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The structural phase transitions of KFeF, have been investigated by x-ray powder and monocrys-
tal techniques. Dilatometric experiments have allowed us to characterize the transition between the
so-called phase II and the twofold superstructure phase III. It is accompanied by a contraction of
the a and b parameters, which is compatible with a rotation of the FeF¢ octahedra around the ¢
axis, and by an anomaly along the ¢ direction, 10 K above the previous transition temperature. To
investigate the phase transition II—III, structural characterization of the two phases II and III has
been achieved. Preliminary classical studies had shown that the related symmetry space groups
were, respectively, Amma and Pmcn. A new structural four-dimensional investigation, which con-
siders phase III as a modulated structure of the average of phase II, has confirmed these first results.
The superspace group is P *{"7? and the real structure corresponds to the section ¢ =% of the super-
crystal. The structural refinement of the structure leads to an R factor of 0.046 for 31 refinement
parameters. The atomic displacements are consistent with a rigid-body rotation of the FeF¢ octahe-
dra in agreement with the dilatometric-powder study. Moreover, the four-dimensional method has
proved to be more rigorous to take into account the real symmetry of phase III, to describe more
correctly the diffraction pattern, and to be more efficient in refining the structure with fewer
refinement parameters. We have shown that the phase transition II--III is also compatible with
the Landau theory for structural, continuous phase transitions, which allowed us to derive the sym-
metry of the modulated structure of phase III. KFeF, is proved to be a good example first to prove
the usefulness of the four-dimensional analysis for a superstructure considered as a commensurate
modulated structure, and second, to make a useful comparison between the superspace theory and
the Landau theory of the invariance of the free-energy expansion.
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I. INTRODUCTION

The ABX, layer compounds have been the subject of
many investigations. The structures of these perovskite-
related compounds consist of two-dimensional (2D) net-
works of BX, octahedra connected by the A cations.
They are usually characterized by displacive phase transi-
tions featuring tilting of complete undistorted octahedra.
For compounds such as TIAIF, or RbFeF,, for which the
centers of the octahedra are aligned along the c axis (axis
perpendicular to the layers), a classification of the
different phases! and a group analysis of the phase transi-
tions? have been given. The aristotype phase (phase with
the highest possible symmetry®) of this structural family
is shown in Fig. 1(a).

In this paper, we are interested in the compounds of
the KMF, series (with M=Fe, Ti, and V). Their aristo-
type phase is different from the previous one: here, an
octahedra layer is translated by half of a basic translation
(a or b following the choice of axis in layers) from the
neighboring one [Fig. 1(b)]. Its symmetry is orthorhom-
bic with an A-face centering (or B). In the study of
KFeF,, our purpose is to show that a four-dimensional
treatment,* which has been particularly successful in the
symmetry description and structural determination of in-
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commensurate modulated phases,> is adequate for the

description of the phase III of those compounds. It al-
lows us to keep the A4 centering which is lost in the classi-
cal three-dimensional structural study and gives a better
description of the crystal symmetry.

According to Hidaka et al. ,6 KFeF, has two structur-
al phase transitions: A first-order transition occurs at
563 K between the so-called phase I (aristotype phase)
and phase II (space group Amma). A second transition
at about 7;=370 K is reported to be continuous and
leads to a primitive orthorhombic phase (phase III of the
proposed space group Pmmn). It is accompanied by a
doubling of the b parameter. Only this last one exists in
KTiF, and KVF,, respectively at about 490 and 530 K;
moreover, in these compounds, it has been supposed to be
a first-order one. In the precise study of the KFeF, tran-
sition II—1III,”® it has been observed that the intensity
of the superstructure reflections is still nonzero above the
transition temperature 7; and vanishes only at 10 or 15 K
above T;. Furthermore, the linewidth remains constant
up to 10 or 15 K above T; and then increases, and the au-
thors have considered the possibility of a double transi-
tion.

In order to confirm the structures of KFeF,, a previous
study® has allowed us to solve and to describe the struc-
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FIG. 1. Schematic representation of the aristotype phase of
the structural family of (a) TIAIF, and (b) KMF, series (M =Fe,
Ti, or V).

tures of phases II and III by the classical methods (crys-
tallographic space groups of R3). The structure of phase
I (space group Amma with a=7.68 A, b=3.92 A,
¢=12.39 A, Fig. 2) agrees with the assumed one® and can
be related to Heger’s study. '© But it is not true for phase
III (space group Pmcn, a’=a, b’=2b, ¢'=c): this space
group does not agree with the group Pmmn, proposed by
Hidaka, and with the conclusion given by Saint-Grégoire
using the Landau theory.”!! According to our structural
refinement, the symmetry reduction during the transition
II-III results from the tilting of all FeF¢ octahedra
about the c axis [a% T¢ T for all the (FeFy) layers in a
notation of the two-dimensional networks adapted from
Glazer’s notations'?], while the structure proposed by
Hidaka would result from a tilting about the a axis of the
only octahedra at z=0 (and not at z=1) (a*b*c? for
the layers at z=0 and a% *¢c® at z =1). Our structural
description in the Pmcn space group is compatible with

FIG. 2. Schematic representation of the structure of phase 11
of KFeF,. Arrows indicate the tilting of the octahedra at the
transition IT—IIL.
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the previous description of KTiF, at room temperature. '3

Those compounds are really isostructural.

