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Numerical study of late-stage coarsening for off-critical quenches
in the Cahn-Hilliard equation of phase separation
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Off-critical quenches of a two-dimensional system with a continuous, conserved order parameter
are studied numerically. Domain growth and scaling are investigated by monitoring several mea-
sures of the morphology. For quenches within the mean-field spinodal, circular domains coarsen
through an evaporation-condensation mechanism. The dynamics of this process are compared with
the theory of Lifshitz and Slyosov. Surface smoothening plays an important role for nearly critical
quenches and extends the timescale for the onset of self similar growth.

I. INTRODUCTION

with

—V P(r, r)]+@'~ p(r, r),

( p(r, r)p(r', r') ) = —V 5(r —r')5l r r') . —

During a first-order phase transition, coexisting macro-
scopic domains of different phases emerge from initially
small Auctuations in a homogeneous, single-phase state.
Late stages of this process are often dominated by the
motion of interfaces separating the domains. The aver-
age domain size emerges as a time-dependent length for
scale-invariant coarsening of the morphology. The
growth of this length (usually a power law in time) and
the scaling morphology are important characterizations
of the dynamics. Similarities between many diverse pro-
cesses have led to the identification of several universality
classes for domain growth. ' Systems with a conserved
order parameter (which is not coupled to other hydro-
dynamic modes) form one of the simplest and most stud-
ied classes. Examples of such systems include binary al-
loys, polymers, and the spin exchange kinetic Ising mod-
el. Recently, a great deal of interest has centered on the
late-stage growth law for this class. ' As a result of ex-
tensive experiments and computer simulations, there is
mounting evidence of an asymptotic growth exponent
of

3
For a very di lute quench, where the vo lume frac-

tion of one phase greatly exceeds the other, the growth is
well understood in terms of the theoretical work of
Lifshitz and Slyosov (LS). However, for quenches
through the critical point, where the phases are sym-
metric, the assumptions of LS are no longer valid. A
theoretical understanding of domain growth and scaling
in this regime remains somewhat controversial. ' ""

The archetypal field theory for a conserved system is
model 8. The time evolution of the order parameter is
described by a stochastic partial differential equation (the
Cahn-Hilliard-Cook equation ) which can be expressed
in the dimensionless form

t)h(r, r) =
—,'V [ P(r, r)+P (r,r)—

Here P(r, r) refers to the value of the order parameter at
position r at time r. (P has been normalized to +1 in the
equilibrium phase). The only dimensionless parameter e
characterizes the strength of thermal Auctuations p in the
final state.

Equation (1) must be supplemented with appropriate
initial conditions describing the system prior to the onset
of phase separation. For quenches from a single-phase
state

P(r, r =0)=go+ g(r),

where g represents fluctuations in the initial state which
are symmetrically distributed about a mean value of zero.

$0 is a measure of how far off-critical the system is. For
$0=+1 the system will be quenched to the coexistence
curve, while go=0 corresponds to a quench through the
critical point. According to the "lever rule, " nonzero fo
reAects asymmetry in the amount of each phase present
in the final state.

In this paper, numerical simulations are used to study
the dynamics of phase separation for oQ critical quenches
of model 8 in two dimensions. Specifically we address
the role that the asymmetry in phases plays in the growth
law and in scaling by monitoring the time evolution of
several measures of domain size. For large go, growth is
dominated by competition between circular domains as
described by Lifshitz and Slyosov. We compare the
growth at go=0. 4 with a simple extension of LS to two
dimensions. Convoluted domains are formed during the
early stages for quenches at go=0. 1 and 0.2. Smoothen-
ing of the surface to form circular domains plays an im-
portant role initially and extends the time scale for the
onset of scaling of the morphology. For quenches
through the critical point, percolating domains are
formed, leading to a different type of scaling morphology.
The growth exponent of —,

' measured here is due to relaxa-
tion of surface corrugations. The study is restricted to
the case e=O, which corresponds to a low-temperature
quench of a mean-field system. However, we expect the
conclusions to be applicable for small values of e as well.
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II. COMPUTER SIMULATIONS TABLE I. Parameters used in the simulations.

