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Zero modes and the quantized Hall conductance of the two-dimensional lattice in a magnetic field
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Several properties of the tight-binding electrons in two dimensions with a uniform magnetic field

perpendicular to the plane are discussed. The existence of zero-energy states is explicitly shown.
The quantized value of the Hall conductance of each magnetic subband which is the Chem number
of a certain fiber bundle on a two-torus is calculated. The holelike Hall coeKcient can be explained

by the quantum mechanics of negatively charged electrons.

I. INTRODUCTION

The tight-binding Hamiltonian on the square lattice is
written as

iO, i B,"H= t, —g„cce ' —t„g cce

where c; is the usual fermion operator on the lattice, The
first summation is taken over all the nearest-neighbor
sites along the x direction and the second sum along the y
direction. The phase factor 0; = —0; is defined on a link
and represents the magnetic Aux through the lattice, i.e.,
2~/=+ ~, „,«,8; is the magnetic fiux through the pla-
quette in units of the magnetic fiux quantum ch/e. We
only consider a uniform magnetic field, so (b is constant
throughout the lattice. The lattice spacing is taken to be
unity. The generalization of the present work to a rec-
tangular lattice is straightforward and will not be dis-
cussed here.

In traditional solid-state physics, one starts with the
energy dispersion without a magnetic field,

E(k„,k )= —2t, cosk —2tbcosk

spectrum has an extremely rich structure as shown by
Hofstdater. In fact, if P is irrational, it is a Cantor set
which consists of infinitely many "bands" with scaling
properties. '

Thouless et al. showed that each band carries an in-
tegral Hall conductance. This is discussed by Avron
et al. using the homotopy theory. The integer has a
topological origin. It is the Chem number of a fiber
bundle which is defined by the wave functions on a two-
torus, the reciprocal space of this problem.

II. HARPER EQUATIGN

A site i on the square lattice has a Cartesian coordinate
(n, m) where n and m are integers. Let us choose a gauge
in which 0; =0 for the links along the x direction and
0; =2m/. n f.or the link between i = ( n, m ) and

j =(n, m+1) along the y direction. This gauge gives a
uniform magnetic field whose Aux through a plaquette is
2m/. A rather straightforward calculation transforms
(1.1) to

and makes the Peierls-Onsager
k~(p+e/c A)/fi to have

substitution
H=,I dk„ f dk H(k),

(2~)'

with

(2.1)

H= —2t, cos[(p +e/cA, )/A]

—2tt, cos[(p +e/cA )/gati] . (1.2)

H(k)= —2t, cosk„c (k)c(k)

tb[e —'c (k +2~/, k )c(k„,k )

Here p is the quantum-mechanical momentum operator
and A is a vector potential. It can be shown that (1.1)
and (1.2) have exactly the same energy spectrum and
states if (1.2) is treated carefully.

The problem of two-dimensional electrons in a magnet-
ic field is an old one (see, for example, Wannier, ' Hof-
stadter and references therein) and it shows extremely
rich and interesting behavior. Also, the Hamiltonian
(1.1) has some relevance to the mean-field theory of the
resonating-valence-bond theory.

The spectrum is symmetric with respect to E =0, and
when P is a rational number p/q (p and q are integers
which are prime to each other), it consists of q bands. As

P is changed continuously, p and q change wildly. The

Xc(k, k ) . (2.3)

c(k) is defined in the reciprocal space (the Brillouin
zone): —m k m —m k m. One has to identify
k+2~(j, l) as k, and we have a two-torus and its covering
space. There is no coupling between diFerent k 's and k„
couples to k„+2rrg and k 2ng(g=p/—q). .Therefore
the Schrodinger equation H~'0) =E~%) is reduced to

+e 'c (k, 2ng, ky )c—(k,.ky)], (2.2)

where c (k) is a fermion operator defined by

c„= J dk, I dk exp[i(k n+k m)](2~)'
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—t&(e 'g, +e 'p +i)—2t, cos(k +2qrpj)pj

=E(k, k )P, .

Here k„ is written as k +2qrgj and

(2 4)

ei2ngjlf
1 =l

and substitute it into (2.4). Then we get

t,—(e "f&,+e "fi+, ) —2t& cos( k~ + 2qrgl )f&

(3.1)

The state
~
4 ) is given by

(2.5)

(2.6)

qr/q—& k„&qr/q, —qr & k (2.7)

Equation (2.4) is known as the Harper equation and
was derived from (1.2). Here it was derived from (1.1), so
the two Hamiltonians have the same properties. The
present derivation is certainly not new.