Nevertheless, even with a good agreement factor, this
result is not quite satisfactory. We have observed in the
diffraction pattern of this phase a systematic extinction
condition which is not explained by either the space
group Pmcn or by any other space group of R>. In this
paper we shall show that this condition agrees with a
symmetry operation of a superspace group, providing it is
possible to distinguish main and satellite reflections. This
last assumption is confirmed by the consideration of the
relative intensities of the diffraction reflections. Then, we
shall show that the 4D structural description is compati-
ble with the classical one using the Pmcn space group and
uses fewer refinement parameters.

These new structural conclusions induce a new charac-
terization of the filiation of the different phases of KFeF,.
In order to get a general view of this phase sequence, we
have also tried to put in evidence the high-temperature
phase transition I—II and the existence of a high-
temperature aristotype phase. Preliminary studies have
been performed by the powder diffraction technique.
Thermal expansion of KFeF, has been precisely studied;
on the one hand, we could not find any phase I at high
temperature before decomposition; on the other hand,
the evolution of the cell parameters as a function of the
temperature is a good complement to the study of the
transition II—1III and has confirmed the duality of this
last transition. We shall first present these preliminary
results (Sec. II). Then we shall describe the four-
dimensional description and structural refinement of the
phase III (Sec. III). Last, we shall discuss the symmetry
consequences concerning the phase transition and the va-
lidity of the Landau theory in the present case (Sec. IV).

II. DILATOMETRIC STUDY OF KFeF, POWDER

A. Experimental conditions

KFeF, powder was obtained by the hydrothermal
diffusion technique: FeF; is introduced with KF into a
gold tube. The solvent is pure dilute HF. The crystalli-
zation conditions are realized with a temperature about
470 K and a pressure of 4 X 10° Pa.

X-ray powder patterns were recorded with Cu Ka ra-
diation using a rotating anode on a high-accuracy
goniometer (A@=10"3"). The sample was placed in a
furnace under helium pressure to avoid decomposition at
higher temperatures. The patterns were recorded from
room temperature up to 620 K. At this last temperature,
the sample began to decompose. Lattice parameters were
calculated using at least 15 lines at each temperature.

B. Results

Lattice parameters have been determined and are given
in Fig. 3 as a function of the temperature from room tem-
perature up to 620 K. These curves clearly exhibit two
temperature ranges.

(1) T>410 K. We observe a regular and linear depen-
dence of the three parameters a, b, and ¢ on the tempera-
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ture, which can be approximated with a very good accu-
racy by the following relations:

a=(0.142X10"3)T +7.587 ,
b =(0.0335X1073)T +3.8923 , (1)
¢ =(0.441X10"3)T +12.140 .

A preliminary experiment has shown a general de-
crease of x-ray intensities above 570 K which is related to
the decomposition of the sample under usual atmospheric
conditions. In order to investigate the eventual high-
temperature phase transition I—1II, the sample has been
heated under helium pressure up to 620 K and we could
not observe any anomaly in the dilatometric curves. In
Hidaka’s description, the transition I—II is character-
ized by the doubling of the a parameter and phase II ap-
pears as a twofold superstructure of the phase I; conse-
quently, the lines (hk/) with odd 4 should vanish at the
transition. We could not show any change in the relative
intensity or linewidth of these lines, and so we could not
find any evidence for the existence of the hypothetical
phase 1.

(2) T<410 K. We observe a discontinuity of the slope
of the dilatometric curves, respectively, at 395 K for the
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FIG. 3. Evolution of the lattice parameters of KFeF, vs tem-
perature.
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a and b parameters at 408 K for the ¢ parameter. These
features clearly refer to the phase transition II—III, but
with two characteristic temperatures. The evolution of
the a and b parameters are similar and outline a contrac-
tion of the structure along the corresponding axes. This
evolution is in good agreement with the involved rotation
of the FeF¢ octahedra around the c axis, as it was de-
scribed elsewhere,® and as it will be discussed in Sec. V.

As far as the ¢ parameter is concerned, the tempera-
ture characterizing the slope discontinuity is higher (408
K) and we observe an enhancement of the cell along the z
axis from phase II to phase III, which cannot be directly
correlated to the rotation of the FeF4 octahedra. Our re-
sults confirm the hypothesis of a double transition: a first
one at 408 K and a second one at 395 K. The first one
has also been reported by Saint-Grégoire’ from
diffractometric results (intensity of the superstructure
lines) and is related to the doubling of the b parameter.
Nevertheless, we do not observe, at this temperature, any
anomaly in the evolution of the b parameter in our dila-
tometric curves, and therefore any evidence of the rota-
tion of the octahedra. This first transition seems to be
characterized by a structural distortion along the c axis
with a doubling of the translation period along the b axis.

We could not show, in the powder diffraction patterns,
any discontinuity of the intensity or the linewidth of the
reflections around the transition II—-III. This confirms
the quasicontinuous character of this transition and will
justify the description of the phase transition by the Lan-
dau theory of second-order transitions.

III. 4D DESCRIPTION OF PHASE III

In this section, we shall describe the structure of phase
IIT using the monocrystal diffraction data obtained from
our preceding structural study,® and using the superspace
symmetry description.