In order to simulate Eq. (1), spatial gradients were ap-
proximated by a finite difference scheme. Following
Oono and Puri, ' an "isotropic" form for the discrete La-
placian was used which couples each cell to nearest and
next-nearest neighbors. The mesh size Ax introduced in
the discretization is bounded by the sharp gradients in-
herent to the interfaces as discussed in Ref. 16. The mor-
phology of the clusters also seems to play an important
role, with circular clusters being more sensitive to Ax
than the convoluted domains seen in critical quenches.
Large mesh sizes typically generate anisotropic clusters
which align with the underlying lattice imposed in the
difference scheme. In addition, cluster growth is slowed
down. However, a trade off in computational effort ex-
ists, since the time required for a simulation' varies ap-
proximately a Ax . For the simulations reported here,
the mesh size was set at 1.0.

A fourth-order Adams-Bashford predictor and
Adams-Moulton corrector algorithm approximated the
time derivative. A timestep of 0.1 was used, which led
to an average fractional correction to P of approximately
10 at each iteration for the late stages. (This degree of
accuracy is probably not necessary for the quantities we
are interested in, since previous studies at the critical
point show that the late-stage growth is not sensitive to
the timestep. ) The late stages of some runs were repeated
with a timestep of 0.01 to ensure convergence.

Most of the simulations were performed on square lat-
tices of size 256 using periodic boundary conditions.
However, smaller lattices (128 ) were also examined to
ensure that there were no finite-size effects. The system
was initially prepared in a homogeneous state by assign-
ing a random number to each lattice site. The random
numbers were uniformly distributed, with a mean value
of go, and a width of 0.1. (The width of the distribution
refiects the strength of thermal fluctuations in the initial
state. ) Averages were performed over many realizations
using a different set of random numbers for each initial
state.

III. GROWTH LAWS

The separation process was examined for various
quenches within the mean-field spinodal (go(3 '

) as
summarized in Table I. All simulations were run up to a
time of ~=5000. Figure 1 compares the order-parameter
evolution for $0=0 and 0.4. Domain coarsening is evi-
dent in both cases, although the morphology depends on
Po. For the critical quench (go=0) there is symmetry be-
tween the two phases resulting in convoluted percolating
interfaces. When the system moves off-critical this sym-
metry is broken. At /&=0. 4 the minority phase consists
of isolated, compact clusters. Our studies show that the
morphology plays an important role in the dynamics. In
order to make a quantitative analysis of the growth,
several different quantities were measured as a function of
time.

Correlations of fiuctuations about otto were examined
through the radial pair correlation function. This func-
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aN„;,~, refers to the number of different realizations used to
average over the fluctuations in the initial state. Each realiza-
tion used a different seed for the random number generator.

P =—(1—1to)'~

A is the total area of the system and X refers to the area
covered by interfaces. The prefactor is included to make

tion exhibits characteristic oscillations about zero,
reAecting the domain structure. The time dependence of
the first zero R, (r), which is a common gauge of domain
coarsening, is shown in Fig. 2 for each go. (The details of
this calculation are described in Ref. 16.) Many impor-
tant features of the separation process are evident in the
plot. Initially small Auctuations in the order parameter
grow as a result of the linear instability in Eq. (1). Dur-
ing this time there is little change in R, . As the magni-
tude of the Auctuations increases, nonlinearities in the
equation lead to the formation of domains of each phase
separated by sharp interfaces. In the final stage, which
is the focus of this paper, the domain structure coarsens
as a result of surface tension. The time scale for the tran-
sition to this stage increases with Po. In Fig. 2 the late
stages have been reached for all Po when r)500
[in(r) )6].

The slope of the logarithmic plot can be interpreted as
an effective exponent n,z for power law growth of 8, .
For both go=0 and 0.1, the plot is linear for r ) 200, with
a slope of approximately —,

' (which is approached mono-
tonically from below). This result is consistent with pre-
vious studies of the critical quench at these late
times. ' ' ' The data for go=0. 2 initially follow the
same trend as with smaller fo. There appears to be con-
vergence towards a slope of —,

' for ~& 1000. Beyond this
time, however, there is a systematic curvature in the plot
which lies beyond the statistical scatter in these data.
This curvature can be interpreted as a decrease in n,z
with time. Like the critical quench, an increasing slope is
seen in the late stages (r) 500) for go=0. 4. However,
the data yield an effective exponent which is smaller than
—,
' (see Table II).