III. DUALITY AND GAUGE TRANSFORMATION

The Harper equation (2.4) has a duality due to Aubry
and Andre, who showed the existence of a transition be-
tween localized and extended states of P when P is an ir-
rational number. In the present case, we take a rational
P =p /q. Let us write

where
~ ) represents the vacuum state. When P is a ra-

tional number p/q, (2.4) has q eigenvalues for fixed values
of k„and k . Therefore, the original band for the tight-
binding model is split into q bands due to the application
of the magnetic field, and each band has a reduced Bril-
louin zone

=E(k, , k )fi . (3.2)
Note that this is the same as (2.4) if one exchanges t, and
tb andk and k .

This duality can be interpreted as a gauge transforma-
tion. To derive (2.4) we used the gauge in which 0; =0
for the links along the x direction and 8,"=2qrgn for the
link between i =(n, m) and j =(n, m +1) along the y
direction. If one chooses instead a gauge in which 0, =0
for the links along the y direction and 0; =2qrgm for the
link between i =(n, m) and j=(n + l, m) along the x
direction, one would obtain

—ik ik 0t, (e —"f&,+e "f&+, ) —2tbcos(k +2qrgl)fi

=E(k, k )fi . (3.3)
This equation is almost the same as the dual equation
(3.2) except one has qr&k —&qr and qr/q &k—o&qr/q
instead of k and k . This implies that the dispersion
E (k„,k ) is q-fold degenerate, i.e., E (k, k~ )
=E(k„k +2qrn/q). This will be shown explicitly in the
next section.

IV. ZERO MODES

After a transformation p~'=1( e'"y', the secular equa-
tion for (2.4) is written as

—iqk—t eb

det (4.1)

iqk—t eb

—t U
—E

q
—1 b

U
—E

q

where u = 2t, cos(k —+2qrpj). It is easy to check that
the dependence of k in the determinant comes only from
a term 2tiqcos(qk ). Then the duality tells that the only
k dependence is a term 2tq cos(qk ). So (4.1) is written
as

F z (E)=2tqcos(qk„)+2tiqcos(qk~), (4.2)

where F z (E) is a qth order polynomial in E and has q
real roots since the Hamiltonian is Hermitian. They can
be degenerate and we shall show that a degeneracy could
take place at E =0. If one notices that the argument in
u = 2t, cos(k +2qr—pj ) is uniformly distributed on the
circle (Rmod2qr), it is shown by inspecting (4.1) that
Fzzq(E) is an even function if q is even and an odd func-
tion if q is odd. So the spectrum is symmetric with
respect to E =0 and if q is odd, E =0 is at the center of
the middle band. For even q, it can be shown by inspect-

I

ing (4.1) that F & (0)=2tiq when t, =0. Then the duality
tells that

F )q(0)=2t,q+2tiq .

Thus (4.2) has a solution E =0 when

(k, k )=(nqr/q, mar/q),

(4.3)

(4.4)

where n and m are integers. Near the zeroes (4.4),
E (k„,k~ ) has a linear dispersion where the pinnacles of
two cones touch at E =0. Namely, near k„=k =0 one
has

E=+yq(tqk" + t,'k')'"
where —I/y is the coefficient of E term in F

& (E).
The fact that the secular equation depends on energy

through E only suggests that a unitary transformation
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makes the Hamiltonian in a form,

0 D
D* 0

where D is a q/2 X q/2 matrix.

V. ADIABATIC APPROXIMATION

In order to derive a formula for the Hall conductance,
we use the adiabatic approximation (see, for example,
Ref. 10). We assume that the system evolves slowly, so
up to the first order in time derivative a state is given by

IV (t)&=exp f E (t')dt'
0

lp(t) & & p(t) I&/&t la(t) &

Ep(t) E(t—)
(5.1)

where Ia(t) & is a state of the time indep-endent Schrodinger equation with a parameter t and E (t) is its eigenvalue, i e.
H(t)la(t) & =E (t)la(t) & .

The expectation value of an operator is given to this order as

& alo Ip& & pi&/&tla &+ &ale/8t Ip&& plola &

Ez(t) E(t)—
In the next section we use this formula to calculate the Hall conductance.

