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Monte Carlo renormalization-group study of spinodal decomposition: Scaling and growth
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The kinetics of domain growth during the late stages of spinodal decomposition is studied by the
Monte Carlo renormalization-group technique. A block-spin transformation is applied to the evolv-

ing configurations of the two-dimensional kinetic Ising model with conserved order parameter.
This acts to renormalize the growing domains, the moving interfaces between them, and the coupled
long-range diffusion fields. The growth law for the average size of domains, R (t)-t", where t is
time, is determined self-consistently by a matching condition. The result for the growth exponent,
n =0.338+0.008, is consistent with the classical result of Lifshitz and Slyozov for Ostwald ripening,

namely, n = 3. A scaling form for the structure factor is obtained which is invariant under the

renormalization-group transformation, to the accuracy of our study. For large wave numbers k, it
is found that the scaled form of the structure factor F is in good agreement with Porod's law; i.e.,
F ( kR ) —1/I kR )"+', in d =2 dimensions.

I. INTRODUCTION

There is considerable interest, both theoretically and
experimentally, in the growth kinetics which occur dur-
ing first-order phase transitions. Typically, a system is
rapidly quenched from a high-temperature disordered
state to a temperature well below its ordering tempera-
ture T, . The system then evolves from this initial state to
its final equilibrium state, consisting of two coexisting
phases. If phase separation involves the growth of order
from an unstable state, the dynamical process is called
spinodal decomposition.

In spinodal decomposition, a long-wavelength instabili-
ty creates a network of interpenetrating and intercon-
nected domains which coarsen and grow to macroscopic
size as time evolves. This is shown in Fig. 1. Experi-
ments and computer simulations find that, for late times,
the growth of ordered domains involves a single, time-
dependent length to which all spatial dependencies scale. '

This length is the average domain size R (t). For exam-
ple, the order-parameter correlation function g(r, t),
defined explicitly below, which is a function of spatial po-
sition r and time t, satisfies g(r, t)=G(rlR (t)). Indeed,
one can see in Fig. 1 that if one were to shrink one of the
configurations at late times, the system is similar to itself
at an earlier time. Furthermore, domain growth often
satisfies power-law growth,

R(t) —t",

netic Ising model, and a nonlinear Langevin equation
which is sometimes called the Cahn-Hilliard-Cook equa-
tion; one important experimental representation is pro-
vided by phase-separating binary alloys. At the present
time, the nature of scaling and growth for spinodal
decomposition are controversial. To address these issues
from first principles, we have carried out a Monte Carlo
renormalization-group study of spinodal decomposition.

The Monte Carlo renormalization-group method was
originally developed by Ma and extended by Swendsen

~'

for late times, where n is the growth exponent. It is gen-
erally believed that n and time-independent shape func-
tions like G are universal features of the growth kinetics
of first-order phase transitions. In other words, many
physical systems, if they are members of the same univer-
sality class, share these kinetic characteristics. Here we
study the universality class of "model B," where the sca-
lar order parameter is a conserved quantity. Theoretical
representations of this class include the spin-exchange ki-

FIG. 1. Configurations at times 1000, 20000, 100000, and
160000 MCS's.
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and others, who applied it to a variety of equilibrium
problems. Tobochnik, Sarker, and Cordery have extend-
ed this technique to the study of dynamical critical be-
havior. It was also used to study order-disorder transi-
tions in the two-dimensional kinetic Ising model and the
Potts model on a square lattice. The method involves
matching correlation functions at different levels of re-
normalization using a conventional block-spin transfor-
mation. We generalize and extend it to the present prob-
lem below.

In contrast to this standard renormalization group, a
novel renormalization-group method has been developed
by Mazenko, Valls, and co-workers ' for growth kinet-
ics. They consider the behavior of finite-size systems em-
bedded in an "infinite" lattice. Monte Carlo simulations
are then used with analytic theory to both verify a scaling
relation for the average domain size and to determine a
time-rescaling factor. Use of this method initially pre-
dicted a logarithmic growth law R (t)- lnt for the kinetic
Ising model of spinodal decomposition (this result has
now been withdrawn in favor of n =

—,'). A more recent
perturbation expansion approach for Langevin-type mod-
els yielded R (t)-t'r . While it has been thought that
both of these models would describe the same phenomena
(at least so far as universal long-wavelength, long-time
properties are concerned), the implication of these results
is that the two models belong to different universality
classes. We should note, however, that although a recent
paper by Mazenko, Valls, and Zannetti obtains n =

—,
' in

a more detailed account of their theory, they mention
they cannot rule out the possibility that this is a problem
for which their perturbation theory could fail, and the
growth law could then differ from n =

—,'.
These results are controversial, because the classical

theory of Lifshitz and Slyozov for Ostwald ripening dur-
ing the late stages of nucleation and growth predicts
n

