for
Nd2Fe&48 are also listed. We have carried out a PCM
calculation for NdzFe&4B using the effective ionic charges
listed in Table I. The lattice summation extends to all
ionic sites within a spherical region of radius 60 A and a
good convergence is obtained. The result of this calcula-
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TABLE I. The effective ionic charges in Nd2Fe&4B used for CFP calculation using PCM.

Site
Nd

g
Fe
e

Fe
C

Fe
J&

Fe
Jz

Fe
ki

Fe
k2

8
forg

Present' 1.65, 1.73 —0.14 0.73 —0.24 1.39 —0.47 —0.51 —2.38
Ref. 2 +3 +3 —9/14 —9/14 —9/14 —9/14 —9/14 —9/14 +3
Ref. 18 +3 +3 —0.5 —0.5 —0.5 —0.5 —0.5 —0.5 + 1

'From band-structure calculation of Ref. 23.

Sites

TABLE II. Contribution to CFP from charge density at distance using a PCM.

(a) Second-order field terms in unit of K
Boo

Present work
Ref. 2
Ref. 18

6.54
—29.60
—21.85

9.08
—28.34
—18.54

—19.00
32.61
14.37

5.75
—40.96
—25.61

{b) Fourth-order field terms in unit of 10 K
&4O &4Z &44

Present work

Ref. 2

Ref. 18

1.00
1.06
1.85
1.72
1.265
1.103

4.04
—3.89
—4.69

3.64
—1.902
—1.993

4.62
—4.21
—9.09

6.20
—3.775
—3.537

(c) Sixth-order 6eld terms in unit of 10 ' K
&6O &62 &64

Present work

Ref. 2

Ref. 18

0.06
0.05

—1.05
—0.923
0.088

—0.075

—0.30
—0.10

0.322
—0.212

—0.49
0.18
0.069

—0.061
1.031

—0.927

—0.18
0.14

—3.549
0.530

TABLE III. Radial averages ( r") for 4f atomic wave function of Nd.

Present work
Ref. 32
Ref. 28

0.848 94
1.040 25
1.001

1.818 36
2.122 98
2.401

9.710 13
6.595 47

12.396

1.515 91
1.366 99

7.242 19
5.450 78
6.03

107.911 36
61.697 36
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tion represents, in our formalism, the partial contribution
to CFP from the charge density on other sites. But in the
usual PCM calculations, the lattice summation will con-
stitute the total contribution to CFP from the environ-
mental charges. It is, therefore, instructive to compare
our partial results with some typical PCM calculations '
for the same system. This is done in Table II where the
CFP up to the sixth-order terms for both f and g sites of
Nd ion are compared.

It should be pointed out that in the PCM calculation of
Table II, we used a set of radial averages of r, r, r
which are somewhat different from those given by Ref. 28
(see Table III). The latter are more commonly used in
the conventional CFP calculation. The reason for using
different (r") values will be explained later. Here it
suSces to say that in a test calculation, we used the same
(r") values as in Ref. 28 and the same eff'ective ionic
charges as in Ref. 2 and had reproduced exactly the same
results of Ref. 2.

As can be seen from Table II, the obvious features of
our results in comparison with the existing ones are (1)
the second order CFP, 82o and Bz2 which are the most
important, are much smaller; (2) the signs of these two
parameters are opposite to the existing results. These
features are remarkable but not surprising, because the
effective ionic charges we used were quite different. To
understand these differences in more detail, we show in
Fig. 2 the nearest neighbors of Nd in the basal plane of
the tetragonal crystal together with the assumed ionic
charges. The other neighboring sites (Fe) are omitted be-
cause they are less important in determining the CFP on
the Nd site. This is because all iron sites have much
smaller efFective ionic charges (see Table I) and are rela-
tively further away from the Nd sites. It is clear from

Fig. 2 that all positive ionic charges in our calculation are
smaller than the values assumed in the existing PCM cal-
culation. Of particular importance is the 8 site where the
sign of the effective charge is opposite. We have B site as
an anion based on the charge analysis from the band
structure calculation, while the existing calculations as-
sume 8 to be a cation! The nature of ionic character of 8
in intermetallic compounds is a subject of considerable
controversy. From the energy band calculation, the 8 2s,
8 2p states lie at about 6—10 eV below the Fermi level
and this was confirmed by photoemission experiment.
The low-lying 8 2s, 8 2p states indicate that 8 must be an
electron acceptor (anion) in Nd2Fei48 instead of an elec-
tron donor as assumed in the existing PCM calculations
for Nd2Fe, 48.