(5.2)

(5.3)

VI. HALL CQNDUCTANCK

Let us introduce an electric field in addition to the magnetic 6eld and calculate a current. We use a time-dependent
vector potential to represent the electric field. Note in the continuous case one has the relation E= —8 A/Bt. We in-

troduce an electric field along the y direction. The phase factor in (1.1) becomes 8; =2mgn E t for the li—nk between
i =(n, m) and j=(n, m +1) along they direction. Then the Hamiltonian (2.1) becomes

H= ', f"dk„f dk H(k, t),

with

H(k, t)= —2t, cosk„[ct(k)c(k)]—tb[e ' » c (k„+2rrg, k»+E»t)c(k„, k +E t)

+e ' 'c (k„—Zing, k»+E t)c(k, k»+E t)],

(6.1)

(6.2)

Observe that the Hamiltonian (6.1) is still time independent due to the integration over k. However, the system is
indeed time dependent. This point has some similarity to the topological terms in field theory in the path-integral for-
mulation.

An operator on a link ij which represents a particle How from i to j is given by

(6.3)

From this, one can show that an electric current operator is written as

j= f dk, f dk Vi, H(k, t) .
L A'(2~)

(6.4)

Here we consider an L XL lattice and let L go to infinity in the end. The electric current density along the x direction
carried by a state a is

&alj.Ip& & pie/atla &+ &aIBIBt Ip& & pl j„la &j„= iR g-
Eti(t) —E (t)

Here note the formula

(6.5)

E~(t) —E.(t) (6.6)

where 8 is a derivative operator with respect to a parameter in the Hamiltonian, e.g., dIBt and BIBk». Using (6.6), one
can obtain several equivalent formulas. First, we obtain
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&alj. lp&& plaII(k, t)/atla& —&alBH(k, t)/&tip&&plj„la&

[E&(t)—E (t)]'

Since (BM/Bt) =(e/ih')(BH/Bk» )E in the present gauge, the Hall conductance defined by

& J. &.=(a„,).E,
is given by

& al j.IP& &Pjl, la &
—

& al j, IP& &Plj.Ia &(o„) = iL —fi
[E&(t)—E (t)]'

Also, one gets

(6.7)

(6.8)

(6.9)

ie
(o )=-

Xy CX &al
X

a — —o,'
Bt Bt X

(6.10)

and

(a )=-
xy o, &al

X

fa&
X

(6.1 1)

This can be written as

, (v„x&alv„la &), , (6.12)

where ( ), represents the k, component of a vector in k space.
Let us now consider the contribution to the Hall conductance from a single band,

ak„'
&a

2

. f 'dk„'f dk, (v„x&alv„la&), .

a
ak„'

a&

(6.13)

This formula has a subtle topological nature which is
essential in the quantization of the Hall conductance.
First, one may naively wish to apply the Stokes theorem
to (6.13) to obtain

o.,= ' '. fdk&alvla&,
h 2m

where jdk is a line integral around the reduced Bril-
louin zone. The integrand &alVla& in fact represents the
derivative of the phase of state n. So it appears that the
quantization of o. is already shown since the phase of
the state must gain 2m times an integer after a revolution
around the reduced Brillouin zone in order to have a
single-valued wave function. However, this argument is
rather incomplete. Assigning a phase to a state is a sub-
tle problem. One example which drew large attention re-
cently is Berry's phase in the adiabatic process. " (In the
present formulation of the problem, k and time t evolve
in an equivalent way. So we have a Berry's phase in this
problem, but it does not play a role in the quantization. )
The essential point here is that the reduced Brillouin
zone is topologically a two-torus and in general it is not
possible to define a global phase on it. Then the phase of
the state defines a principal U(1) bundle over the two-
torus and &alVla& defines a connection. Now the ex-
pression in (6.13) represents a Chem number of the fiber

bundle which is necessarily an integer. Therefore the
Hall conductance due to a single band is an integer in
unit of e /h, and the integer is the Chem number of the
fiber bundle defined by the wave function. A detailed ac-
count of this point can be found in Ref. 8.