3
~ While this a theory for the late-stage growth from

an initially metastable state, and so is different from spi-
nodal decomposition, the problems are related: it is ex-
pected that growth is determined by long-range diffusion
at late times, which gives n =

—,
' as we shall discuss below,

rather than by the nature of the initial instability. Re-
cently, several groups have studied this issue by different
methods. ' In a Monte Carlo study of the kinetic Ising
model, Huse" obtained n =0.29+0.04 by extrapolating
his results for finite domain size with a Gibbs-Thomson
form for n, n(R)=n(R ~~ )+C/R, where C is a con-
stant. He suggested that the finite-domain-size correction
is due to short-range diffusion along interfaces. Amar,
Sullivan, and Mountain' obtained n =0.330+0.005 in a
careful and extensive Monte Carlo study. A finite-size
scaling study by Vinals and Jasnow' was also consistent
with n =—,'. For Langevin models, recent work in dimen-

sion d =2 by Gawlinski, Vinals, and Gunton, ' Rodgers,
Elder, and Desai, ' and in three dimensions by Toral,
Chakrabarti, and Gunton' found n = —,'. Oono and
Puri' have found the same result in studies of cell-
dynamical systems, which are computationally optimized
Langevin-like models. Finally, and we believe most
significantly, recent neutron-scattering work on Mn-Cu

by Gaulin, Spooner, and Morii' ' observed n = 3.
Nevertheless, while this work addresses some aspects

of scaling, it does not do so from first principles, as the
work by Mazenko, Valls, and co-workers attempted to
do. This situation underscores the need for a more exten-
sive study, which .directly addresses scaling and the na-
ture of the renormalization group for spinodal decompo-
sition. Therefore we have carried out a Monte Carlo
renormalization-group study of the two-dimensional ki-
netic Ising ferromagnet with a conserved order parame-
ter. We consider the standard block-spin transforma-
tion. A description of our method is given in Sec. II.

In Sec. III we give our results for the growth law. We
motivate our results with a physical picture, and present
arguments for the value of n. Our analysis makes use of
several measures of domain size: the inverse perimeter
density, the first zero of the pair-correlation function, and
the first and second moments of the structure factor. A11
of these exhibit a growth law consistent with the classical
value of n =

—,', although some measures of domain size
are sensitive to transient behavior, which is iterated away
by successive application of the renormalization-group
transformation. Our result for the growth law,
n =0.338+0.008, is consistent with the classical result of
Lifshitz and Slyozov, namely n =

—,'. We do, however, ob-
serve strong transients, which can give an effective ex-
ponent of n = —,

' for analysis over a limited time regime.
This transient is shared by the Langevin model for spino-
dal decomposition, and suggests that the kinetic Ising
model and the Langevin equation may indeed share the
same universality class. Our results are therefore con-
sistent with recent theoretical, numerical, and experimen-
tal studies. "

The dynamic scaling of the structure factor is studied
in Sec. IV. A scaling form for the structure factor is ob-
tained, which is invariant under the renormalization-
group transformation. We discuss its behavior for small
and large wave numbers, and analyze the shape of the
scaling function. For large wave numbers k, it is found
that the scaled form of the structure factor F is in good
agreement with Porod's law, i.e., F(kR)- I/(kR) +' in
d =2 dimensions, which is a form factor for scattering
from thin structureless interfaces. Finally, in Sec. V, we-
conclude the paper with a brief discussion of the fixed
points of the renormalization group, and our results.

II.METHOD

The Hamiltonian of the two-dimensional ferromagnetic
Ising model is

&= —J g cr;cr

where J is the interaction constant, the sums run over
distinct nearest-neighbor pairs on a square lattice, and
the X spins can take on values of o.; =+1. The system is
quenched from infinite temperature to a low temperature
T. Following the quench, the system evolves by
Kawasaki spin-exchange dynamics: a pair of randomly
selected nearest-neighbor pairs are exchanged if there is
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g(R„t)=0 . (4)

This length scale was relatively insensitive to short-range
fiuctuations. Data for R, (t) and R, (t) were sampled
ever 50 Monte Carlo steps.

no increase in energy, or with probability exp( —5E/T),
if the exchange increases the lattice energy by 5E, where
Boltzmann's constant has been set to unity.

The simulations were performed on a Cray XMP. To
utilize the vector capabilities of the Cray, a multispin-
coding algorithm similar to that used in Refs. 12 and 21
was used. Using the binary representation of an Ising
spin as one bit of a 64-bit word, we were able to simul-
taneously process 64 independent lattices. Logical opera-
tions, with "demon bits" ' drawn from a large table of
random numbers, were used to store and update the
spins. Each of the 64 lattices was broken up into a 4X4
sublattice. Sets of corresponding spins on each sublattice
made up one of 16 vectors. One vectorized update then
corresponded to attempting to exchange the spins from
one randomly chosen vector with the spins from a
nearest-neighbor vector. Updates of X spins then made
up one Monte Carlo step (MCS). Periodic boundary con-
ditions were imposed on the square lattice.