B. Contributions from p in the neighborhood

The first approximation introduced in Sec. IIIA en-
ables us to avoid the actual integration in core regions of
all other sites where charge density oscillates sharply.
However, the approximation cannot be applied to the
charge density in the vicinity of the ion. On the contrary,
the contribution from this part of the environmental
charges to CFP is more cumbersome to evaluate. Be-
cause the region of interest is now in the neighborhood of
the ion, the results will be sensitive to the detailed distri-
bution of the charge density. We must carry out the in-
tegration as accurately as possible. Nevertheless, this
time the integration domain is considerably reduced and
only one core region at the center is left. For materials
with a simple band structure, it might be possible to per-
form a three-dimensional integration by numerical
method. But in the case of Nd2Fe, 48, the Bloch wave
functions are rather complicated and some further ap-
proximations are needed to simplify the calculation.

We first expand the charge distribution p in terms of
tesseral harmonics:

~+t 73
' ~.(+3)

+1.65@)
(+3) .

+1.73 '.
(+3)

—238 ~(+3)
. +3.73

(+3)

'~'+1.73
(+3)

( in basal plane )

Q Nd (f-site)

Q Nd (9-site)

FIG. 2. The effective ionic charges of nearest neighbors of
Nd in the basal plane of Nd2Fe&48. (Boron ion is an anion, not
a cation).

p(R)=p (R)+p (R)Z (6,@)+ . +p66(R)Z66(6, 4) .

Here po(R), pzo(R), . . . , p66(R) are the "expansion
coef6cients" which are assumed to be spherically sym-
metric. (This means all angular dependence of the charge
density is absorbed into the tesseral harmonics. ) Insert-
ing expression (11) into the expressions for y„ in Eq. (8)
and Eq. (9), the integration for the angular part can be
easily carried out due to the orthogonality of tesseral har-
monics. We are left with only a one-dimensional integral
in E which is much easier to compute numerically. Us-
ing this approach, the calculation of the contribution to
CFP from the charge density in the vicinity of the on-site
is considerably simplified.

The first term in the expansion (11), which is spherical-
ly symmetric, does not contribute to the crystal field. It
only affects the Madelung potential of the crystal and
therefore can be ignored. The question now is how to
carry out the expansion (11). We have devised a numeri-
cal scheme which consists of successive applications of
least-squares fitting of a sampled charge distribution in
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the real space. We start with a small sphere of radius Ro
around the ion and sampling p(R) on it by numerically
calculating p(R) from the Bloch wave functions g„k ob-
tained from the energy band calculation:

n, k

(12)

The summation over n is for all occupied bands and the
summation over k space is approximated by a weighted
sum of wave functions at 6 high-symmetry k points in the
irreducible part of the Brillouin zone. A least squares
fitting to the calculated data sample yields the "expansion
coefficients" po(R o ), p2o(Ro ) . ~ ~ p66(Ro ). The pro-
cedure is repeated on the next sphere with radius
R

&

=R o +6R, where 6R is a small increment determined
by the desired accuracy of the calculation. By successive
application of the same procedure, we obtain all the "ex-
pansion coefficients" p„(R, ) as a function of the sphere
radius R, in a numerical form. R; stops at a cutoff value

R, which defines the boundary between the charge densi-
ty in the vicinity of the ion and those on other sites.
Since Nd is a cation, whether it is on the f site or on the
g site, there must be some net positive charges in its re-
gion. By sampling p on successive shells of spheres, we
can evaluate the total charge in the neighborhood of the
ion within the sphere of a given radius. As the radius be-
comes larger, there will be a maximum of accumulated
positive charge at a certain radius after which the accu-
mulated positive charge starts to decrease. This is illus-
trated in Fig. 3. We take the hypothesis that R, should
be the radius at which the accumulated positive charge is
equal to the effective ionic charge obtained from the site
decomposition of the Mulliken charges. The correspond-
ing radius is then the ionic radius. We have determined
R, for Nd ion in our calculation to be 1.52 A for both f
and g sites and this value is clearly compatible with the
usual ionic radius for rare earth elements. The cutoff ra-
dius R, depends somewhat on the free-atom wave func-
tions used to obtain p„but has little effect on the angular
distribution of the charge density because the free-atom
wave functions are spherically symmetric. This means
that the major effect of different choices of free-atom
wave function on the CFP calculation is the somewhat
different values of R, which defines the domain of in-
tegration for the contribution from the charge density in
the vicinity of the on site. Since the integration must be
done as accurately as possible, the choice of free-atom
wave functions is a matter of considerable importance.
At first sight, one might think of using some existing
self-consistent atomic calculations, such as those by Her-
mann and Skillman, Clementi and Toetti, ' or Huzina-
ga. There are some differences in charge densities de-
rived from these calculations mainly because different or-
bitals were employed in the basis expansion. Generally
speaking, calculations with Slater-type orbitals are more
accurate. However, in the present case, the most impor-
tant thing is to use atomic wave functions which are com-
patible with those used in the band-structure calculation.
In Ref. 23, the Bloch functions were constructed from
atomiclike wave functions by the method of contraction