A. Symmetry superspace group

As far as stronger reflections are concerned, the
diffraction pattern of phase III is similar to phase II [re-
ciprocal cell (a*,b*,c*)]. But one can also observe very
weak superstructure reflections located at (0,%1,0) from
stronger reflections (Fig. 4). Below the transition, there is
no loosening of the extinction condition of phase II (A4
centering).

In a 3D treatment [Fig. 4(b)], one doubles the b param-
eter to index all the reflections.’® The new cell is

(a’,b’,c’) with a’=a, b'=2b, ¢c'=c . (2)

It is a primitive cell. However, one can see in Fig. 4(b)
that the reflections of the (hkl) type with k even are in
agreement with an extinction rule (which corresponds to
the A centering of phase II) but the reflections (hk/) with
k odd (superstructure reflections) do not follow this rule,
and this extinction leads to the reflection condition

(hkl) with k even: k +2]=4n . (3)

It does not agree with any symmetry operation of a 3D
space group: this condition cannot be considered in this
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FIG. 4. Schematic representation of the (0kl) plane of the
diffraction pattern of KFeF,: (a) phase II, (b) phase III in the
superstructure cell, (c) phase III in the cell of the basic struc-
ture, modulated by a q vector.

classical treatment. Moreover, no difference between su-
perstructure reflections and stronger reflections (on the
nodes of phase II) is taken into account in the interpreta-
tion of the diffraction pattern. :

Now, if we want to take into account the respective in-
tensities of the superstructure and main reflections, we
can consider phase III as a modulated phase of phase 11
with a commensurate wave vector q‘—‘%b*, and it will
be possible to use the (3+d)-dimensional approach
developed by de Wolff, Janner, and Janssen.®

The modulated structure admits for basic structure the
structure of phase II. Then, all reflections can be indexed
by four integers [Fig. 4(c)]:

S=ha*+kb*+Ic*+mq . 4)

The stronger (or main) reflections are indexed with
m=0 and define the basic structure of the modulated
phase. The weaker reflections of the superstructure, or
satellite reflections, are given by m ==*1. Their intensi-
ties are related to the difference of electronic density be-
tween the modulated and basic structures, and so allow
us to calculate the atomic displacements from the average
atomic positions. If we now consider each group of
reflections m=0 and m =+1 as a whole, we recover a
centered diffraction pattern.

The 4D lattices are now generated by the following
basis vectors* in the reciprocal space:

ay=a*,
SR (5)
ay=c*,
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and in the direct space
alza )
a2=b—e4/2 5
(6)
a;=c,
a4=e4 >

where e, and e} are, respectively, the unit vectors orthog-
onal to R3 and to R 3*.
The reflection condition (3) becomes

(hkim), k +1=2n .

Now it corresponds to the centering translation
(a,+a;)/2 in the supercell. The corresponding 4D Bra-

mmm

vais class is P ”1 11 (de Wolff, Janssen, and Janner’s nota-
tion'*) or P212,m,m (Weigel, Phan, and Veysseyre’s no-
tation!3).

We can outline here that, what we have called until
now, systematic extinction for the vanished nodes of the
high-temperature phase cannot be a rigorous one. These
nodes correspond to main reflections and to second-order
satellites of our modulated structure. The extinction rule
is only valid for main reflections and it could be possible
to measure a weak intensity corresponding to the satel-
lites. In a 3D description, it is not possible to make the
distinction between these different reflections, and it is
why we cannot speak of a real extinction. However in a
4D description, we can explain the eventual very weak in-
tensity of these nodes only by the existence of second-
order satellites and so, we can speak of a real extinction
condition: (hklm), h +1=2n.

The diffraction pattern of the basic structure coincides
with the pattern of the high-temperature phase II. So, we
have chosen the space group (Amma) as group of the
basic structure, and we obtain four possible superspace
groups:

pApme, pAmne pAnza, and pAPRY.
The other reflection conditions which are observed on the
diffraction pattern (hkOm: h +m =2n and no condition
for 0kim) lead to the group P A{"%";‘.

The real structure is a section of the supercrystal per-
pendicular to the fourth coordinate axis'* (internal coor-
dinate). When the modulation vector is incommensurate,
the different sections of the supercrystal are all equivalent
and correspond to different arbitrary phase shifts of the
modulation wave.

For commensurate modulations, different sections by
the 3D space refer to different 3D structures. The first
step is to determine the good one, which corresponds to
the real structure.!® We can characterize these different
sections by their coordinate ¢ along the fourth direction,
which also characterizes the phase shift of the modula-
tion wave.

Those different 3D sections of a 4D structure have
different 3D-space groups since the modulation is com-
mensurate and since each section keeps a translational
symmetry group, which is a subgroup of the basic struc-
ture one. The difference between them is reflected by the
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different 3D groups involved, which are different restric-
tions of the 4D-group to the physical 3D space. All their
symmetry elements (R /v), where R is a 3 X3 matrix and
v a translation 3D vector, are the restrictions to R 3 of the
supergroup operators (R,e/v,7). Those which are con-
served within the physical space (the 3D section of the
supercrystal) must leave this 3D-space invariant, and
consequently, their translational component (v,7) must
belong to the 3D section. So it must fulfill the following
condition:!’

q-v:T . (7)

Using this condition it is possible to determine the 3D

groups for each section of the superspace group PAT{"Q’

(Fig. 5).