Lattices of size X =256 and X =128 were simulated
at T=0.9T, . At this temperature, the interfaces are
significantly rough, although the system is still far from
the critical region. Furthermore, since the domain walls
are rather diffuse, we expect the Ising model and
Langevin model to be most similar at this temperature.
At lower temperatures, the underlying lattice in the Ising
model can cause important, though nonuniversal,
differences between the two models. The results for the
smaller system, which we studied over 60000 MCS's,
were averaged over 128 independent runs. On the larger
lattice, results are averaged over 128 runs for the first
46000 MCS's and 64 runs thereafter out to 280000
MCS's. We also studied N =128 systems at T=0.7T„
T=0.4T„and T=0.1T, out to 60000 MCS's. Each of
these systems was averaged over 64 independent runs.

The average domain size R (t) was monitored in several
different ways: from the inverse perimeter density, the
first zero of the pair-correlation function, and the first
and second moments of the circularly averaged structure
function. The inverse perimeter density R, (t) is defined
by22

2
2+E/J '

where E =(&/N ) is the average energy per bond, and
the angular brackets denote an ensemble average. Since
R, determines a length scale from the number of broken
bonds, it measures the domain size explicitly in terms of
the thermal correlation length g. It is sensitive to short-
range effects. The pair-correlation function g (r, t)
= (rr(r, t)cr(0, t) ) was calculated along the x and y direc-
tions and along the two body diagonals where x =y. The
first zero for each direction was then estimated by fitting

g (r, t) to a quadratic function. An average of these was
taken as an estimate of the domain size" R, (t) from

We also obtained the two-dimensional structure factor,
which is the Fourier transform of g (r, r),

s(k, r)= —g o(r;, t)e ', (5)
r,.

where k=(2'/L)(mi+nj), m, n =1,2, . . . , L, and L is
the system size. The circularly averaged structure factor,
which we examined in more detail, is

with k =2vrn/L, n =0, 1,2, . . . , L and the sum gz is

over a spherical shell defined by n —
—,
' ~ ~k~L/(2') &n

+—,'. Note that the resolution of S(k, t) depends on k„
the cutoff frequency associated with the lattice. In our
case, k, =(2m/L)n„where we have chosen n, to be the
maximum possible value which is half the lattice size.
From the first and second moments of S (k, t), two further
measures of domain size are defined as R, (t)=2~/k, (t)
and Rz(t) =2m/k2(t). The pth moment is defined as

where k =2~n/L, and n =0, 1,2, . . . , L. Finally, for all
the measures of domain size, we calculated the variance
from the fiuctuations of each run: hR (t)=((R )—(R ) )'~ . From this, the estimated statistical error 5R
was taken to be 5R =DR (r)l&JV 1, where JV is—the
number of independent runs.

We used the renormalization group to exploit the scale
invariance of the evolving system: the system is invari-
ant, provided we rescale both length and time in an ap-
propriate way. The relationship between these rescalings
is, of course, implicit in the growth law. The renormal-
ized lattices were obtained by a block-spin transforma-
tion, with length rescaling factor b =2. The majority-
rule transformation was used to generate new cell spin
variables from the original spin configurations. There
one chooses a renormalized spin from a block of b" spins
by letting the spins vote, and the majority rule. "Ties"
were broken by randomly assigning block spins the value
+1. Figure 2 shows some typical results. This Wilson-
type transformation explicitly renormalizes the domains,
the moving interfaces between them, and the coupled
long-range diffusion fields. It iterates away behavior on
short length scales, thus allowing one to investigate the
asymptotic large-length-scale properties of the system.
Roughly speaking, spinodal decomposition involves at
least two length scales: the average domain size R (t) and
the width ia(t) of the interfaces. As the domains get
larger, w/R tends to zero, and corrections to scaling due
to w become negligible. The renormalization-group
transformation iterates away the small length scale w.
This can be seen in Fig. 2. In this sense, the evolving sys-
tem approaches a zero-temperature fixed point, since the
nonzero width of w is essentially due to thermal Auctua-
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FEG. 2. Configurations on the left for N=256 system at
t =160000 MCS's as it is renormalized. Configurations on right
for N =128 system at t =20000 MCS's as it is renormalized.
Note the similarity of the configurations with this choice of time
rescaling factor.

b 1/n

III. THE GROWTH LAW

The numerical value of the growth exponent n is the
signature of the mechanism driving phase separation.

tions which roughen the interface, i.e. , w -g. It is impor-
tant to note, however, that there can be microscopic ac-
tivated processes at low temperatures in the Ising model,
which are not generated by successive iterations. of the re-
normalization group as one approaches the zero-
temperature, strong-coupling fixed point.