VII. QUANTIZED VALUES OF HALL CONDUCTANCE

Let us suppose the Fermi energy is in rth gap, namely
there are r bands below the Fermi energy. Here we have
three positive integers r, p, and q. The Darboux theorem
implies that three positive integers always satisfy

r =qs„+pt„, (7.1)

where s„and t„are integers, and ltl ~q/2 and 0~ r ~ q.
It was announced in Ref. 6 that t„was the integral value
of the Hall conductance. Then rth band, which is be-
tween (r —1)th and rth gaps, carries an integral Hall con-
ductance I„which satisfies

1=qJ, +pI, , (7.2)

where I„=t„—t„,and J„=s„—s„
This relation was discussed by Dana et al. ' in terms of

the magnetic translation group. Here we show the details
of the weak-coupling calculation in Sec. VIIB. Also, a
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derivation from the symmetries of the Harper equation is
given in Sec. VII C. First, it is perhaps useful to mention
the Streda formula. '

A. Streda formula

The Streda formula for the Hall conductance is written

written as k„=r/~ with 0~ r ~q. Thus we obtain (7.1)
with an identification of t„being the order of the rth gap
size.

Let us now explicitly obtain the Hall conductance. In
a band, except near the gaps, the wave functions are sim-

ply

~tp (k, k )~ =1 for j =m or m'

e2 BN (7.3)
=0 otherwise . (7.8)

r B&=—=s„+ t„.
q

"
2m

So (7.3) would give

(7.4)

where N is the total density of states below the gap. Let
us point out that this formula is not meaningful as it
stands, unless X is shown to be a differentiable function of
B. Nonetheless, this formula can give the correct value
with certain manipulations. In the present case, (7.1) is
divided by q to give

E

ik t
Ae

—ik t'
he ' a a

b b (7.9)

Here e and E are measured from the middle of the gap,
namely,

Here m'=m —t and we take 0~ k &2~/q. The gaps are
at k =0 and m. /q. Near the edge, all the components of
the wave function except f and g are negligible.
Write g =a and it/ =b, then an efffective Schrodinger
equation is

2

a~y (7.5) c=2t cos k'+2m ma X (7.10)

if s„and t„are assumed to be independent of B. This as-
sumption can only be made plausible in the weak-
coupling limit.

and k„=O for even r and k„=m./q for odd r. The param-
eter 6 is of the order of t~'I. %'rite b =b' e' y', then one
gets

B. Weak-coupling limit

Eo(k )= 2t, cos(k—„)=—2t, cos(k„+2m/m},

and the wave function is

(7.6)

g =1 for j=m

In order to calculate o. explicitly, we consider the
case of small tb. When tb =0, (2.4) gives a single band for
a one-dimensional tight-binding model

a a

Here all the quantities are real and the solutions are

—
( s2+ g2 )1/2

(a, b') = (cos8, sin8),

with sin28= b, /(e + b, ) '/, and

(7.11)

(7.12)

=0 for jism . (7.7)
(E2+ g2)1/2

(7.13)

This spectrum is doubly degenerate and the term propor-
tional to tb in (2.4) gives the coupling between the two
branches of the dispersion. The gaps open when
Eo(k )=ED(k,') (namely, k„'= —k„+2vrs for an integer
s) and k„'=k 2'(p/q)t, where —t is an integer with

~t~
~ ql2. So k„and k,' couple by ~t~th-order Iierturba-

tion and the size of the gap is an order of tb'. If s is
chosen appropriately, k, is put between 0 and m and is

I

(a, b') =( —sin8, cos8),
with sin28= —5, /(e +b, )' . For the upper edge of rth
band one takes the solution E . As k„passes 0 (for even
r} or vr/q (for odd r) 8 changes from m/2 to 0. Then

lk
(a, b) changes as ( —1,0)~(O, e ' "). For the lower edge,
we take E+ and (a, b) changes as (O, e ' " ')~(1,0).

I.et I„represent the contribution of rth band to the
Hall conductance in unit of e /h. From (6.13) we have

8&' 8& q

j=1

(7.14)

The energy dispersion does not depend on k in the
weak-coupling limit and it is doubly degenerate for the
two regions k =[O, m. /q] and [m/q, 2m. /q]. The wave
function changes character across the boundaries of the
two regions which contribute to I,. Within each region
the wave function is regular and we apply the Stokes

I

theorem in the two regions separately. The result is

h
2 xy Ir tr tr —1

e
(7.15)

which was announced in the beginning of this section.
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C. Derivation from symmetries

=E(k„,k )4 (7.17)

In order to understand the symmetry properties of
(2.4), it is useful to make a transformation

p =4e (7.16)

Then one gets

tb—(qI, +4/+, ) —2t, cos(k, +2rrpj )ql

Note that we do not have explicit dependence on k, and
k is written as k„. Now one can consider (7.17) as an
infinite system. From (2.5) and (7.16) %'~ satisfies

