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We discuss how the general phenomenon of magnetization by rotation may be used to probe the
angular velocity of the laboratory with respect to a local frame of inertia. We show that a gyro-
scope with no moving parts based on this phenomenon has to include a sensor and a shield with
different magnetomechanic factors. This is necessary in order to suppress the sensitivity to a mag-
netic field without canceling the effect of rotation. We present a realization of the gyroscope where
the magnetization of a ferromagnetic rod is measured by a superconducting quantum interference
device (SQUID). The rod is rigidly held in the interior of a closed superconducting shield. Because
of the difference between the spin magnetomechanic factor of the magnetic rod y =m /e, with m
and e respectively the electron mass and charge, and the orbital magnetomechanic factor of Cooper
pairs in the shield y =2m /e, the SQUID output is linear in the absolute angular velocity of the de-
vice. By contrast, in the limit of perfect shielding, it turns out to be insensitive to magnetic fields.
We experimentally demonstrate the principle of operation of this device.

I. INTRODUCTION

Magnetization by rotation is a phenomenon demon-
strated by any kind of magnetic material.! For ferromag-
netic materials it was first demonstrated by Barnett? in a
series of classical experiments. For superconductors it
was predicted by London® and demonstrated in subse-
quent experiments.* Analogous magnetomechanic phe-
nomena are well known for systems of nuclei.’

The phenomenon demonstrates the fact that a body
that becomes magnetized in the presence of an applied
field B®™, can also be magnetized if it is set in rotation
with respect to the local frame of inertia at an angular ve-
locity Q. In this paper, the term “applied field” means
the field that the external sources would create in space in
the absence of the body. The resulting variation of the
magnetization is the same as that which would be in-
duced by a variation of the apphed magnetic field §B
with components 8B* =y, Q,.°

The magnetomechanic three-tensor y; is a property of
the body and, as is well known, reflects the nature of the
microscopic degree of freedom associated with the mag-
netization. Thus for isotropic ferromagnets y ;=738
with §;; the Kronecker 6, and with y very close to the
spin value, m/e~—5.69X10"12 Ts/rad. Here m and e
are the electron mass and charge, respectively. The actu-
al magnitude of y is usually found to be higher than that
of m /e by a few percent because of small orbital contri-
butions to the total angular momentum of atoms.” In su-
perconductors, magnetic phenomena are associated with
the motion of Cooper pairs and then ¥ =2m /e with fair-
ly high accuracy.®?

In the last decades the precision of magnetic measure-
ments has improved by many orders of magnitude thanks
to the diffusion of superconducting quantum, interference
devices (SQUIDS).® As a consequence, the idea becomes
appealing to build a solid-state gyroscope based on the
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measurement of the magnetization induced by rotation of
a magnetic body.

However, in order that such a gyroscope might be
operated in practice, it should obviously be shielded from
the effect of true magnetic fields. For instance, for the
electron spin, the ratio between the equivalent magnetic
field associated with the earth’s rotation yQg ~4 X 10716
T, and the true earth magnetic field By, amounts to
yQg/Bg ~107 1 an extremely low figure.

In this paper we describe how such a gyroscope can be
realized. To do this we briefly review in Sec. II the ther-
modynamics of the phenomenon and we take the oppor-
tunity to put on more precise ground the equivalence be-
tween rotation and magnetic fields. In Sec. III, we dis-
cuss the effect of rotation on a magnetic shield. We show
that the effect of rotation on a body rigidly enclosed in an
ideal shield with the same y value as the body itself, is
canceled, while it is not so if the body and the shield have
different y’s. The effect of sources of a magnetic field lo-
cated inside the shield is also discussed. We then
specifically sketch how the gyroscope may be made and
operated. In Sec. IV we describe a realization of the
gyroscope, where the magnetization of a ferromagnetic
rod rigidly enclosed in a superconducting shield is mea-
sured by a radio-frequency SQUID, and we present the
experimental test of the operation of the device. Finally,
in Sec. V we summarize the results on a simple model for
the intrinsic thermal noise of the device.

II. THERMODYNAMICS OF THE MAGNETIZATION
BY ROTATION

In this section we review the thermodynamics of the
phenomenon for those systems where a magnetization
vector can be defined. We will derive a result that allows
the calculation in any point of the space of the magnetic
field due to the magnetization induced by the rotation of
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the system. The result pertains also to systems where 7 ;
does not reduce to y5;; and where it also varies from
point to point. It will be derived without the need for in-
troducing ad hoc terms in the free energy of the system,
as is done, for instance, in Ref. 1.

Superconductors, for which a magnetization in a strict
sense cannot be defined, are briefly discussed at the end of
the section where we just recall the results obtained long
ago by London.3

The work dW' /dt supplied per unit time by a distribu-
tion of free currents to a system composed by a rigid
magnetic body and the electromagnetic field, is given by!

dw'/dt= [H-(3B/dt)dV+ [E-(dD/3t)dV . (1)

Here we assume that the fields vary so slowly that the
ohmic dissipation in the body, if any, may be neglected.
In Eq. (1) H=B/uy,—M and D=¢,E+P with P the elec-
trical polarization of the body and M its magnetization.