The operators with e= +1 have a 7 value independent
of the choice of the origin along the fourth dimension;
they will be operators of the 3D group or not, indepen-
dently of the choice of the origin, i.e., independently of
the chosen section. But for the operators with e=—1,
the 7 values depend on the choice of this origin and these
operators belong to the 3D-space group only for a partic-
ular set of 3D sections.

In our case, the operators with e= +1 which fulfill the
condition (7) define a 3D-space group Pm2n [in the cell
(a,2b,c)]. The A centering (a,+a;)/2 of the supercell is
not a vector of the 3D space, and therefore, it is not a
symmetry element of the 3D-space group of the super-
structure. This also explains why the corresponding ex-
tinction condition is not a possible one in a classical
analysis.

The 7 value of the other operators depends on the
choice of the section. For example, if the origin is chosen
so that the 7 value of the element (m,) is zero this ele-
ment is (my,l/0,0,0,0) and it is kept in the section given
by t=0 (Fig. 5). For this section, the 3D-space group is
P2,/m2,/m2/n (Pmmn). On the other hand, if we
consider the section ¢ =%, the 7 value of the mirror plane
m, becomes +; this element is not kept but the element

¥
(m,,1/0,%,%,%) (product of m, by the A4 centering) is

272720 7%F

(@) Pmmn

A

Z\I\J\I

FIG. 5. Schematic representation of the section of the super-
space group P #1""¢ by the b,c,e, hyperplane and of its different
3D sections by the physical space. One can recognize, respec-
tively, in (a) and (b) the sections b,c of the half-cells of the 3D-
space groups Pmmn and Pmcn.
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TABLE I. 3D-space groups of the different sections of the su-

mma

perspace group P 474

t Space group [cell (a,2b,c)]
=0 mod(5) P2,/ m2,/m2/n
=1 mod(}) P2,/m2,/c2,/n
#0 mod(%) Pm2n

kept and becomes a glide mirror ¢. The 3D group of the
section t =4 is P2;/m 2,/c 2,/n (Pmcn). Considering
all the sections, one obtains the results of Table I. For all
the other sections there are no elements with e=—1 and
the space group is Pm2n.

To be consistent with the preceding 3D structure
refinement, we have to choose the section t =1 or 2 for
our 4D analysis. We can confirm this choice by refining
the structure in its 4D symmetry description and this will
allow us to outline the advantages of such an analysis.

B. Structure

We have just seen that the real structure is the section
t =1 or 2 of the supercrystal. In fact, the 3D structures
of these two sections are equivalent. One can deduce the
second one from the first one by a translation of the ori-
gin of (b+c)/2. In the following, we have chosen the
section t=1. The least-squares refinement program
REMOS (Ref. 18) works in this 4D description but in the
section t=0. Consequently, we have translated the cell
origin along the fourth axis by a vector }. The symmetry
elements of superspace group P A’l"%"? are given in Table II
for the preceding choice of the origin.

The displacive modulation u* of the uth atom is
defined by the atomic displacement coordinates uf from
the average position X #:

uf=xt—x" (i=1,2,3). ®)

In the 4D treatment, these displacements are periodic
functions of the fourth variable X §{=(g;X #)-+t and they
can be written by their Fourier series. For a commensu-
rate modulation, only a finite number of uf(X %) values
are real displacements in the modulated structure. This
number is the order of the superstructure. In our case,
this order is 2 and the Fourier series can be restricted to
the first order without any approximation:

ul(x §)= Afcos2nx §+ Bl'sin2nx § . 9)

The basic structure, which is characterized by the

TABLE II. Symmetry elements of the superspace group
P A77¢ with the cell origin at £ = .

1 (E,1/0,0,0,0) 5 (1,1/0,0,0,3)

2 (m,,1/1,0,0,0) 6 (2,,1/%,0,0,3)
3 (2,,1/0,0,0,1) 7 (m,,1/0,0,0,1)
4 (m,1/4,0,0,7) 8 (2,,1/4,0,0,1)
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average-position parameters, is the structure of phase II.
There are five independent atoms, respectively, in special
positions a, b, ¢, and f for Fe, F(1), K and F(2), and (F3).
There are four independent average-position parameters
(X #). The fact that the atoms are in special positions
also implies restrictions for the displacements: the dis-
placement of an atom which is changed into itself by a
symmetry operation has to be invariant by this operation,
ie.,

Mw

ufx =3 R uMext—1)), i=12,3, (10)

y=i

J
where R;; is the matrix element of the symmetry operator
and 7 is the fourth coordinate of its associated transla-
tion. »

Using this relation and the preceding development of
the displacement of each independent atom, one obtains
11 independent positional parameters for the Fourier am-
plitudes A}/ and B{*. The modulated structure is then de-
scribed by 15 positional parameters and, respectively, 5

and 16 independent parameters for the isotropic and an-
isotropic temperature factors.