M AX I MU IVI

EFFECT IVE I QNI C
CHARGE

ACCUMULATED POSIT IVE

CHARGE

;Rc

NET NEGATIVE

NET P

U0
z0
CQ

CC

(0
FREE ATQM

FIG. 3. Accumulated positive ionic charge as a function of
radius of the sphere around a Nd site. Note the maximum
occurs before the cutoff R, where the accumulated positive ion-
ic charge is equal to the effective ionic charge obtained from site
decomposition of Mulliken charges.

over a set of individual Gaussian-type orbitals. In order
to be consistent, we used the same set of Gaussian orbit-
als to contract our free atomic wave functions as in the
orthogonalized linear combination of atomic orbitals
(OLCAO) band structure calculation. These atomic
wave functions are usually more short-ranged than those
from the usual atomic calculations. To keep the entire
calculation internally consistent, we have also used the
same contracted free atomic wave functions to evaluate
the radial average of r" or r " ' involved in the expres-
sions (6) and (7) for CFP. The computation of radial
averages is simple and straightforward but the results are
slightly different from those of Freeman and Watson
which are more commonly used in crystal field calcula-
tion. Table III lists our radial averages and those from
Ref. 28 for comparison.

The expansion (11) of p(R) by means of successive
least-squares fitting deserves some further comments.
The method does not provide an exact expansion of
charge density p(R) in tesseral harmonics in analytic
form, instead, all coefficients p„(R) are obtained in the
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TABLE IV. Contribution to CFP from charge density in the neighborhood as a function of sampling
points.

Number of
points f site g site

(a) Second-order field terms in unit of K
Bzo

f site
B2z

g site

240
308
380
462

—10.41
—9.91

—10.24
—10.68

—12.19
—11.67
—11.98
—11.89

17.25
17.48
17.31
18.15

—4.46
—4.54
—4.48
—4.49

Number of
points f site g site f site g site f site

(b) Fourth-order field terms in unit of 10 K
B42

g site

240
308
380
462

1.16
0.97
1.19
1.27

0.73
0.70
0.78
0.78

8.92
9.04
8.95
9.40

—2.45
—2.41
—2.37
—2.46

—2.73
—2.81
—2.74
—2.91

2.28
2.31
2.29
2.29

Number of
points f site g site f site g site f site g site

(c) Sixth-order field terms in unit of 10 ' K
B6o B64

f site g site

240
308
380
462

—26.88
—28.63
—19.67
—17.62

—11.0
—11.6
—4.30
—2.55

307.0
314.5
313.2
325.7

84.78
86.29
87.48
88.10

—22.11
—22.96
—22.52
—24.20

—70.00
—70.91
—69.84
—70.02

—19.98
—20.45
—20.16
—21.25

—241.1
—244.4
—241.7
—242.0

numerical form. p(R) should be a continuous function of
R, as should be all coefficients p„(R). We have checked
the continuity of p„(R) and found it to be satisfactory
for the whole range 0&R (R, .

It is important to realize that the charge distribution in
the vicinity of the on-site ion is highly nonuniform. A
large number of sampling points are usually required in
the least squares fitting procedure in order to accurately
mimic the angular dependence of the tesseral harmonics.
On the other hand, the computational time increases rap-
idly as the number of sampling points X is increased. We
have tested our CFP calculation on both f and g sites
with increasing N per sphere and the results are listed in
Table IV. It appears that a reasonably good convergency
has been obtained for all CFP with X over 400. It is
desirable to increase X even further for better conver-
gence, but this will result in a tremendous increase in the
computer time needed as to be impractical.

TABLE V. Final results of CFP of Nd sites in Nd2Fe&4B.