Suppose now that the net force acting on the body is
zero so that its center of mass is held at rest in an inertial
frame. This can be always accomplished by exerting on
the body a proper system of forces to counterbalance the
force exerted on it by the macroscopic electromagnetic
fields. Let us call K the total momentum of the forces
that are not due to the macroscopic electromagnetic
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fields. Then these forces would supply our system with
an additional work per unit time dW" /dt=K-Q. Here
Q is the angular velocity of the body relative to an iner-
tial frame.

If L is the total angular momentum of the system, body
plus electromagnetic field, and K., is the torque that the
electromagnetic field exerts on the system of free
currents, then,

dw" /dt=K-Q=Q-(dL/dt)+K_,-Q , (2a)
with
Ken 2= [ Q-rX[V-D)E+(VXH—3D/3t)XBldV ,

(2b)

where we have used the Maxwell equations V-D=p and
VXH—03D /3t =j to express the density of free charge p
and that of free current j in terms of the macroscopic
fields.

Assume that both the free currents and the body have
finite extent and that the fields vary slowly enough to al-
low us to neglect any electromagnetic radiation. Then
for the total work supplied to the system dW /dt
=dW'/dt+dW" /dt, from Egs. (1), (2a), and (2b), and
with some algebra, one gets

dW /dt=Q-(dL/dt)+ f(E+h><B)'(aD/8t+h-VD+D><Q)dv—|—f(H—hXD)-(aB/at+h-VB+B><.Q)dV , (3)

where h=Q Xr and where only terms linear in  have
been kept.

Now, in an inertial system of coordinates one can usu-
ally define the fully contravariant four-tensor'®© M#*" such
that the components of the magnetization and electric
polarization three-vectors M and P are respectively given
by M, =1le,; M/* and P;=(1/c)M", with g, the Ricci
symbol. It is then possible to define the four-tensor
H*¥=(1/uy)F*¥—M*#", with F*¥ the fully contravariant
electromagnetic tensor, such that the three-vectors H and
D are given, respectively, by H,=l¢,; H* and
D;=(1/c)H". In this same formalism B;=1l¢; Fj and
E,=cFj,.

Expressing the four-tensors F,, and H*" in a system of
coordinates rotating with the body,!! one can then define
the four three-vectors By, Hg, Eg, and D, from the cor-
responding four-tensors using the same equations used in
the inertial frame. It is easy to check that Eq. (3) may be
expressed in terms of these vectors as

dW /dt= [ Hg (3B, /3t)dV
+ [Eq(dDo/0t)dV+Q-dL/dt , (4

where now all the derivatives on the right-hand side of
Eq. (4) are evaluated in the rotating frame. This last
statement is also valid for the term Q-dL /dt. In fact, it
is known from classical analytical mechanics that the an-
gular momentum vector L does not change moving to a
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rotating frame.'? In addition, the time derivative d L /dt,
appearing in a scalar product with Q, can be evaluated in
any one of the two frames.

Equation (4) gives the total work supplied to the sys-
tem per unit time. Then the internal energy U of the sys-
tem increases at a rate dU /dt =dW /dt+dQ /dt, with
dQ /dt the heat adsorbed per unit time. However, it is
known!? that the function that plays the role of the ener-
gy in a rotating system is U'=U —Q-L. In terms of this
function the energy balance of the system can be written
as

dU'/dt= [H,(8Bq/3t)dV + [ Eq-(dDg/00)dV
—~L-dQ/dt+dQ /dt . (5)

At equilibrium all the physical fields that describe the
system have obviously appeared stationary in a frame ro-
tating with the body. Equation (5) ensures that in this
case U’ is a conserved quantity that can thus be identified
with the internal energy of the system.

For infinitesimal transformations connecting equilibri-
um states, the differential 8F of the free energy
F=U'—TS, with T the temperature and S the entropy,
may be evaluated in the rotating frame from Eq. (5) as

8F= [H-8BodV+ [ Eq-8DodV—L-6Q—S8T .  (6)

If the angular momentum can be written as L= f dv,
with I an angular momentum density, then, in order that
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OF is an exact differential, the following equality should
hold:

J1(8Mg,; /30, b7 —(31;/3Bg)a,p,, 7]
X8B;80,dV=0, (1)

where, as we did in the inertial frame, we defined the
three-vector Mg as Mg=(1/u,)Bo—Hj,.

In Eq. (7) the variation of the field B, has to preserve
the constraint V-Bg, =0 so that one gets

(8M, /3Q,)g b, 7 =(31, /3B, )q .7 +0E; /3%, ,  (8)

where from now on we drop for convenience the sub-
script €2, but it is still understood that all the quantities
and the derivatives have to be taken in the system of
coordinates rotating with the body.

In Eq. (8) §; is an undetermined scalar function. How-
ever, it is easy to calculate that in the rotating frame the
magnetic field B obeys the same couple of equations of
magnetostatics V-B=0 and VXB=py(j+V XM) that it
obeys in the inertial frame. Thus the physical quantity
that acts as the source of the magnetic field B is VXM
and the addition of a gradient is irrelevant. Therefore
this term can be dropped from Eq. (8).

In Egs. (7) and (8) we have assumed that both M(r) and
I(r) depend only on the local values of B(r) and D(r), Q,
and the temperature T, so that the partial derivatives in
Eq. (8) have a definite meaning. This appears to be a legi-
timate assumption for all physical systems of interest
here at least near 1 =0.