The program REMOS (Ref. 18) calculated the structure
factors using the preceding four-dimensional analysis and
minimized the reliability factor R ,:

R,= 3 w,(Fo»— Feale)? / S w, Fe? (11)
i i

where w; is a weight factor, and F™ and Ff?!° are the ob-
served and calculated structure factors. Unit weights
have been used for all reflections. The atomic-scattering
factors have been taken from Ref. 19. After correction of
secondary extinction, the refinement converged at
R, =0.046 for 1410 reflections. Final parameters are list-
ed in Table III.

This R factor is quite equivalent to 3D R factors
(R=0.047 and R=0.044, respectively, with unit weights
and nonunit weights in space group Pmcn) but the num-
ber of refinement parameters is reduced in the 4D
refinement from 60 to 31. By averaging the final values of

TABLE III. Final-position and thermal parameters. Italic numbers represent the allowed parame-
ters of the 4D refinement. Numbers in square brackets are the values calculated from the equivalent

final parameters of the 3D refinement (Ref. 9).

Average A B B
K x 0.25 0.0 0.0 1.41(2)
[0.25] [0.0] (0.0) [1.407?
y 0.0 0.0007(3) —0.0007(3)
[0.0] [0.0]? [0.0]?
z 0.729 32(7) —0.0039(1) —0.0039(1)
[0.729 23] [ —0.0037] [—0.0037]
Fe x 0.0 0.0005(1) 0.0005(1) 0.533(3)
[0.0] [0.0004] [0.0004] [0.606]
y 0.0 0.0 0.0
[0.0017° [0.0] [0.0]
z 0.0 —0.0011(1) —0.0011(1)
[0.0] [—0.0011] [—0.0011]
F(1) x 0.0 0.0316(4) 0.0316(4) 1.69(3)
[0.0] [0.0313] [0.0313] [1.75]
y 0.0 0.0 0.0
[—0.00461° [0.0] [0.0]
z 0.5 0.0016(3) 0.0016(3)
[0.5] [0.0017] [0.0017]
F(2) x 0.25 0.0 0.0 1.25(6)
[0.25] [0.0] [0.0] [1.31]2
y 0.0 —0.0581(7) 0.0581(7)
[0.0] [—0.0581}* (0.0581)?
z —0.0341(3) —0.0015(4) —0.0015(4)
[—0.0341] [—0.0014] [—0.0014]
F(3) x 0.0466(3) 0.0010(4) 0.0010(4) 1.34(4)
[0.0467] [0.0010] [0.0010] [1.39]°
y 0.0 —0.0112(7) 0.0112(7)
[0.0] [—0.0106]* [0.0106]*
z 0.1495(2) —0.0014(2) —0.0014(2)
[0.1493] [ —0.0010] [ —0.0010]

#Average value of two different independent parameters.

®Value fixed to O by symmetry.
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equivalent independent refinement positional and thermal
parameters of the 3D study,” it is possible to calculate the
corresponding parameters of the 4D description. These
values are given in square brackets in Table III; they are
very close to the refined values of the 4D study. The
number of reflections is not exactly the same in both
refinements because some very weak intensities at the
vanished nodes of the basic structure, allowed in the
Pmcn space group, have been suppressed in the second
refinement. [Either they are second-order satellites
(m ==2) or they have not been correctly measured.

The interatomic distances have been calculated with
the final values of the 4D description. Their typical
values for an octahedron FeF4 are given in Table IV.
They are about the same as in the first study, except the
Fe-F(1) distances. In the superstructure description
(Pmcn), there are two nonequivalent distances in an oc-
tahedron: 1.946(4) A and 1.973(4) A.° In the 4D
description, these two distances are still nonequivalent
but their refined values are identical within their standard
deviations: 1.9596(40) A and 1.9603(40) A. The Fe
atoms do not seem to move along the Fe—F(1) bonding.
The F-F distances are almost the same in phases II and
II1, and the distortion of the octahedra during the phase
transition is very small. The structural evolution during
this transition II—1III corresponds to a tilt of the octahe-
dra of about 7.0(2)° around the c axis, as already
discovered in our first study.’

Thus, the 4D refinement in space group P’ﬂ"%"f
confirms very clearly the previous structural result in
space group Pmcn, and gives an equivalent structural
description. But it allows us to give a better description
of the symmetry, taking into account all the extinction
conditions of the diffraction pattern, and consequently, it
allows us to reduce the number of independent
refinement parameters.

IV. LANDAU THEORY, ORDER PARAMETER,
AND SUPERSPACE GROUP

After the structural description of the modulated
structure, we are now going to describe the symmetry of
the low-temperature phase by means of the irreducible
representations (IR’s) of the space group of phase II, con-
sidered as the prototype high-temperature phase. In the

PH. SCIAU AND D. GREBILLE 39

first part, we shall consider the Landau theory for con-
tinuous structural transitions?""?? and derive the active
IR’s leading to phase II. In the second part, we shall
derive the symmetry operations of the modulated struc-
ture from the preceding IR’s, following the analysis pro-
posed by Perez-Mato et al.?>%*

The transition is associated with the wave vector q
(0,1,0) and so, we must consider the IR’s of the space
group Amma at the point (0,77/b,0) of the A line of the
Brillouin zone. Let I'y, 'y, I';, and I'y be these four two-
dimensional IR’s. They are given in Table V.?* The
components of the order parameter associated with a
two-dimensional IR I'; are Q and its complex conjugate
0* (Q =pe'?and Q*=pe ~'¥).