We determine the growth law with a matching pro-
cedure. In principle, after the irrelevant variables have
been iterated away, the probability distribution function
will remain invariant under further renormalization-
group transformations. It is expected that, after a finite
number of iterations, contributions from the irrelevant
variables will be negligible. Then, any quantity deter-
mined after rn blockings of an ¹pin system should be
identical to those determined after m +1 blockings of a
system of Xb" spins. However, since the larger lattice
has been renormalized once more, quantities will be at
different times t and t'. Hence, close to the fixed point,
one can expect a matching condition to hold:

R (N, m, r)=R (Xb",m + l, r') .

From this the time rescaling factor t'/t can be calculated,
and the growth exponent can be obtained, since

During the late stages of spinodal decomposition the sys-
tem is in a far-from-equilibrium state with many inter-
faces and thus a large amount of surface free energy. The
system decreases its free energy as domains of ordered
phase grow. The dynamics of this process is sensitive to
the presence or absence of conservation laws.

If the order parameter is nonconserved, unlike the situ-
ation we are considering, it is relatively easy to obtain n.
Then, the interfacial motion acts to reduce local surface
area; curved interfaces move, and when part of an inter-
face becomes Oat, it stops moving. The interface velocity
U is determined by the natural thermodynamic variables
of the interface. In the most simple case, v is a function
of only the local curvature K. (In two dimensions, the
mean curvature K equals 1/Rz, where Rz is the radius
of curvature of an interface, while K is the sum of the
inverses of the two radii of curvature in three dimen-
sions. ) At late times interfaces become gently curved, so
K is small. Thus one has, v(K)=DK+, to leading
order, where D is a positive constant. Since the units of
K and U are cm ' and cm/sec, respectively, D has units
of cm /sec. Therefore any length made with D, the only
parameter in the equation of motion, must obey,
R (t) =(Dt)'~, and n =

—,
' for the nonconserved system.

In the case of a system with a conserved order parame-
ter, some of these consideration still apply. The velocity
of the interfaces is such that, on average, the curvature is
reduced, since the motion of the interfaces is driven by
the minimization of surface free energy. However, when
the order parameter is conserved, the interfacial motion
is coupled to the motion of material "under" the inter-
face. For an interface to Aatten, material within curved
regions must diffuse away. Thus, although U =DE, now
the diffusion constant itself must become, say, a function
of curvature. In their most general form, the interface
equations of motion for a conserved order parameter can
involve the coupled nonlocal motion of many widely
separated domains, and are quite interactable. There
are two important situations, however, where simpli-
fications occur: long-range and short-range diffusion.

During nucleation and growth, all domains are circles
in d =2 or spheres in three dimensions. Clearly, if all
domains are of the same size, say R, =1/K„ the conser-
vation law forbids growth by minimization of local sur-
face free energy. Thus, to leading order, D =D (K)
=Do(K —K, )+,where Do is a constant, and K, is
related to the average curvature of the domains in the
system. The equation of motion becomes

v =Do(K —K, )K+

This straightforwardly yields n =
—,'. Note that large

droplets, with K (E„grow through the accretion of ma-
terial diffusing through the background matrix from
disappearing small droplets, K )K, . Thus this mecha-
nism for phase separation is long-range diffusion between
domains by evaporation and condensation. It was
identified and explained in the elegant theory of Ostwald
ripening due to Lifshitz and Slyozov.

Although we expect long-range diffusion to be the
dominant mechanism of phase separation for late times,
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it is likely that other kinetic mechanisms are important
during the intermediate stages of growth. In particular,
we expect transient behavior involving short-range
diffusion of material along interfaces. As shown in a
study of sintering by Mullins, this leads to an n =—,

'

growth law. Consider a particle moving along an inter-
face. It changes its chemical potential according to
p=po+CK, where po is the chemical potential of a Aat
interface and C is a constant. Gradients of p along the
interface are therefore associated with gradients of curva-
ture. The Aux of particles, cF, is obtained through use of8- —V,p- V,E, —where the gradient is taken with
respect to the arc length of the surface. The surface
divergence of —8 yields the increase in the number of
particles per unit area per unit time. Therefore the veloc-
ity of a surface element along its normal due to surface
diffusion is

Re

S.o 1.5
10

m=O

m=4
8.4

v =D, V,E,
where D, is a constant. Counting dimensions gives n =

—,
'

for short-range diffusion.
For spinodal decomposition, then, we expect short-

range transient behavior involving n = 4, crossing over to
long-range behavior with n =

—,', for late times. This
scenario is consistent with Huse's picture" of growth
during phase separation. He proposes that the equation
of motion is

BR(t) C D
R'(t) R '(t)

where C and D are constants. The first term is due to the
Lifshitz-Slyozov long-range diffusion, while the correc-
tion term is due to short-range diffusion. The effective
exponent, n, tt=d [ lnR (t)]/d( lnt), then has the form
n, tt= —,

' —D/[6CR (t)]+. . . This Gibbs-Thomson
form is natural since, like all thermodynamic quantities
on domains of finite size, n should be modified by its
dependence on the local curvature 1/R.