Close to states where the local “susceptibility” matrix
(0M; /0B, )q p, r has an inverse, recalling that this matrix
is symmetric because of (3M;/dB;)gp r=—(3’F/
0B, 3B,;)q p, 1, OnNE gets

(8M; /8Q;)p,p,r =[(31;/8M} )q,p, 7 1[(3M; /3B, ) p, ] -

9)

The total magnetic field B can be divided into a contri-
bution due to free currents B*, i.e., the applied field, and
one due to the magnetization of the body B™®, so that
B=B"'+B™%. Then for the most general variation 8M
of M up to terms linear in the variations of the fields and
of the angular velocity, using Eq. (9), one has

8M,=(8M,/8Bk )Q,D,T[(alj/aMk )Q,D,T&Qj
+8BX +5B ] . (10)

Equation (10) is in fact an integrodifferential equation
for 8M;, since 8B™? is a functional of VXM. It is clear
that in this equation the term (3/;/0M; )q p r8Q; ap-
pears on the same ground as the other term 8B*. Thus,
one can conclude that the effect that an angular velocity
variation has on the magnetic properties of a body is the
same as the one due to the application, in a frame rotat-
ing with the body, of an equivalent magnetic field 8B®?
given by

8Bi=1y,;8Q; , (11)

where the magnetomechanic coefficients y,; are defined
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as yy; =(3l; /0M} )g p 7

Let us comment on the results of this analysis, which
go a bit beyond the more standard statements on the sub-
ject. First it is not irrelevant to stress that Egs. (10) or
(11) are valid only in a system of coordinates rotating
with the body. In fact, these equations involve variations
of three-vectors which are not all the same in the rotating
and in the inertial systems. Moreover, the coefficients
v j» reflecting a local property of the body, do not depend
on time only if evaluated in the rotating coordinates.
This is of crucial relevance when calculating the variation
of the magnetization of the body, during finite transfor-
mations connecting states with different values of the an-
gular velocity.

A second point is the following. Usually the absolute
value of the angular velocity is so low that all partial
derivatives may be evaluated at Q=0. If in addition / is
a linear function of M, then the above definition of the
7’s coincides with the usual definition as the ratio be-
tween the value of the angular momentum density and
that of the magnetization evaluated with the body at rest
in an inertial frame. However, notice that the angular
momentum density / contains also the contribution due
to the electromagnetic field besides the one due to atomic
momenta. Thus identifying (3/; /0M} )g p 7 With the mi-
croscopically defined atomic magnetomechanic factors
would be somewhat inaccurate. This is of no relevance
for the great majority of practical situations, and in par-
ticular for the scope of the present paper, but it could be
of some importance in the determination of the y factors
in systems of very low magnetic susceptibility in the pres-
ence, for instance, of a substantial amount of electric po-
larization. Notice, in addition, that outside the magnetic
body, where the macroscopic fields coincide with their
microscopic definition and where the angular momentum
is entirely due to the field, Eq. (8) is a trivial identity. In
fact, both (3M;/3Q;)g p v and (3l;/0B;)q p r coincide
in this case with €y(E;r; — E; 7, 8;;).

As a third point it has to be noticed that the equivalent
field in Eq. (11) cannot be mimicked in every situation by
a true magnetic field. This follows immediately from the
fact that the divergence of 6B®I, for composite or inho-
mogeneous systems where y;; is a function of r, is not
necessarily zero everywhere. Thus we stress that Eq. (11)
has to be understood in the meaning that §B®? has to be
used in the equation of magnetostatics Eq. (10), in order
to calculate 8M or, more precisely, VX5M. By no means
then must it be considered a true magnetic field.

Equation (10) allows the calculation of the detailed dis-
tribution of the magnetization in the whole body. A
much simpler formula can be derived, following analo-
gous reasoning, for the variation of the total magnetic
moment of the body. In fact, if the field B®* generated by
the external sources can be considered to be uniform over
the volume of the body, and takes the value B° there,
then one has, again in the rotating frame,

(311, /3Q; )Bo,T=(aLj/aB;’)ﬂ,T , (12)

where I1= f MdV is the total magnetic moment of the
body.
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Notice that Eq. (8), except for the irrelevant gradient
on the right-hand side, represents the application of Eq.
(12) to each elementary volume of the body.

If the body is superconducting, the magnetization loses
its meaning at least in the ordinary sense and the magnet-
ic properties of the body have to be described in terms of
a supercurrent density. However, as we already said,
London® predicted for a rotating superconductor, that in
a system of coordinates rotating with the body the mag-
netic field and the supercurrent density obey the same set
of equations as those they obey in an inertial frame, pro-
vided that the “known” term B°®*' is substituted by
B+ (2m /e)Q. Thus again an equivalence between
magnetic field and rotation is established with v
=(2m /e)8;;. Obviously Eq. (12), that involves only the
total magnetic moment of the body, a perfectly defined
quantity for superconductors too, remains valid in this
case.