Sites
(a) Second-order field terms in unit of K

Bzo B22 B2

zation and Mossbauer measurements. From the analysis
of the magnetic structure of Nd2Fe&48, Parker has ob-
tained a value of —1.93 K for B20 on both f and g sites. '

Recent work by Cadogan et al. gives a value of —2.2 K
for the same parameter. ' Besides, Radwanski and
Franse, in a systematic analysis of crystal field of rare-
earth —transition-metal —boron compounds, estimated B

34 20
to be about —2.0K. Thus the values for B20 from mag-
netic structure analysis are quite close to each other. On
the other hand, data deduced from Mossbauer rneasure-
rnents estimate the B20 value to be —4. 87 K and —4.94
K for f and g sites, respectively. ' It should be noted
that these numbers are the scaled values from those ob-
tained in the Mossbauer study of Gd2Fe&4B by Boge

IV. RESULTS AND DISCUSSIONS 3077
—2.85

0.75
0.67

—1.45
1.26

By adding the contributions from charge density in the
vicinity of the ion and on the other sites, we arrive at the
final results for CFP of Nd in NdzFe, 4B. For the first
contribution, we take an average over all sampling tests
listed in Table IV. This particular procedure has no spe-
cial significance because the values from difFerence tests
are very close. The CFP on both f and g sites up to the
sixth-order terms are summarized in Table V.

The second-order field terms have been estimated by
several experimental groups. ' ' There are two kinds of
measurement which are of particular interest: magneti-

Sites

Sites

2.15
1.81

5.04
6.31

1.40
—1.92

(c) Sixth-order field terms in unit of 10 ' K
B6o B62 B64

—17.56
—2.50

314.8
86.56

—23.44
—69.99

—20.62
—242.2

(b) Fourth-order field terms in unit of 10 K
B~o B42 B44
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et al. ' Our calculated values for 8z„—3.77 K and
—2. 85 K for f and g sites, are in very good agreement
with these experimental values. They are certainly much
better than the existing PC calculation ' ' which gave
values a factor of 10 to 20 larger than the experimental
estimates.

For the parameter 82z, the magnetization curve
analysis gives values of +1.4 K and +4.3 K for f and g
sites respectively', while the Mossbauer experiments give
+3.21 K and +9.70 K for the corresponding sites. ' Our
calculated values of B2z for f and g sites are of the order
1 K, in rough agreement with the experimental values
and are much smaller than those obtained from PCM cal-
culation. '

The fourth-order field terms are generally less reliable
than the second-order ones. Parker gave an estimate of
0.025 K for 840 which is close to our calculated value of
0.0215 K. cadogan et al. estimate 840 to be 1.23 and
1.07X10 K and 844 to be —3.67 and 3.44X10 K
for f and g sites, respectively, ' from magnetization curve
analysis. These are of the same order of magnitudes as
our calculated values.

There are no experimental data on the sixth-order field
terms, except Cadogan et al. ' estimated 860 to be
1.25X10 K and 864 to be 18.94 and 7.22X10 K for
both f and g sites, respectively. In fact, as pointed out by
Schmidt, ' the calculation for the sixth-order field terms
using PCM is quite meaningless because the spatial pat-
terns of the sixth-order tesseral harmonics are so compli-
cated that their behavior can hardly be described by a
limited number of neighboring sites (the number is limit-
ed by the convergence of the lattice summation). One
can see from Tables IV and V that the contributions to
the sixth-order field terms are mainly from the charge
density in the vicinity of the on-site and they are of the
same order of magnitude as the data extracted from ex-
perimental analysis. This clearly indicates that the PCM,
which accounts only for the contribution from the charge
density at sites away from the on site can lead to gross er-
ror in the sixth-order CFP.

The main evidence that our calculation of CFP in
NdzFe, 48 is successful is the good agreement on the
second order field terms. We note that the signs of these
terms in our final result are opposite to those in Table III,
calculated with PCM, but using more realistic effective
ionic charges. This implies that there is a competition
between contributions to CFP from charge densities in
the vicinity of the on site and those from other sites. In
fact, the opposite results of Table III is mainly due to
negative effective ionic charge of 8, as can be seen from
Fig. 2. By properly taking into account the effect of posi-
tive charges around the Nd cation, not only the signs of
the CFP are reversed, but they also become much closer
to the experimentally estimated values.