One of the hallmarks of late-stage coarsening is the
emergence of interfaces with a characteristic width which
is time independent. As a consequence, the inverse per-
irneter density P forms another coarsening length scale,
where
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FIG. 2. Time dependence of the first zero of the pair correla-
tion. At ln(~)=2, from bottom to top the data correspond to
go=0, 0.1, 0.2, and 0.4. [At ln(r) =8, the ordering is reversed. ]

FIG. 3. Time dependence of the inverse perimeter density P
for go =0 (crosses), 0.1 (triangles), 0.2 (squares), and 0.4 (circles).

evolution of N in terms of an efFective exponent n, such
that

N-Rot (4)

The sum is over the N lattice sites of the cluster. r,. is the
position of lattice site i and r, is the position of the
cluster's center of mass. (The factor of 2 ensures that R,
reduces to the usual cluster radius for circular clusters. )
In Fig. 5 the average radius is plotted for the off-critical
quench es.

IV. DYNAMICAL SCALING

First-order phase transitions often exhibit dynamical
scaling (or self-similarity), wherein the morphology at a

It can be seen from Table II that this efFective exponent
increases with increasing go.

A radius of gyration was used to define the cluster ra-
dius

' 1/2

(5)

given time can be made to (statistically) match that of an
earlier time by a global change of scale. Consequently,
the growth of the system is characterized by a single
length (the average domain size) to which all other
relevant lengths must scale. Dynamical scaling forms an
important cornerstone of the emerging theoretical under-
standing of domain growth.

For quenches near the coexistence curve, the onset of
scaling is predicted by the classic work of Lifshitz and
Slyosov (LS). In the LS analysis, clusters of the minority
phase compete through an evaporation condensation
mechanism, whereby larger clusters grow at the expense
of smaller ones. Cluster interaction is mediated by
diffusion in the majority phase. Although their theory
was originally formulated in three dimensions, it can be
extended to two dimensions as discussed in the Appendix.
The LS analysis focuses on the time dependence of the
cluster distribution function f(R, t). [Here f is defined
such that f(R, t)dR is the probability of finding a cluster
with radius between R and R+dR and it satisfies the
normalization If(R, t)dR = 1.] Scale invariance is mani-

fested by the asymptotic result

TABLE II. Eftective growth exponents for various measures of domain size.

Measure

R]
P

to=0
0.34+0.01
0.34+0.01

Co=0 1

0.33+0.01
0.32+0.02
0.20+0.03
0.11+0.03

1(Io=0.2

0.29+0.01
0.29+0.01
0.23+0.02
0.19+0.01

Po =0.4
0.29+0.02
0.31+0.02
0.28+0.02
0.29+0.01

'In order to make a direct comparison with other measures of domain coarsening, the exponent report-
ed for (N ) is half the slope describing the data points in Fig. 4 [see (A14)].
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zero of the pair correlation function. The breakdown of
scaling is related to the cluster morphology. An irnpor-
tant element of the LS analysis is the assumption of com-
pact (circular) clusters. However, for small g&t, early-
stage instabilities lead to convoluted domains. For such
morphologies, smoothening of surface corrugations forms
another coarsening rnechanisrn in which the system acts
to eliminate changes in the curvature as a function of arc
length. Consequently, there is an evolution of the cluster
shapes towards circles. Figure 7 illustrates this process
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for a typical simulation at Pc=0.2. As a result of
changes in the cluster shape, the evolution of the cluster
distribution differs qualitatively from the quench at
go=0. 4. Initially a large spread in the distribution is
created. With the progression of time there is a change
in the skew as the maximum shifts towards a larger ra-
dius. (Note that the very asymmetric LS prediction has a
sharp upper cutoff. ) This phenomenon has also been ob-
served in studies of the spin exchange kinetic Ising mod-
el. . Surface srnoothening and LS cluster competition are
both driven by surface tension. However, the former can
be a single cluster interaction which changes the cluster
shape, whereas the latter results from interactions be-
tween different clusters. Both processes are initially
operative when go =0. 1 and 0.2.