It is also of interest to know if inequalities can be found
for the growth exponent. An argument has been given by
one of us for a bound on n in terms of the dynamical
critical exponent z. If one quenches close to T„ time
scales are affected by critical slowing down. Milchev,
Binder, and Heermann have shown this can be incor-
porated into the growth law, R -t", using a simple scal-
ing argument: near T, time scales must be measured in
units of the correlation time ~, and length scales in units
of the correlation length g. This gives R /g-(t/r)". The
dynamical scaling assumption is ' r-g'. Thus
R/t"-(T, —T)'"' '~"', where v is the correlation
length exponent. It is clear, however, that since the driv-
ing force for a first-order phase transition is due to ther-
modynamic forces, and not fluctuations, thermal Auctua-
tions can only slow down domain growth, or leave it
unaffected. Certainly, fluctuations will not speed up
growth. Thus one obtains the inequality, z~ 1/n For.
model B there is an exact result from critical dynamics: '

z =4—q, where g is the correlation function exponent.
This give n ~ 1/(4 —rI). This provides a good bound on
n, since g= —' in two dimensions.

FIG. 3. R, (t) vs time for N =256 at T =0.9T,. Levels of re-
normalization indicated by m. Note that renormalization
reduces noise in the data.

20

4

o.'e

10 5

m=3
2.4

FIG. 4. R, (t) vs time for N=256 system at T=0.9T, . All
levels of renormalization shown, indicated by m, fit well to
R, (t) = 3 +Bt'

An upper bound on the value of n has been given in a
nice study by Yeung. He considered the nonlinear
Langevin equation for spinodal decomposition. He found
that a self-consistent requirement of being in the scaling
regime was that n ~

—,'. He also obtained a strong bound
on the behavior of the scaling function at small values of
its argument, which is discussed in the next section. Fi-
nally, it should be noted that Oono and Bahiana have
recently argued that the power law for copolymer lamel-
lar thickness implies that n = 3.

In order to obtain independent estimates of the nature
of growth in the scaling regime, we performed our
analysis in several ways. First, we looked for the best fits
to the renormalized data. Second, we matched R's on
different lattices at different levels of renormalization as
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FIG. 5. R, vs t' or t', as the configurations are renormal-
ized. Best fits are shown. Lines are identified by the number of
rescalings m.

outlined in Sec. II. Finally, we assumed that n =
—,', and

seen with this choice of time rescaling factor, whether or
not the R's at di6'erent levels of renormalization ap-
proached each other as we extrapolated to I/R —+0. In
the regime we investigated, the domains had grown to a
size R —10—20 lattice constants. We therefore made use

FIG. 7. Residuals of R, data to fits to power laws n =4
(lines) and n =

3 (solid squares) at various levels of renormaliza-
tion. Fit by n =

3
is significantly better.

of Gibbs-Thomson extrapolations of the form suggested
by Huse. Our results for R„R„and R2 were sensible
down to 32 systems, and to 16 systems for R, . Below
this point, domain sizes were too small to obtain mean-
ingful results.

0.38
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0.02 )~~~=

-0 04

0.08,
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e 0.02
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R ~ ~
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-0.1$ O.B i.6
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FIG. 6. Residuals of R, data to fits of n =
4 (lines) and n =

3

(solid squares) for various levels of renormalization. Note R,
initially fits well to an n =—' power law, but as data is renormal-
ized, fit to n =

—,
' better.

FIG. 8. Results of matching to estimate n with R, . Lines are
identified by levels of matching (m:m'), which are the number
of rescalings on the large and small lattice, respectively. Every
fifth data point is shown to 2500 MCS's, then every twentieth to
9500 MCS's, and every seventieth thereafter. Fits are obtained
from the full data set. Error bars are estimated from three stan-
dard deviations.
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FIG. 9. Matching for R, data with n = 3. We calculate

A=R(N, m, t)/R (Xb",m+1, tb ) and fit this to b,(R)=h(R
~ ~ ) +C/R. Lines are identified by levels of matching
(m:m'), which are the number of rescalings on the large and
small lattice, respectively.

Figure 3 and 4 show plots of R, (t) and R, (t) as a func-
tion of time. The R, data, at all levels of renormalization
down to m =3, were fit exceedingly well by
R (t) = 3 +Bt '~ . Fits of the same form by n =—,

' and
R —lnt were much worse. The R, data showed more in-
teresting behavior, because R, is more sensitive to short-
range Auctuations than R, . Before renormalization, the
R, data were fitted better by n =

—,
' than n =

—,'. (See Fig.
5.) Note that the data are fairly noisy for m =0. After
renormalization, the data are significantly smoother and
fit n =

—,
' better than n =—,'. Direct comparisons of the

fits are given in Fig. 6 and 7, where the residuals of the
data to the two fits are shown. The implication is that
there exists a strong transient, which leads to an effective
exponent of n =—„to which R, is sensitive. This is in ac-
cord with the picture outlined above. To a lesser extent
this trend is also observed in the R

&
and Rz data. There,

fits of the unrenormalized data by n =
—,
' or n =—,

' were

roughly equivalent. However, after renormalization, the
data fitted better to n =—,'. A similar transient was also
observed in simulations for Langevin equations. '

While this does not prove that the Ising and Langevin
models belong to the same universality class, it suggests
that this may indeed be the case.