Let us now consider the symmetry operations for each
IR that leave the components of the order parameter in-
variant, and the conditions on the phase value ¢ neces-
sary to realize this invariance property. This phase value
@ will only have an influence on the mirror plane orthog-
onal to b. If =0 mod(7/2), the mirror m,, is present in
phase III, while if o =7/4 mod(w/2), the mirror is associ-
ated with a translation of c¢/2. In the other cases, the
mirror plane is lost.

One can deduce from the present analysis the different
3D space groups associated with each IR I'; and with
each value of the phase ¢. They are given in Table VI.
Each IR gives two centrosymmetric space groups for the
particular values of ¢ =0 mod(7/4) and a noncentrosym-
metric one for the other values of .

After these preliminary symmetry considerations, it is
now possible to determine the stable solutions, i.e., the
solutions which minimize the free energy F. The expan-
sion of the density of F can be written

F(Q,0%)=aQQ* +B(QQ*)*+y(Q*+0*")

90"
ay

+ioc |Q +x

+ 90
Q a

(12)

The fourth term is a Lifchitz invariant. The existence of
such a term in the free-energy expansion claims either
that the transition is really discontinuous or that the
low-temperature phase is inhomogeneous.?® Therefore,
an intermediate incommensurate phase between phases I1

TABLE IV. Interatomic (Fe-F) and (F-F) distances (A) and cell parameters in phases II and III.

Standard deviations are given in parentheses.

Phase II Phase III
a 7.645(1) 7.612(1)
b : 3.906(1) 3.890(1)
c 12.323(2) 12.297(2)
Fe-F(1) 1.953(1) 1.960(4) 1.960(4)
Fe-F(2) 1.957(2) 1.959(3) 1.964(3)
Fe-F(3) 1.868(2) 1.870(3) 1.876(3)
F(1)-F(2) 2.765(3) 2.772(4) 2.779(4) 2.774(4) 2.767(4)
F(1)-F(3) 2.702(3) 2.686(4) 2.709(4) 2.735(4) 2.714(4)
F(2)-F(3) 2.740(3) 2.740(4) 2.747(4)
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TABLE V. Irreducible representations of D1, = Amma at (0,7 /b,0).

D} r, r, T, T,
1 1 0 1 0 1 o 10
Id 0 1 0 1 0 1 0 1
2 1 0 T o T o 1 0
my 0 1 o 1 0o 1 0o 1
3 1 o 1 0 1 o 1 0
2, 0 1 0 1 0 1 o T
4 1 0 1 0 1 0 10
m, 0 1 0o 1 0o 1 o 1
5 0 1 0 1 0 1 0 1
I 1 0 1 0 1 0 1 o0
6 0 1 o T o 1 0 1
2, 10 T 0 T 0 1 0
7 0o 1 0 1 0 1 0 1
m, 1o i o0 1 0 10
8 0 1 0 1 o T o T
2, 1 0 1 0 10 1T 0
(0L ] i 0 i 0 i 0 i 0
©.3:2) o 7 (U 0o 7 o 7

and III could exist.”!! In the last hypothesis, the transi-
tion between the intermediate phase and phase III should
be a lock-in transition, which is usually a first-order one,
but the discontinuity can be very weak. This hypothesis
seems to agree with Saint-Grégoire’s study'! and with our
previous results (Sec. II).

The stability conditions are the same for all the IR’s

=0 mod(m7/4) . (13)

In a preceding study,!! only the case =0 had been

considered and we have seen from Table VI that it leads
to the space group Pmmn for the IR T',. This last space
group is also proposed by Hidaka.® But now we must
also consider the possible solution ¢=m/4, and in the

same IR T, this value leads to the space group Pmcn,
whicgl agrees with our preceding structural determina-
tion.

In any case, the symmetry of the order parameter is
given by the IR I', and it is now possible to make a com-
parison between these last results and the 4D analysis of
Sec. III. The four IR’s of the space group Amma at the
point (0,7 /b,0) can be associated with the four possible
superspace groups with basic structure Amma, and the
different choices of the phase value of the order parame-
ter can be associated with the different sections of the su-
perspace groups by the physical space; the phase ¢ value
of the order parameter is equivalent to the phase variable
t of the 4D treatment. The equivalence is outlined in

TABLE VI. 3D-space groups related to each IR of D1} and to the different possible values of the
phase @ of the order parameter, and 3D-space groups related to the different possible sections of the
different superspace groups of basic structure Amma.

Phase ¢ =0 mod(7/2) ¢=(7/4) mod(w/2) @#0 mod(w/4)
IR
r, Pmma Pmca Pm2a P Apme
r, Pbma Pbca Pb2a P Amme
I, Pbmn Pbcn Pb2n p Amma
r, Pmmn Pmcn Pm2n pArma
Superspace
group
t=0 mod(}) t=1 mod(}) t#0 mod({) Section
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Table VI where one can see the different 3D space groups
associated either with an IR I'; and a ¢ value, or with a
superspace group and a ¢ value.