Let us now discuss the physical meaning of the angular
velocity vector {2 above. Clearly not every system show-
ing magnetization by rotation can be considered strictly a
rigid body. For instance, in a steadily rotating supercon-
ductor, the electron superfluid in a surface layer with
thickness of the order of the penetration depth, precesses
with respect to the crystal lattice, and it is just this sur-
face current that gives rise to the London magnetic mo-
ment. However, at thermodynamic equilibrium this
current distribution is a function of the temperature, of
the applied magnetic field, and uniquely of the angular
velocity of the lattice. Thus, both the angular momen-
tum of the lattice and that of the superfluid can be ex-
pressed as a function of this angular velocity.

On the other hand, for the systems described by a mag-
netization, in deriving the formulas above we have sup-
posed that a nonelectromagnetic torque K acting on the
system supplies a power dW' /dt=K-Q. In order to
fulfill this condition it is not necessary that all of the body
be rigid but just that the part of it on which the torque
acts performs a rigid rotation at an angular velocity €.

Thus, in general, Q) will represent the angular velocity
of some rigidly rotating part of the system provided that,
at equilibrium, all thermodynamic functions may be ex-
pressed in terms of  alone and not of the angular mo-
menta of the various parts taken separately.

Here it has been supposed that the states that are con-
nected by the thermodynamical transformations are
states of equilibrium. Asitis known,'? this is possible for
solid bodies if the rotation is uniform and takes place
around a principal axis of inertia of the body. If, howev-
er, this is not the case, the variation of all thermodynamic
quantities can still be considered adiabatic if the angular
velocity is such that Q7 <<1, with 7 the longest relaxa-
tion time of the system. Then all the above formulas still
hold in a quasiequilibrium sense.

Finally, notice that for ferromagnetic materials the to-
tal variations of the equivalent magnetic field are so low,
for any realistic value of the angular velocity, that the re-
sulting changes of the magnetization can safely be con-
sidered reversible, and thus the magnetic susceptibilities
involved in the phenomenon are the so-called reversible
or initial ones.
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III. ROTATION AND MAGNETIC SHIELDS

The equations in the previous section allow us to calcu-
late only the variation of the magnetization due to a vari-
ation of the angular velocity, the initial value of it being
undetermined.

However, this does not prevent the use of this
phenomenon, at least in principle, to measure steady ro-
tations. In fact, suppose that the laboratory is rotating
around an axis that we call Z' at a constant rate . Sup-
pose now that a long cylindrical magnetic rod with
v =v9;; and whose symmetry-axis unit vector we call Z,
rotates at a rate w around another axis X' fixed to the lab-
oratory and normal to both Z’ and Z. As a consequence
Z, as seen in the laboratory, rotates in a plane containing
zZ'.
Taking the time ¢ equal to zero when Z and Z' are
aligned, the component Q, of the angular velocity along
the Z axis turns out to be Q,=Qcos(wt). The com-
ponent II, of the total magnetic moment II along Z, mea-
sured in a frame rotating with the body, is then

I, =2+ (3, /3BL)y Q cos(wt ) , (13)

with T2 a constant, so that the angular velocity Q ap-
pears in the amplitude of the magnetic moment modula-
tion at a frequency w. A similar modulation will appear
obviously also in the value of the magnetization in each
point of the body.

Unfortunately, changing the orientation of the body in
the laboratory also changes its orientation relative to the
sources of magnetic field. As a consequence, changes of
magnetization have to be expected to be much larger
than the one in Eq. (13), at least for any interesting value
of Q.

To avoid this problem one has to resort to some kind
of magnetic shielding. However, in the above ideal
scheme of measurement, the body has not only to be en-
closed in a shield, but the shield has to move rigidly with
the body. In fact, if this one moves relative to the shield,
it will also move relative to sources of magnetic field lo-
cated inside the shield. In best superconducting shields, '?
residual fields not less than 107 !2 T are present, corre-
sponding, say for a ferromagnetic material, to an angular
velocity of ~0.2 rad/s.

This poses the question of what is the behavior of a
magnetic shield upon steady rotation or, more precisely,
upon variations of its angular velocity.

Consider for the moment only a passive shield, i.e., a
closed cavity in some magnetic material like a ferromag-
net or a superconductor. The property that makes such a
system a magnetic shield is the fact that a variation of the
field generated by external sources §B*' induces a change
8M in the magnetization of the shield walls. This change
is such that, calling again 8B™* the field generated by it,
one has

|5Bm28 -+ 5B << |8B*| (14)

at least in some part of the shield. A perfect shield is ob-
viously one for which §B™*¢= —§B®*! in every part of the
shielded space.

Let us now suppose that the external field variation is
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uniform and let us call it 8B°. §B™28 would then be an al-
most uniform field such that everywhere

8B™s= —§B°+AB (15)

with AB <<8B°. Moreover, in the linear approximation
we are using here, AB will be a linear function of §B°,
ie., ABk=ckj8ij. Suppose that y,; is the same every-
where within the shield wall. As a consequence, accord-
ing to Eq. (11), a variation of the angular velocity of the
shield, being equivalent to a uniform field 8 B;1=7v,;8Q;,
would induce inside it a magnetic field:

8B = —7 ;80 + ¢80, (16)

Let us now consider a second body enclosed in the
shield and rigidly rotating with it. Suppose for simplicity
that this body is so small that the magnetic field generat-
ed by its magnetization does not affect the magnetization
of the shield. Let us call y;; its magnetomechanic factors
and assume that they do not change over the volume of
the body. In these conditions the body will be magnet-
ized as in the presence of a total applied field 6B given
by

SBYI=7,80; — 7,80, +cyy 80, . (17

In the limit of perfect shielding ¢, =0, if y}; =v; then
6B°1=0: inside the shield the effect of rotation on ma-
terials with the same y’s as the shield itself disappears. If
instead the y’s are not equal to those of the shield then
the effect of the true magnetic field is still suppressed,
while that of rotation is not and amounts to an equivalent
field Bi?=(y}; —74;)8Q;. Thus a practical device could
be set up by using for the shield and for an internal sensi-
tive element two materials with different y’s.