We have also examined the growth of R, and R, at
quench temperatures of T =0.4T, and T =0.7T„ finding
that data for both measures of length give excellent fits to
form R = A +Bt' . Furthermore, we found the n =

—,
'

transient was considerably weaker at lower temperature.
This is due to the reduced diffuseness of the domain walls
at lower temperatures. The results of our fits are present-
ed in Table I. Investigating spinodal decomposition at
T=0.1T„we found that our data were dominated by
early-time activated processes, and the asymptotic regime

FIG. 10. Matching for R, data with n = 3, as in Fig. 9.
Lines are identified by levels of matching (m:m ), which are the
number of rescalings on the large and small lattice, respectively.

6=R (N, m, t ) /R ( Xb, m + 1, tb ) . (13)

was never reached.
Our most reliable estimate for the value of the growth

exponent comes from the matching condition described
in the preceding section. Note that the matching requires
not only the exponent of growth to be the same as the
evolving configurations are iterated, but also that the am-
plitude A of the growth becomes identical, where
R —At". We obtained an effective n by determining the
ratio of times on two lattices at different levels of renor-
malization, which gave equal domain sizes. Using this
n (R ), we estimated the asymptotic exponent by general-
izing Huse's formula, i.e., by fitting to n (R ) = n (R
—+ ~ )+C/R. The data for R, are presented in Fig. 8.
The estimates for n from the first three levels of matching
are approximately 0.328, 0.335, and 0.349. Averaging
these gives us our best estimate for the growth exponent,
0.338+0.008, which is in good agreemerit with the classi-
cal value of —,'. The error is estimated to be 3 standard de-
viations of the statistics in the data. We can also see that
the renormalization-group transformation makes the con-
starit C smaller as one would expect. The results for R,
are more sensitive to short-range effects (the renormaliza-
tion group has to "work harder" to iterate away both the
transient n =

—,
' behavior and cause the amplitudes to con-

verge). The first two levels of matching do not approach
the same value of n. The third level of matching gives
n =0.36, which is consistent with results for R„but un-
fortunately does not allow us to improve our estimate for
the growth exponent. We cannot extrapolate a result
from the fourth level of renormalization.

Finally, we assumed n =
—,', and checked whether R's at

different levels of renormalization approached each other
as R ~oc. We calculated

0.9T,
0.7T,
0.4T,

1.96
1.61
1.85

0.14
0.15
0.06

1.84
1.85
2.14

TABLE I. Fits by R (t) = A +Bt '".
B, B,

0.28
0.21
0.07

Motivated by Huse's formula, we fit this data to
6(R)=b,(R —+ ~ )+C/R. See Figs. 9 and 10. The esti-
mates for 5 from the first three levels of matching of R,
are 0.98, 0.98, and 1.01. The average is 0.99+0.02 in
good agreement with the result expected for perfect
matching, 5=1. The R, 's give similar results. The first
two levels do not converge, while the third and fourth
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levels give 6=0.98. There is no convergence for n =
—,
' or

n =0( lnt).

IV. THE STRUCTURE FACTOR

For late times, all length scales have their time depen-
dence set by the size of growing domains. Thus the pair-
correlation function satisfies g(r, t)-G(r/R (t)), which
implies that the structure factor obeys

S ( k, t) =R d(t)F (x), (14)

where x =kR (t). This is because g is dimensionless, so S
has units of volume. We know of no analytic theory for
the shape of the scaling function F(x). Nevertheless,
arguments can be given for its behavior at large ' and
small values of x, and a physically motivated form can
be obtained which interpolates between these regimes.
For small x, the conservation law causes F(x) to vanish,
or more precisely to be fixed to its initial value. This can
be written in the form

F(x)-x (15)

Yeung has obtained the inequality 6~4 in two and
three dimensions, in the scaling study mentioned above.
He finds that 5=4 is satisfied by experiments he consid-
ers.

For large x, Porod's law, which we derive below,
gives

F{x)- 1

x'
If the scattering is due to thin Aat interfaces, as is the
case here on s~all lengths scales, O=d+1. More gen-
erally, scattering from an interface of dimension dz,
which is embedded in a volume of dimension dv, gives
0=2dv d~.