Up until now we have clarified the symmetry of the
low-temperature phase III, first using the crystallograph-
ic concepts of the four-dimensional superspace groups on
the basis of the description of the diffraction pattern, and
second using the Landau theory. Both descriptions are
not independent. It is possible to find again the super-
space group or the equivalent symmetry operations
straight from the IR I',. For an incommensurate struc-
ture which results from the appearance of a displacive
distortive mode at the transition, it has been shown that
the superspace group can be deduced from an enlarged
group of transformation which leaves the Landau free-
energy expansion invariant.?*2*

The normal coordinates of the distortive mode of the
low-temperature phase, belonging to the IR TI',, are
{Q,0*}, and these coordinates transform into {Q',Q"*}
by the action of the symmetry operator (R /v):

) (14)

AR
where D (R /v) is the matrix of the IR I'; corresponding
to the symmetry operator (R /v). We can easily verify
that the Landau expansion (12) is invariant through the
action of the symmetry operations of the group
G,= Amma.

In particular, it must be invariant through all the
translation operations of this group. If the modulation
vector q were incommensurate, such a translation opera-
tion would correspond to an irrational phase translation
of the normal coordinates. This would induce the invari-
ance of F through any arbitrary phase translation of the
normal coordinates, and this would imply that y in (12)
should be 0. In fact, q is commensurate (q=1b*) and all
the translation operations of G, are only associated with
a finite number of phase translations (0,7/2,7,37/2)
modulo 27 and one can then easily verify the effective in-
variance of F.

In the case of an incommensurate phase, Perez-Mato
has still shown that it is possible to consider more general
transformations keeping the free-energy invariant, which
consist by associating to a symmetry operation (R /v) of
Gy, a phase translation ¢ of the normal coordinates
{Q,0*}, in such a way that we can write

o)

In this case, this is a consequence of the invariance of F
through the action of any arbitrary translation of the
coordinate phases. The set of these generalized transfor-
mations forms a group. The superspace group corre-
sponds to the subgroup of this general group which keeps
the modulated structure invariant, i.e., which leaves the
normal coordinates unchanged.

In our commensurate case, most of the terms of the
free-energy expansion are effectively invariant through

exp(2mi¢) 0
0 exp( —2mig)

D4(R /v)

Q ]
Q* )
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such an operation, except for the third term y(Q*+Q**).
If we consider only the pure phase translations

e AR
The invariance of this third term implies the particular
values {0,4,+,2} modulo Z of ¢, and we have seen that
this choice is related to the commensurability of the q
vector. The only difference with the incommensurate
case is that now the set of the phase translations forms a
discrete group.

The symmetry group of the low-temperature phase is
given by all the symmetry operations (R, /v;) and the as-
sociated phase translation ¢;, keeping the normal coordi-

nates of the order parameter invariant:

le

exp(2mi¢d) 0
0 exp(—2mid)

exp(2mig;) 0

0 exp(—2mi¢;) DR 7v))

Q*

3
e* ]
(17)

First, let us consider the case (R j =Id,v=0). Relation
(17) implies ¢; =0 mod(Z). So we can associate with the
identity in R?®, the enlarged symmetry operations
[1d /(0,0,0);n] (n €Z). These operations are equivalent
to the pure translation operations along the fourth direc-
tion of our superspace symmetry group. In the following,
all the ¢ values will be given modulo Z.

In the same way, the basic R? translations a, b, ¢ be-
come, respectively, [Id/(1,0,0);0], [Id/(0,1,0);—1],
and [Id /(0,0,1);0] which are, respectively, equivalent
to the translations a,, a,, and a; of the supercrystal.
The centering translation (b/2+4+c/2) becomes
[1d /(0,%,1);2] which corresponds to a pure centering
translation of our 4D cell (the lattice translation
(a,/2+a;/2) corresponding to the A4 centering in the 4D
cell is equivalent from (6) to the translation
(b/2—e4,/4+c/2) which is directly described by the no-
tation [Id /(0,1,1);31).

One can also deduce the ¢ value attached to each sym-
metry operator of G,: these respective values for the
operations [Id /(0,0,0)], [m, /($,0,0)], [2,/(0,0,0)],
and [m, /(1,0,0)] are 0, 0, 4, and +. They correspond to
the respective associated translations in the fourth direc-
tion for the corresponding 4D symmetry operators of
Table II.

For the other symmetry operations of G, which in-
verse q into —q, the relation (17) gives a condition which
depends on the phase @ of the order parameter. As a
matter of fact, the choice of this phase ¢ is related to the
choice of the origin along the internal direction of the su-
percrystal, and the phase translation associated with such
a symmetry operation which reverses e4, depends on the
choice of the origin along this axis. Considering, for ex-
ample, the inversion operation, from (17), one can write

o) exp(2mi¢;) 0 0
o* - 0 exp(—2mid;) o*
(18)

01
10
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with Q =pe’?. It follows: ¢;=¢/m mod(Z).

We have seen that ¢; must be 0, 4, 4, or 3+ modulo Z,
which implies particular values for ¢. These values cor-
respond to the stability conditions (13) derived from the
minimizing of the Landau free-energy expansion.

Taking ¢ =0, the inversion becomes [ /(0,0,0);0] and
the related group in the 3D space is Pmmn. Taking
@=3m/4, the inversion becomes [I/(0,0,0),3], which
corresponds to the symmetry element 5 in Table II. The
related 3D space group is Pmcn and corresponds to the
section ¢ =1 of our 4D solution P“77¢. So a change of
the ¢ value corresponds to a translation of the origin
along the fourth axis. This approach allows us to find
again the superspace group and the stability conditions.