For a realistic device the detailed response has to be
calculated applying Eq. (11) to the whole system of the
shield and the body. This can be done analytically in a
few cases. For instance, if a sphere of a soft magnetic
material with radius rj, initial susceptibility y and
v =(m /e)d;;, the pure spin value, is rigidly enclosed in
a concentric superconducting spherical layer of internal
radius 7, then an angular velocity variation §Q would in-
duce a variation of magnetization 8M given by

SM=—(x/uo)m /e){1+x[1+2(ri/ri—1D]}7'8Q ,
(18)

while no variation is induced by an external field change.

Notice that in Eq. (18) the reaction of the shield to the
magnetization of the inner sphere contributes the factor
proportional to 3 /7.

It is of some interest to point out that all the above
derivation holds for active shields too. By the term “ac-
tive shield” we mean a system composed by some sensor
of magnetic field and a set of coils arranged in a feedback
scheme. In order that this system acts as a shield, the
coils have to produce a field that cancels the field varia-
tions measured by the sensor and due to the external
sources. Thus an equation like Eq. (14) or Eq. (15) is
obeyed, with 8B™?8 representing now the field due to the
coils.
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A magnetic field sensor again responds to rotation as in
the presence of an equivalent external field. For instance
SQUIDS (Ref. 14) have y =2m /e, while NMR sensors
have the magnetomechanic factors of nuclear spin.’
Thus the effect of rotation on the active shield will be de-
scribed by an equation similar to Eq. (17), and all the
magnetic bodies with the same y as the sensor will feel no
magnetic effect of rotation in the limit of perfect shield-
ing.

Thus, in conclusion, a gyromagnetic gyroscope, in the
meaning of the present paper, has to be constituted by a
body rigidly enclosed in a shield with a different magne-
tomechanic factor. The magnetization of the body has to
be measured by some magnetometric device also rigidly
connected to the rest. In the detailed calculation of the
response of the instrument the direct effect of the rotation
on this measuring device too has to be taken in account.
This turns out to be simple if the sensor has the same y as
the shield, in which case it will feel no direct effect of the
rotation.'>

For instance, in the previous example of the ferromag-
netic sphere enclosed in the superconducting shield, if the
sensor is a SQUID magnetometer, it will only sense the
flux change due to the variation of the magnetization of
the inner sphere. This comprises also a flux change due
to the currents that circulate on the inner surface of the
shield to prevent the magnetic field generated by the
magnetization of the sphere from penetrating into the
shield wall. Specifically, if the SQUID is thought of as a
plane circular coil tightly wound onto the equator of the
sphere, it will feel a change in flux given by 64¢
=mr3(2ue/3)(1—r3/r})8M with 8M taken from Eg.
(18).

This kind of gyromagnetic gyroscope could be enclosed
in any other system of shields, the response being
unaffected by their presence. In fact, the fields due to the
magnetization induced by the rotation in the outer
shields would be canceled as any other magnetic fields by
the innermost shield.

Finally, we stress again that this kind of gyroscope can
sense only variations of {, even if slow at will, and thus
to measure the absolute value of the angular velocity of a
reference frame, one has to modulate the orientation of
the device in the frame as we sketched above.

IV. EXPERIMENT

To test the concepts outlined in Sec. III, we have per-
formed an experiment on a composite system made of a
superconducting shield rigidly enclosing a ferromagnetic
rod, whose magnetization is read by a SQUID.!® We will
show that this system works as a gyroscope.

A. Experimental setup

In the present version of the gyroscope (Fig. 1) a 1.5-
mm-o.d., 130-mm long rod of Cryoperml10 (Ref. 17), a
cryogenic soft ferromagnetic steel, is enclosed in a 50-
mm-i.d., 200-mm long closed cylindrical superconducting
shield. The geometry of the apparatus is different from
the one given as an example in Sec. III. In fact, the
demagnetizing factor for a sphere is quite high and would
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FIG. 1. Schematic view of the gyroscope and of the dewar
torsional oscillation setup.

severely depress the sensitivity of the detector. The
shield is made of a cylindrical copper can and two copper
end flanges, which are coated by electrodeposition with a
~0.1-mm thick Pb layer on both the internal and the
external surfaces. The superconducting electrical contact
between the can and the end flanges is ensured by two Pb
o-ring seals. Around the central section of the rod is
wound a two-turn coil of niobium wire which constitutes
one of the windings of a superconducting dc flux trans-
former.” The other winding of the transformer is induc-
tively coupled to a commercial rf niobium SQUID. A
170-mm long solenoid with ~4400 turns per meter
length is also wound onto the rod.