The arguments for Porod's law are straightforward, so
we review them here. It is most simple to consider g(r)
for small r The g (r) f.unction is correlated so long as the
two points separated by r are in the bulk. Only the con-
tributions near interfaces, 5g(r), affect this. Those con-
tributions depend on the relative amount of surface to
bulk, i.e. , they scale as 5g (r) —( A /V)r ", where the
area A-R, and the volume V-R . The factor of

d
r " ensures that g(r) is dimensionless. Fourier trans-
forming introduces another factor of volume, and one ob-

2dv —d&tains S(k) —1/k ", which implies the scaling form
above. Note that, for small r's as the lattice structure be-
comes important, the interface is Rat so that d v =d and
d „=d —1, which implies 9=d + 1.

Roughening can give rise to a di6'erent efFective value
for 0 on larger length scales, and thus smaller values of x.
These correspond only to logarithmic corrections in three
dimensions, but there are large e6'ects in d =2. For
roughening A -R" 'ut(R), where w is the interface
width. It is well known that w-R' "', on large
length scales for 1 &d (3 (note, however, that we shall
apply this result to behavior on small length scales to ob-
tain an effective exponent). Thus, we estimate an effective
dz =(d +1)/2, so that 8=(3d —1)/2, for 1 &d (3. In

two dimensions this implies that, if a sufficiently large k is
not considered, one may obtain

2
—0 ff(3 rather than

the asymptotic value of 3. In fact, some eQ'ective values
for 0 in this range have been reported.

Fratzl and Lebowitz have given a semiempirical form
for the scaling function in three dimensions. It is of the
form

Ax4
F(x)= f(x),B+x4 (17)

where A and B are constants. The prefactor is to ac-
count for Yeung's result. f(x) is obtained from the
Fourier transformation, with respect to the kernel e'"',
of

f (x)= [(x —C) +D1' {x —C)—
[(x —C) +D]

(19)

where C and D are constants. Note that Eqs. (17) and
(19) then interpolate between Yeung's result and Porod's
law in two dimensions.

Figure 11 shows the circularly averaged structure fac-
tor we have obtained. Note the increase in peak height
and decrease of the peak position with increasing time,

2

10 20 30
256 k

40

FICi. 11. Circularly averaged structure function for N =256
system at T=0.9T, . Times shown are t =500, 1000, 2500,
5000, 10000, 20000, and then in steps of 20000 MCS's up to
260 000 MCS's respectively.

f ( )
g„slnctr

ar
where A, and u are constants. The exponential and oscil-
latory factors are to account for both the randomness and
modulation of the interfaces, respectively. In the absence
of a result which has been explicitly derived for d =2, we
have taken the two-dimensional Fourier transform of
Fratzl and Lebowitz's expression to obtain
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FIG. 12. F(x) for various times showing the approach to
scaling. From below, we show data for t =500, 1000, 5000,
10000, and 50000 MCS's. The top curve indicates data for
times greater than 70000.

FIG. 14. Scaled structure factor F(x) for late times at m =0,
1, and 2 levels of renormalization. Data are same as plotted in
Fig. 13, except for a linear transformation applied to renormal-
ized data. Note that F(x) is invariant under renormalization.

F(x, t) =(2m IL')k', (t)S(xk, (t)) (20)

as a function of time. Following Amar, Sulli. van, and
Mountain, ' the normalization constant for F(x) was
chosen by jxF(x)dx =1. Figure 12 shows the approach
to scaling. At T =0.9T„ the peak height of F(x, t) con-

2.0

1.8
ra=0

1.6

1.4

while the k =0 mode is pinned due to the conservation
law. These are characteristic features of spinodal decom-
position. To test scaling, we have calculated

tinues to increase for times up to about 70000 MCS's.
This indicates that up to this time, our system has not yet
entered the scaling regime and that contributions due to
the interface roughness are not negligible. After about
70000 MCS's. F(x) is independent of time, to the accu-
racy of our simulations. Figure 13 shows F(x) for late
times for m =0, 1, and 2 iterations of the renormal-
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X

FIG. 13. Scaled structure factor F(x) for late times at m =0,
1, and 2 levels of renormalization. Data plotted are in intervals
of 10000 MCS's between 100000 and 250000 MCS's.

FIG. 15. Detailed view of the tail of the scaled structure fac-
tor F(x) for m =0 and m =1. The solid curve shows the fitted
F(x)—1/x ' behavior.
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FIG. 16. Fit of F(x) by Eqs. (17) and (19). Inset shows fit at
small x.

ization-group transformation. We have not presented
data for the m =3 level of renormalization due to the
large amount of statistical error present there. The error
is chieAy due to the loss of resolution incurred with each
renormalization-group iteration, and is associated with
the increasing cutoff frequency for the lattice. For any
given level of renormalization, scaling appears to hold.
However, the renormalized data exhibit a slight shift in
peak position and a slight decrease in peak height. This
involves only a linear transformation of the scaling func-
tion, as is shown in Fig. 14. To our accuracy, all the
curves are coincident in that figure.