V. DISCUSSION AND CONCLUSION

In the present work we have confirmed our previous
results about the structure of phase III of KFeF, by con-
sidering this phase as a modulated one, by the two
different approaches usually used for the structural
description of the incommensurate modulated structures:
on the one hand, the 4D analysis in the superspace group
symmetry (Sec. III), on the other hand, the symmetry
analysis by means of the free-energy expansion and of the
theory of the IR’s (Sec. IV). These methods are also ade-
quate to describe the commensurate modulated struc-
tures, even of lower order, and have been proved to give
consistent descriptions. They allow us to give a better in-
terpretation of the diffraction pattern and to describe the
whole symmetry of the modulated phase, which is only
partially given by a classical 3D-space group, and thus, to
need a smaller number of refinement parameters. The 4D
description is more rapidly deduced from the observation
of the diffraction pattern and the tabulation of the
monoincommensurate 4D-space groups, and it offers
more facilities to derive the final structural parameters.
The second description, based on the invariance of the
free energy, outlines the IR which governs the atomic
displacements, during the phase transition II-III. It al-
lows us to derive together the group of the generalized
symmetry operations equivalent to our superspace group,
the particular value of the phase ¢ equivalent to our par-
ticular sections, and to give the stability conditions of the
modulated structure.

A further analysis of the atomic displacements in the
modulated structure shows that they are compatible with
a rotation of all the octahedra FeF4 around the c axis
(displacements u 'V, u5®, and u}®), associated with a
deformation (displacements u™, 5V, u§®, and u§?)
and with a displacement of the K atoms in the b-c plane
(displacements u X and uX). From the final parameters
of the refinement (Sec. III, Table III), one can see that the
amplitudes of the parameters of the first group are higher
than the amplitudes of the other groups and, in fact, the
combination of all the real atomic displacements almost
reduce to a rigid-body rotation of the octahedra around
the c axis.

If we reduce the mechanism of the transition in this
way, we can identify the angle o of the rotation of the oc-
tahedra to be a good approximation of the amplitude of
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the order parameter of the transition. A rough estima-
tion of this parameter can be done from the evolution of
the lattice parameters as a function of the temperature, as
it was derived from powder dilatometric curves (Sec. II).
In phase II, we have observed a linear variation of the a
and b parameters and in this range of temperature, we
can agree that the b parameter is twice the Fe-F(1) intera-
tomic distance, because the atoms are aligned along the b
direction, regardless to the anisotropic thermal motion of
F atoms along the a direction.

The observed contraction of the b parameter at the
transition corresponds to the tilt of the octahedra, and
the new b parameter should now be given by

B =2d[Fe—F(1)]cosw . (19)

A quantitative determination of the w parameter from
this relation is not reliable, since it would require an ac-
curate knowledge of the interatomic distances Fe-F(1) as
a function of the temperature; nevertheless, the relative
evolution of the b parameter is well compatible with a
similar evolution of an order parameter associated with
the transition II—-III and this confirms the interpreta-
tion of phase III as modulated structure of phase II.
Thus, KFeF, is a good example which proves that the
4D analysis also very adequate to deal with some super-
structures which can be interpreted as modulated struc-
tures. In the same family, KAIF, (Refs. 27 and 28) has a
structure which is very close to the structure of KFeF,.
This compound presents a phase transition at 250 K; al-
though the mechanism of the transition is very different
(it is a martensitic one), these two structures can be de-
scribed from the same prototype structure: the structure
of phase II of KFeF, (Fig. 2). As phase III of KFeF,, the
low-temperature phase of KAIF, is derived from the
basic structure by a tilt of the octahedra around the c
axis (about 4°) which imposes the doubling of the b pa-

./
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\\
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FIG. 6. Schematic representation of the tilt of the octahedra
layers in KFeF, (solid lines, cell a,2b,c, space group Pmcn) and
KAIF, (dotted lines, cell a,2b,(c-b)/2, space group P2,/m).
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rameter (the a parameter in the setting chosen by Launay
et al.”’). But the symmetry relations between two adja-
cent octahedra layers are different as it is shown in Fig. 6,
and lead to two different lattices for the low-temperature
phases: the c translation is kept for KFeF,, but not the
A centering and conversely for KAIF,; this leads, respec-
tively, to an orthorhombic and to a monoclinic lattice.
This can be also seen from the diffraction patterns, which
are similar to the main reflections and differ by the posi-
tions of the superstructure reflections; for KAIF, they are
located at (0,1,1) and (0,—4{,—1) from the main
reflections and all systematic extinctions are in agreement
with the 3D-space group P2,/m. There is no extra ex-
tinction rule which cannot be explained by a symmetry
operation of a 3D-space group.

Thus, the treatment of the low-temperature phase of
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KAIF,, by the previous methods for modulated struc-
tures would not give a better description of the structure,
and both descriptions in 3D and 4D analysis should be
equivalent. But, in the same family, the compounds
KVF, and KTiF, are isostructural with KFeF,, and we
can make the assumption that they could be usefully de-
scribed as modulated structures, even if they are charac-
terized by a first-order transition.
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