In the approximation of infinite length of both the rod
and the shield, a variation of the component 6, of the
angular velocity of the apparatus along its symmetry axis
would produce a change in the magnetization of the rod,
whose component 8M, along the same axis would be
given by

M, = —(x/po)(1—1/g)1+xs/S)"(2m /e )8, ,
(19)

where s is the cross section of the rod and S is the inner
section of the shield. y is the magnetic susceptibility of
the rod and u=py(1+)Y) its permeability. Since the total
equivalent magnetic field variations are always very small
(8Bf4< 1072 T in all the experiments) the susceptibility
value has to be taken as the one pertaining to small rever-

VITALE, BONALDI, FALFERI, PRODI, AND CERDONIO 39

sible changes of the magnetization around the initial
state. In our case the )} of the rod was measured to be
~ 180 at room temperature and is expected to drop to
~60% of this value at liquid-helium temperature as
shown by a Cryoperm toroidal sample in a separate ex-
periment. Moreover, ¥ was found to be flat for slowly
varying fields with a cutoff frequency of ~3.5 kHz due to
skin effect. Therefore, ¥ can be taken to be equal to its
zero-frequency limit, because the frequencies of all the
signal involved in the experiment were always much less
than this cutoff. In Eq. (19) it has been assumed that the
ferromagnetic rod has y; =(2m /ge)d;.

This variation of the magnetization and the related re-
action of the shield would induce in the SQUID a change
in flux 8¢, given by

8pq=—Toxs(1—1/g)(1—5/S)N1+xs/S)"!

X(2m /e)8QY, . (20)

Here, T, is the so-called transformer ratio of the flux
transformer, and it is defined as To=NM(L,+L,)"},
where N is the number of turns of the coil wound on the
rod, L, is the self-inductance of this same coil, L, is the
self-inductance of the coil coupled to the SQUID, and M
is the mutual inductance of this coupling. Although the
transformer ratio is frequency dependent, as is y and thus
L,, we can take again for T, the zero-frequency value
everywhere in the analysis.

In our geometry, due to boundary effects caused by the
finite length, the factor ys(1—s/S)(1+ys/S)"! in Eq.
(20) has to be substituted by an effective area o (y) which
is a function of the susceptibility of the rod.

The reason for the solenoid wound onto the rod is
mainly to avoid the dependence of the response of the
gyroscope from . In fact, in our apparatus (Fig. 2) the rf
SQUID is used as a low-frequency magnetometer in the
usual locked-loop operation to linearize the dependence
of the output voltage to the applied flux. However, this is
accomplished by feeding back the output voltage through
a feedback resistor not as is usually done to the tank cir-
cuit, but instead to the solenoid wound on the magnetic
rod. A current I circulating in this solenoid would in-
duce a flux 8¢, at the SQUID given in the approximation
of infinite length by

8¢;=TouonI(1+x)s(1—s/S)1+xs/S) !, 1)

where n is the number of turns per unit length of the
solenoid. In the limit of y >>1 the ratio 8¢ /8¢; does
not depend on ¥, s, Ty and S, providing for an instrument
response independent of these parameters, as we will
show below. Again Eq. (21) will be only approximately
true in the actual geometry of the apparatus, where the
factor (1+x)s(1—s/S)(1+xs/S) ™! should be substitut-
ed by another effective area o’(y). This o’(Y), in princi-
ple, does not coincide with o(Y) mainly because the field
generated by the solenoid does not have the same shape
as the equivalent field B®? due to rotation.

The small-signal open-loop gain G(w) of the SQUID
electronics shows a first cutoff at frequencies again much
higher than those of the signals involved in the experi-
ment. Therefore, calling G the zero-frequency limit of
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FIG. 2. Instrumentation scheme. (SC represents supercon-
ducting, em represents electromagnetic.) See text for details.

this gain, for our low-frequency signals, the Fourier
transform of the output voltage V(w) is given by
V(iw)=Gd.(w), with ¢,(w) the Fourier transform of the
total external flux applied to the SQUID. Feeding this
voltage into the solenoid through the resistor R, it will
contribute to the total external flux with a feedback flux

dr(w)=—Toueno'(X)V(w)/R; .

The tota] flux will result from this feedback contribu-
tion and from the external signal ¢ (w) according to
dex(@)=¢ (@) + ¢ (w). Suppose that this signal is due to
a low-frequency variation of the angular velocity as in
Eq. (20) and call Q(w) its Fourier transform. Then the
voltage output would be

V(iw)=—GTy(2m /e)1—1/g)o(x),(w)
X[1+GTopona'(x)/R;171 . (22)

In the approximation of
Re[GTougno'(x)/R;1>>1, one obtains

Vio)=—[o(x)/o'(x)1(2m /e)
X(1—1/8)Q@)[R;/(np)] . (23)

large gain,

In the limit of o(xy)=0’'()), as in the case of infinite
length and y >>1, the dependence of the transfer function
of the instrument on the magnetic susceptibility and on

the geometry of the apparatus is canceled. This is very.

important because the magnetic susceptibility of fer-
romagnets is known to undergo slow but large changes,
that would affect the calibration of the instrument. We
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will discuss in the next subsection the results of our real
configuration.