(7.18)

which can be regarded as the Floquet (or Bloch) theorem.
The new equation (7.17) has several symmetries among

which we use (a) k —+k +2'/q and (b) k ~k +2vr/q.
The wave function is transformed accordingly as (a)

ia(k ) iP(k )
O'J~%'~+, e ' and (b) 0'~~%', e " . Let us define

ak,
(7.19)

Here the wave function is normalized gjt=, ~'p,
~

=1.
The above symmetries and a comparison of (7.14) and
(7.19) with (7.16) give

J= ——I,+-p
q

'
q

(7.20)

Thus the integral (7.19) is identified as the integer J„ in
(7.2).

VIII. SUMMARY AND DISCUSSIONS

In Sec. IV, the existence of zero modes is shown explic-
itly. The duality plays an important role which is ori-
ginated from the symmetry of the lattice. It is remark-
able that the zero modes persist irrespective of the ratio
of the couplings t, /tb. The zero modes disappear when
the symmetry of the lattice is changed to, for example, a
hexagonal lattice' and a spin-density-wave system. '

In Sec. VI, the formula for the Hall conductance is de-
rived using the adiabatic approximation. The result is
the same as the so-called Kubo formula which comes
from the linear-response theory in dissipative systems.
Note that in the case of the Hall conductance, electrons
move perpendicular to the electric field. So one does not
need a dissipation to have a current which is proportional
to the electric field. In fact, one can eliminate the electric
field in a moving frame with a constant velocity. In this
frame, we have only a magnetic field and the moving lat-
tice drags the electrons. So the electrons do not move
faster than the velocity of the lattice classically. There is
a possibility that the Hall current is exactly proportional
to the electric field, namely all the higher-order correc-
tions in the adiabatic approximation cancel each other.
However, this point is not clear yet.

In Sec. VII, the integral values of the Hall conductance
are calculated explicitly in the weak-coupling limit. Also,
it is discussed in terms of the symmetries of the Harper
equation. The relation (7.1) or (7.2) uniquely determines

the Hall conductance except at a zero mode E =0 (q even
and r =q/2). The contribution from a subband is sym-
metric with respect to E=0, and the sum of contribu-
tions from all the bands is zero. At a zero mode, we have
two solutions t„=+q/2. In fact, this point has a topolog-
ical singularity. Since the two bands are degenerate, we
do not have regular manifolds there.

The values of t, change wildly as r is increased for gen-
eral values of p and q. Also, the sign changes, so one has
many changes between electronlike and holelike conduc-
tions as the Fermi energy is raised. This behavior might
have some relevance to the Hall measurements of the
quasi-two-dimensional organic conductors in which the
Hall conductance is approximately quantized and it
changes sign as a magnetic field is varied. '

In the simplest case of p =1, all the bands except ones
at the center of the spectrum have +1 Hall conductance
each. For odd q, the center band carries —(q —1) Hall
conductance and for even q the two bands at the center
carry —(q —2). Thus, if the Fermi energy is below the
center of the spectrum we have an electronlike Hall
coeScient, and if it is above the center we have a holelike
Hall coefficient. Usually the holelike behavior is ex-
plained by assigning positively charged particles, namely
holes, as the carrier of Hall current. This picture comes
from a semiclassical treatment of the quantum-
mechanical system. Here, however, it is explained by the
full quantum-mechanical picture. The carrier is a nega-
tively charged electron, and the holelike behavior is due
to the wave nature of electrons, i.e., they get diffracted by
the lattice.

The above behavior remains for p&1 as well. Write
p/q =1/(Q+p'/q'), then the spectrum has Q+1 clus-
ters. A sum of Hall conductance of each cluster is +1
and the middle cluster has —Q integral Hall conduc-
tance. Note that in a realistic lattice spacing and a mag-
netic field, one has P «1 and Q is a large number.

In three dimensions, if the magnetic field is parallel to
the third axis, the coupling t, in the third direction is
decoupled with the first two couplings. The energy
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dispersion is simply E =EzD+( —2t, cosk, ). The Hall
conductance is obtained simply by averaging the two-
dimensional result over the new contribution to the den-
sity of states due to the third coupling. Therefore, the
above discussion on the holelike Hall effects is applicable
to three dimensions as well.

When the magnetic Geld is not parallel to the third

axis, we have even richer phenomena including the frac-
tional quantization of Hall conductivity. '
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