We need to emphasize at this point that all experimen-
tal values on CFP are subject to the limitations of the as-
sumed theoretical models based on which the measured
data are analyzed. These theoretical models are usually
oversimplified. For example, it is always assumed' '

that some of the crystal-field terms can be totally ignored

in the analysis of the experimental data Nevertheless
we believe the order of the magnitude for CFP from the
experimental analysis should be sufficiently accurate,
especially for the second-order terms. What we try to
emphasize here is that accurate determination of CFP
from first-principles can facilitate experimental analysis
such that more accurate estimations for CFP can be
achieved.

The accuracy of our calculation depends mainly on
two factors. One is related to the accuracy of the band
structure from which the charge density distributon in
crystal is derived. The other is the numerical accuracy
involved in the evaluation of the CFP. It is prudent to
discuss to what exent our results wiH be dependent on the
calculated band structure of Nd2Fe, 48. There are several
aspects that need to be addressed.

First, any band-structure calculation always involves
some sort of approximations. What we need is the elec-
tron wave functions that will provide a reasonably accu-
rate description of the charge density in the crystal. The
band-structure calculated by Gu and Ching can certainly
be improved by iterating the crystal potential to full self-
consistency and by including relativistic correction. But
the major results, especially the site decomposition of the
Mulliken charges, are not expected to change much by
such refinements, since the calculated local spin magnetic
moments on six different Fe sites in NdzFe&4B are in good
agreement with experiments. Therefore we believe the
effective ionic charges used in our CFP calculation are
reasonably accurate values. Another potential source of
error has to do with the charge density in the core region.
Since the band structure calculation of Ref. 22 is based
on the OLCAO method with a minimal basis set ex-
panded in terms of Gaussian-type orbitals. The charge
density distribution may be less accurate in the core re-
gions than in other parts of the crystal. How much the
nature of the basis orbitals may affect the CFP calcula-
tion is difficult to ascertain. Our calculation indicates
that the contribution to the CFP is dominated by the
charge density outside the average radius of local elec-
trons. This is just what we have emphasized earlier in the
modification of the definition of CFP. In fact the second .

integral (9) contributes only about 10' to the CFP. This
is due to the fact that the 4f electrons in Nd are very lo-
calized and the covalency or charge penetration is rela-
tively unimportant although not negligible. Thus, the
specific form of orbitals used to form the basis functions
in the band structure calculation will not significantly
affect the calculated values for the CFP.

Second, the accuracy of the numerical procedures in-
volved in our calculation can also be roughly estimated.
In our final results for CFP, we have introduced an addi-
tional term Bz2 in the expansion (3). This term ought to
be zero due to the symmetry of the field. Our calculation
gives rise a small number of 0.71 K (average over f and g
sites). This value comes only from the contribution due
to the charge density in the vicinity of the on-site ion.
Thus we may consider this value as a rough estimate of
the numerical inaccuracy involved in the present calcula-
tion. For the fourth- and sixth-order field terms, the ab-
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solute error will be much smaller, but the relative error
will be of the same level.

V. CONCLUSION

We have presented a new approach to calculate the
CFP in a perfect crystal. This approach is based on the
realistic charge density distribution in the crystal con-
structed from the Bloch functions obtained by accurate
band-structure calculation. The contribution to the CFP
is divided into two parts. One is from the ionic charge
distribution on all sites other than the ionic site at which
the CFP are evaluated and is obtained by using point
charge model with the effective ionic charge at each site
determined by the band-structure calculation. The other
is from the charge distribution in the vicinity of the on
site and is obtained by numerical integration. The contri-
bution to CFP from these two parts may be of opposite
signs, as in the case of Nd site in Nd2Fe, 4B, and their
effective competition determines the final CFP values.

The new approach has been used to calculate the CFP
at the Nd site of Nd2Fe, 48, an important intermetallic

compound noted for its high performance as a hard mag-
net. The calculated CFP values are in good agreement
with experimentally determined values and are qualita-
tively different from those obtained by simple PCM cal-
culations. The reasons for the poor results from the
PCM are outlined and the importance of treating B as an
anion is emphasized. Possible improvement on the accu-
racy of this type of new CFP calculation is also discussed.

Our new formalism of CFP calculation has not only
clarified a vaguely defined concept, but also related the
important parameters involved in such calculation to the
more fundmental aspect of the theory of crystalline
solids. Based on more accurately determined CFP from
first principles, one can predict other interesting proper-
ties of materials where crystal field plays an important
role. Furthermore, experimental data can now be ana-
lyzed more realisitcally without using arbitrary fitting pa-
rameters.
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