The gyroscope was mounted into a superinsulated
liquid-helium dewar so that its axis was aligned with the
axis of the dewar (Fig. 1). In order to impress to the ap-
paratus a controlled variation of its angular velocity, the
dewar was suspended to the ceiling by means of a steel
bar aligned with the same axis, thus making a torsion
pendulum. The pendulum was set in torsional oscilla-
tions at the resonance frequency using a system of
counter-directed tangential air jets controlled by an elec-
tromagnetic valve mastered by a low-frequency pulse
generator (Fig. 2). The resonance frequency was changed
in the range 0.2 to 0.8 Hz by replacing the torsion bar,
and the resulting quality factor of the oscillator was typi-
cally ~500.

The angular displacement was monitored by a capaci-
tive transducer designed to optimize the response lineari-
ty and its rejection to movements other than the torsional
one. The capacitors consisted of two facing systems of
plates, a lower one fixed to the floor and an upper one
fixed to the bottom of the dewar. The lower system was
composed of two electrically shorted plates occupying the
two opposing 90° wide sectors of a 40-cm diameter circle
centered on the torsion axis of the apparatus. The upper
system was made of four adjacent plates each shaped in
the form of an almost 90° wide circle sector. Each plate
was insulated from the side neighbors and shorted to the
opposite one. The difference between the capacitances of
the two capacitors each resulting by the lower plates and
by one couple of the upper plates, was measured by a ca-
pacitance meter.

The resulting transducer proved to be linear at better
than 0.5% for angular displacements less than 60° around
the equilibrium orientation. The transducer was calibrat-
ed against the angular oscillation of a laser beam reflected
by a mirror mounted on the axis of rotation.

The output of the SQUID and that of the displacement
transducer were sent to a data acquisition system and
then transferred to a desktop computer. The in-phase
and quadrature components of the SQUID signal, with
respect to the angular displacement, were measured by
standard numerical algorithms.

B. Results and discussion

Due to the high quality factor of the torsion pendulum,
when the dewar is set in oscillation by the air-jet system,
an almost monochromatic signal is obtained at the output
of the angular-displacement transducer.

In Fig. 3 the Fourier components of the SQUID output
at the frequency w, of the torsional oscillation of the
dewar are reported. N, in Fig. 3(a) is the component in
quadrature with respect to the angular displacement sig-
nal. N, in Fig. 3(b) is instead the in-phase component.
Both components are given in number of flux quanta and
are reported as a function of the product w,8 with 0 the
amplitude of the angular displacement signal. w,6 obvi-
ously represents the amplitude of the angular velocity os-
cillation.

As can be seen, very good linear fits are obtained for
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both plots. These fits show a phase shift of 91.4°+£0.7°
between the SQUId output and the angular-
displacement-transducer output. This is consistent with
the SQUID signal being proportional to the angular ve-
locity of the apparatus, and the barely significant shift
with respect to the ideal 90° value is well accounted for
by the mismatch between the electronics delays of the
two signals. The sign of the effect is such that Eq. (19) is
satisfied and thus the solenoid has to produce a magnetic
field along the rotation axis with opposite direction with
respect to the angular velocity. This and the magnitude
of the effect prove that within the rotating superconduct-
ing shield a magnetic field —(2m /e ) is present.

From the slope of the line in Fig. 3(a) and from Eq.
(23), one gets

[ox)/a' () ]1(2m /eX1/g—1)
=(5.940.1)X10712 Ts/rad .

Since —m /e=5.69X10"!* Ts/rad and assuming for
Cryoperm10 the value g ~ 1.91 as measured'® for a simi-
lar alloy, Supermalloy, the effective-areas ratio turns out
to be o(x)/0’'(x)~(1.05£0.02). Moreover, the residual
dependence of the gyroscope response to the variations of
x was undetectable within the errors, while such a depen-
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dence was clearly seen in the former prototype of Ref. 19,
in which the feedback solenoid was not used. The devia-
tion from unity of the experimental figure of o(x)/0'(x)
includes as well the inaccuracies due to the shape of the
solenoid, such as nonuniformity and misalignment.
Therefore, the agreement between the above theory of the
instruments response, even in the infinite-length approxi-
mation, and the experimental results has to be considered
satisfactory.

The noise spectral density of the instrument can be es-
timated from the scatter of the points around the fit in
Fig. 3(a) to be S, =3X10"2 rad/s!/% It appears to be
contributed entirely by the intrinsic noise of the SQUID
electronics of ~3.5X107%,/Hz!/?, with ¢, the flux
quantum. The resulting sensitivity is rather poor. How-
ever, this is due mainly to the fact that the permeability
of the ferromagnetic rod turned out to be small y ~ 100,
and that the flux transformer ratio was not optimized®®
for this value. A more detailed discussion of the noise
sources in this kind of gyroscope is given in the next sec-
tion.

We rule out any significant contribution of spurious
effects. In fact, a direct pickup of the ambient magnetic
field by the flux transformer or by the SQUID itself
would produce a signal proportional to the angular dis-
placement and thus in-phase with it. One obvious effect
that could instead simulate a signal proportional to the
angular velocity of the apparatus is an inductive pickup
of the ambient magnetic field in a normal circuit coupled
to the SQUID such as, for instance, the rf bias line. In
fact, the oscillation of the apparatus around a mean angu-
lar orientation 6, in the laboratory would induce an emf
around the loop equal to

—d$(6)/dt ~[(d$/d0),_ 1d6/d1

where ¢ is the total magnetic flux in the loop due to the
ambient field. ¢ and d¢/d O are obviously periodic func-
tions of 6 with period 27. Thus if such a pickup would
significantly contribute to the signal, then the slope of the
line in Fig. 3(a) should depend periodically on 6,. We
performed the experiment changing the mean orientation
of the apparatus in steps of 60° over one turn and we
could not find any significant variation in that slope.