For a cluster with area 3, it is useful to define a shape
factor

S=
mR

where R is defined in (5). For circular clusters S = l,
while convoluted clusters are characterized by S( I. In
Fig. 8, the average shape factor is plotted as a function
of time for the off-critical quenches. At go=0. 4, the fac-
tor remains unity throughout the late stages, which is a
necessary consequence of scaling. For smaller tt!It there is
a systematic increase in (S ) as the cluster surface is min-
imized. Here scaling of the morphology has not been
reached for the time scales we have probed because the
clusters are not yet circular.

At the critical quench, on the other hand, the system
forms large percolating domains. In two dimensions,
breakup of these domains will not occur during the late
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stages because the system is stable to "necking and pinch-
ing". A crossover to the LS regime of circular clusters
does not occur and surface relaxation remains an impor-
tant growth mechanism. The data show that this process
also leads to a growth exponent of —,

' for R, and P.

V. DISCUSSION

In the late stages of phase separation, surface tension is
the driving force for domain coarsening. We believe that
the LS theory captures the essential features of coarsen-
ing for go=0. 4. The system seems to be approaching a
scaling regime. The effective exponent, although less
than —,', is consistent with the slow approach to asymptot-
ic growth in two dimensions. In detail, however, the LS
predictions fail because they do not account for cluster
correlations. Most notably, the LS distribution function
is too narrow. (It should be noted that LS theory applies
to an infinitely dilute minority phase, whereas for go=0. 4
the minority phase is quite concentrated. )

For smaller values of Po, cluster interaction is more in-
tense in the early stages, resulting in convoluted, noncir-
cular domains. Here, smoothening of the surface plays
an important role. This coarsening mechanism is pre-
cluded by the assumptions of LS. Quenches through the
critical point show that the process leads to a growth ex-
ponent of —,

' for the inverse perimeter density and for the
pair correlations. At go=0. 1 and 0.2 there is a crossover
from growth dominated by surface smoothening to LS-
type growth as the system evolves. Late-stage scaling of
the morphology has not set in for these simulations. We
conjecture that percolating clusters and circular domains
form two types of scaling morphology. The former
occurs for critical quenches, while the latter applies near
the coexistence curve. When @=0, the crossover from
percolation to isolated droplet growth occurs very close
to the critical quench (i.e., l(o&0. 1). (The mean-field spi-
nodal plays no special role in late-stage coarsening since
the circular domain topology for go=0. 4 is consistent
with a nucleating system despite the fact that the quench
lies within the spinodal. ) For all values of ij'jo, however,
we believe that the asymptotic growth exponent is

3

(with possible logarithmic corrections near the coex-
istence curve).

Previous studies of quenches at the critical point sug-
gest that for small values of e, thermal fluctuations in the
final state will only play a minor role in late-stage coar-
sening. However, the introduction of thermal Auctua-
tions allows for diffusive motion of the center of mass of
the domains. For large e, this new mechanism may lead
to qualitative changes in the separation process.

One of the most important quantities uniting theory,
experiment, and computer simulation is the pair correla-
tion function g(r, r) (and its Fourier transform, the struc-
ture factor). ' The first zero of g can be used to construct
a scaling function gp

g (r, ~)= (1 —Po) 'go(z),

where z=r/R, (r). The normalization factor (1—go) is
included so that for an infinite system

limgo(z =0)=1 .
7~00

(9)
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"Scaling" is characterized by time independence of gp.
The late-stage scaling functions for go=0 and 0.4 are
compared in Fig. 9. The identification of a scaling regime
through examination of the pair correlation function de-
pends on the statistics of the simulations since the
changes with time become very small in the late stages.
For the simulations reported here, the most notable
change for ~& 3000 was a slight increase in gp with time
near the origin. This increase will continue, as demon-
strated in Fig. 9 by the fact that go(z =0)%1. The be-
havior at the origin can be understood in terms of a
correction to scaling due to the finite interfacial width l.
Such corrections, which are of order 1/R „arise because
the (time-independent) interfacial width introduces a
second length scale into the problem. (Note that
l /R i ~0 as w~ ao .)