To investigate F(x) in a more quantitative fashion, we
have fitted our large x values (x ~ 2. 5) to Eq. (16). Our
results for t & 100000 and m =0 and 1 iterations of the
renormalization-group transformation are in good agree-
ment with Porod's law, 0=d + 1. We measure
0=2.98+0.03. See Fig. 15. For times less than 100000
MCS's, our measured values of 0 are somewhat below the
expected value of 3. They range from 2.5 to 3.0. For
m =2, and 3 levels of renormalization, our results are
consistent with F(x)—1/x behavior. It is, however,
difficult to unambiguously fit the large x data to a single
power law. Tomita has given a more detailed discus-
sion of the conditions necessary to observe Porod's law.

We have also tried fitting the behavior of F(x) at
x —+0. However, we have insufficient data close to the
origin to make a good estimate of 5 in Eq. (15). We find
effective 5's in the range 2.5 —3, which we attribute either
to fitting too far from the origin or possibly to transients.
(Recall that Yeung's inequality is 5 4). The insert in
Fig. 16 shows that a fit by Eq. (17), where 5=4, is possi-
ble. Also in Fig. 16, we show a four-parameter fit by Eqs.
(17) and (19) above. The fit is reasonably good, except for
x approximately twice its value at the maximum of F.
We emphasize again that the form was intended for
three-dimensional scattering patterns; we have used it
here to motivate further work on the two-dimensional
problem. It should be noted that we have found that the
fit is much better than one by a simple ratio of polynomi-
als, i.e., F(x)= Ax /(8 +Cx ), which also interpolates
between small and large x regimes.

V. CONCI. USIONS
In this last section, we give a brief discussion of the

fixed points of the renormalization group. The block-

spin transformation renormalizes the master equation
simulated by our Monte Carlo method. This leads to new
non-Markovian equations of motion for the renormalized
spins, which are exceedingly difficult to study analytical-
ly. Indeed, although we have made the natural assump-
tion that scaling dominates the behavior at the fixed
point, to our knowledge there exists no first-principles
understanding of the nature of fixed points in first-order
transitions. Nevertheless, some qualitative remarks can
be made.

Under renormalization, one studies, say, the Aow of
coupling constants in a Hamiltonian or free energy. For
spinodal decomposition, two sets of coupling constants,
K; J /T; and ir& =J/T&, must be taken into account,
which respectively characterize the initial disordered
state and the final low-temperature state. Clearly, as the
renormalization group is iterated, the initial coupling
constants ~; How to the infinite-temperature fixed point,
while the final coupling constants ~& Aow to the zero-
temperature fixed point. In contrast to critical phenom-
ena, the dynamics of first-order phase transitions involve
stable and attractive fixed points. However that may
be, the system's dynamics at the zero-temperature fixed
point are not the same as one would obtain by simply
quenching to zero temperature. There can be activated
processes as T~0 which are not generated by the succes-
sive application of the renormalization group. As has
been suggested by Sadiq and Binder and Huse, " these
short-wavelength activated processes can cause long tran-
sients at low temperatures. In fact our data at T =0.1T,
are dominated by this transient behavior. In this regard,
it should be noted that studies of domain growth in the
nonconserved Potts model on a square lattice pointed to
the existence of two fixed points at T=0. The "freez-
ing" fixed point led to an R-lnt growth, while the
"equilibration" fixed point led to power-law growth.
Only the equilibration fixed point was stable for quenches
to nonzero temperatures, however, although the freezing
fixed point could cause strong transients at low tempera-
tures.

In conclusion, by using an extension of the standard
Monte Carlo renormalization-group method, we were
able to study two universal features of the growth kinet-
ics of spinodal decomposition: the growth exponent n

and the shape of the scaled structure function F. While
more study is needed, for example we made use of
Gibbs-Thomson relations to estimate the asymptotic
growth exponent, it is clear that our results are in agree-
ment with most of the recent work in the field. Our best
estimate for the growth exponent, which we obtained
through a matching condition, n =0.338+0.008, is in
agreement with the classical result of Lifshitz and Slyo-
zov. We observed evidence of a strong transient involv-

ing an effective n =—,', however. This transient behavior,
which we attributed to short-range diffusion, was iterated
away by the renormalization-group transformation, leav-

ing n =
—,'. Similar transients have been seen in studies of

Langevin models. ' ' While this does not demonstrate
that the Langevin models and the kinetic Ising model
share the same universality class, it indicates that this
may indeed be the case. We investigated dynamical scal-
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ing in the circularly averaged structure factor. We ob-
tained the scaling function, and found that its shape
remained invariant under the renormalization-group
transformation. In the absence of predictions for the
shape of this scaling function, our analysis has been
essentially of a qualitative nature. However, a detailed
investigation of the tail of the scaled structure function
showed that its shape was consistent with Porod's law.
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