We also tested the attenuation of the shield by putting
underneath the dewar a ring coil of 40-cm diameter that
would produce at the location of the shield, but in the ab-
sence of it, a field up to 1 mT. A low-frequency alternat-
ing current was circulated into the coil in order to use the
same detection procedure we used for the angular veloci-
ty experiment. The result was the detection of a signal in
phase with the current and proportional to it, with a fac-
tor of proportionality independent of the frequency.
Therefore, we concluded that this is, in fact, direct mag-
netic flux pickup by the superconducting circuitry. The
resulting attenuation of the magnetic field by the shield
was estimated to be ~107'°. Calculations show that the
residual field leakage of the shield is well accounted for
by a few holes of the order of 0.1 mm in diameter, such as
those due to the feeds through the shield for wires and
liquid helium. Improvements of the attenuation figure
are possible by more careful design of the feeds, by multi-
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ple superconducting shields, and by a preshielding system
with a ferromagnetic outer can. These precautions
should easily improve the attenuation figure by orders of
magnitude.

V. CONCLUDING REMARKS:
NOISE AND PROSPECTIVE SENSITIVITY

We have recently?! developed a model for the thermal
magnetic noise in SQUID systems coupled to ferromag-
netic cores. An experiment on SQUIDS coupled to
high-permeability tori shows a very good agreement with
the model.?! A detailed discussion of this topic lies
beyond the scope of the present paper. However, to dis-
cuss the prospective sensitivity of the gyroscope, we sum-
marize here the principal conclusions.

A SQUID coupled to a ferromagnetic core may be
thought of as possessing a frequency-dependent induc-
tance. In fact, the magnetic permeability of ferromagnet-
ic cores shows a variety of frequency behaviors that are
reflected in similar frequency dependences of the induc-
tance of any superconducting loop coupled to them.
More specifically, the presence of the skin effect in the
cores, that are also electrical conductors, sets a first
cutoff, and usually the dominant one, in their effective
permeability. In this case the cutoff frequency is, roughly
speaking, the frequency at which the penetration depth of
the magnetic field equates the thickness of the ferromag-
netic material. The resulting inductance L(w) of a coil
wound on such a core will show a similar cutoff and will
be then well described by a single-pole behavior like
L(w)=Ly(1+iwr) '+L , with 7 the cutoff time.

We have shown,?"?? within the so-called resistively
shunted Josephson junction (RSJ) model’ and under the
assumption that the frequency 1/7 of this cutoff is much
less than the rf pump frequency, that a SQUID coupled
to a frequency dependence inductance of the form above
can be modeled, by applying the usual Nyquist theory, as
a noiseless device with an excess input flux noise whose
spectral density in the limit of ©—0S5,(0) is given by

S4(0)=4kyTLy7 , (24)

with kp the Boltzmann constant and T the temperature.

In the prototype of the gyroscope presented in the
previous section the estimated value of S,(0)
~107%¢3/Hz!”? turns out to be undetectable against the
background noise of the SQUID electronics of
~1077¢3/Hz! 2.
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The superconducting flux transformer that in the
present version of the apparatus couples the SQUID to
the ferromagnetic rod, is unnecessary and was adopted to
allow an easy interchange of the rod. In fact, in a former
experiment we already realized a version of the gyroscope
where the rod was inserted directly into the hole of a
single-hole SQUID.! In this case the transformer ratio
T, in Eq. (20) may be taken equal to unity and the
thermal noise would then set the signal-to-noise ratio at
low frequencies to

(Rgn)=(2m /e)(1/g—1)o(x)8U 4k TLyr) "2 . (25)

The factor (Ly7)'/? in the denominator of the right-hand
side is a function of the susceptibility of the rod, as it is
the effective area o(x). The true values of these factors
should be calculated numerically in the specific geometry
adopted. Both these factors, however, have to contain a
“feedback” denominator, as, for instance, the term
(1+xs/S)"!in Eq. (20), representing the reaction of the
superconducting shield to flux changes due to interior
sources of field. A crude estimate of the ratio Rgy in Eq.
(25) may be obtained assuming that these feedback
denominators are the same for both terms and thus can-
cel out in the ratio Rgy. Insulated multilayers of amor-
phous ferromagnets have been reported’? with cutoffs
well above 10 MHz and still with reversible susceptibili-
ties larger than ~ 10% If these specific magnetic proper-
ties are preserved at low temperatures, then it would be
possible to anticipate, for a single rod detector, a value of
Rgy in Eq. (25) of ~1077 rad/s'/? at liquid-helium tem-
perature. This figure would compare with the sensitivity
of the best lasers or mechanical gyros. Of course,
configurations with N rods read in parallel would in-
crease the signal-to-noise ratio by a factor of N!/? with
respect to the single-rod configuration.

The realization of a device with this level of thermal
noise would allow one to investigate other disturbances
(mechanical and flicker noise, stray-field pickup, etc.) that
could affect the instrument operation at this field of sensi-
tivity.
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