Despite the differences in morphology (see Fig. 1), go is
remarkably similar for the two values of go. (It should be
noted that differences near the origin are partly due to
the fact that 1/R, is different for two simulations. )

Clearly, for this range of go, the pair correlation function
is not very sensitive to the topological structure (e.g., cir-
cular clusters versus percolating domains). In an experi-
ment or simulation, time independence of the scaled pair
correlation function may not necessarily imply scaling of
the morphology.
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APPENDIX

In this appendix a simple extension of Lifshitz-Slyosov
theory (LS) is presented for model 8 in two dimensions.
The theory is appropriate for quenches near coexistence
where one phase (P '") occupies a much smaller area
fraction than the other (P ") in the final equilibrium
state. We continue to use the dimensionless variables in-
troduced in Eq. (1). For convenience, the case P '"=1
and P '"= —1 is considered.

In the majority phase, small gradients in the order-
parameter field are established which influence the
growth of the clusters. Linearizing (1) about this phase
generates a diffusion equation of the form

5q~„=5q .
/

(A4)

C = —(5q —5q~, )
4mR

R ln4~ ' (A5)

where it has been assumed that R «4~. Combining
(A2), (A3), and (A5) leads to an equation for the cluster
radius

dR (5g cr —/4R )

dw R ln4&
(A6)

This expression reduces to the same form as LS if a trans-
formation is made to a new unit of time defined

5$ is an average value of the field which reflects the pres-
ence of other clusters in the system. Under these condi-
tions, the flux at the cluster surface is approximated by
the asymptotic result

~ =V'5q,
87

7
t =li(4r)/4-

ln(4r )
(A7)

where 5/=1 —p. [Only the lowest-order gradient term
has been retained in (Al).] It is assumed that the minori-
ty phase consists of circular clusters in which the order
parameter assumes its equilibrium value. It is further as-
sumed that the cluster radius is much larger than the in-
terfacial width. The cluster interface can then be
modeled as a boundary condition for diffusion in the ma-
jority phase. In particular, at the surface of each cluster
a Gibbs- Thomson form of boundary condition results

(A2)

Here R is the radius of the cluster and 0. is the surface-
free energy.

Diffusion gradients in the neighborhood of a given
cluster lead to a flux, causing the cluster to grow or
shrink. From mass conservation at the (sharp) cluster in-
terface

(A3)

where b, 1(r is the difference in the order parameter be-
tween the two equilibrium phases. N is the total flux into
the surface of the cluster. The diffusion equation (Al)
coupled with the moving boundary conditions (A2) and
(A3) represent a formidable many-body problem. In or-
der to proceed further, a mean-field approximation is
made. Namely, the growth of a single cluster is con-
sidered, subjected to the conditions that the field satisfy
(A2) at the cluster surface and that infinitely far from the
cluster

+ (RF)=0 .
Bt BR

(AS)

Finally, the conservation law must be imposed on the en-
tire system. This restriction leads to

5g+~ fR F(R, t)dR =1—
Qo . (A9)

Equations (A6), (AS), and (A9) can be solved using argu-
ments similar to Ref. 3.

The conservation law imposes a unique scaling form to
the cluster distribution function

F(R, r ) =r '"f,(x), (A10)

where

90.tx=R
16

—n

and

n= —'.
3

The time-independent scaling distribution function is

where li(x) is the logarithmic integral.
The dynamics of 5g is established by considering the

entire ensemble of clusters. It is useful to define a cluster
distribution function F(R, t) such that F(R, t)dR mea-
sures the number of clusters per unit area with a radius
between R and R +dR. Assuming no nucleation of new
clusters and no coalescences, this function will obey a
continuity equation

Cx —1

f,(x)= ' (1.5 —x) (3+x)'7 (1.5 —x)
exp, for x &1.5,

0, for x &1.5, (A11)
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fRF(R, t)dR
&R)=

F R, tdR
(A12)

where R 0 is a time-independent constant given by

Ro=
" fxfo(x)dx

ff,dx
(A13)

where C is a normalization constant.
As a consequence of (A10), the time dependence of

various moments of the cluster distribution function are
simply related. For example, the average cluster radius
satisfies

Similarly, the number of clusters per unit area decays ac-
cording to

N(t)= fF(R, t)dR-X t (A14)

(It should be noted that the scaling form of the distribu-
tion function is a more general ansatz for growth during
phase transitions, applicable to systems in which the eva-
poration condensation mechanism described by LS is not
applicable. )
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