
PHYSICAL REVIEW B VOLUME 39, NUMBER 2 15 JANUARY 1989-I

Importance of carrier-carrier scattering for the ambipolar transport
of optically generated carriers in a thin semiconductor slab
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The ambipolar transport of an electron —hole —acoustic-phonon system in a semiconductor slab of
some micrometers thickness is studied in an effective one-component model. Numerical solutions of
the Boltzmann equation in relaxation-time approximation are given for different carrier-carrier
scattering times ~, , Surprisingly, the resulting profiles of hydrodynamic variables (density, average
velocity, and carrier temperature) are found to sensitively depend on this parameter. In the limiting
cases of very weak, i.e., ~, , large compared with the carrier-phonon scattering time, or very strong
carrier-carrier scattering, the profiles can be calculated to a good approximation in hydrodynamic
models. In the latter case a nondiffusive velocity overshoot may occur. From the distribution func-
tion the line shape of the luminescence spectra is calculated as function of ~, , and slab thickness.

I. INTRODUCTION

During the last few years many experiments on the am-
bipolar transport of optically generated carriers have
been performed, both under stationary excitation' and
after generation by a short laser pulse. In several
cases, especially at low carrier densities, when exciton
transport is dominant, it has been found ' that experi-
ments are in good agreement with simple theoretical cal-
culations using the diffusion equation. Often, however,
an additional velocity has been necessary to explain the
results. There has been much controversy about the ori-
gin of this drift velocity. Steranka and Wolfe '" found in
their experiments velocities smaller or just below the
sound velocity and thus favored the phonon wind as a
driving force of the carrier system. Forchel et al. ,

'

Schweizer et al. , and Tsen et al. needed drift velocities
larger than the sound velocity to fit their spectra which
thus excludes the phonon wind as the dominant effect. In
this paper we investigate the influence of carrier-carrier
scattering on stationary transport profiles and lumines-
cence spectra and demonstrate that, due to surface effects
and temperature gradients, high velocities are possible
even without the nonequilibrium in the phonon system.

The various scattering processes in semiconductors can
be divided into two classes: those processes leading to a
relaxation of energy or momentum, e.g. , electron-phonon
or electron-impurity scattering, and those affecting only
the shape of the distribution function without changing
the hydrodynamic variables. Electron-electron and hole-
hole scattering are examples of this second class, as well
as exciton-exciton scattering, when exciton transport is
considered. In many experimental situations only the be-
havior of hydrodynamic variables is studied; for example,
an electric current density in presence of an electric field,
a particle current density in presence of a density gra-
dient, or an energy relaxation rate after excitation with a
short light pulse. For this reason the two classes are
often treated in a different manner in theoretical calcula-

tions. If the deviations from equilibrium are not too
strong, electron-electron scattering can be neglected be-
cause it is a higher-order process for the calculation of
conductivity or diffusion coefficient. In the opposite
case there are strongly driven systems with high density,
where carrier-carrier scattering is the dominant process
leading to a specific shape of the distribution function,
e.g. , heated and displaced Maxwellian or heated and dis-
placed Fermi distribution. Instead of studying the whole
distribution function, only the dynamics of a few func-
tions of space and time, density, drift velocity, and carrier
temperature, has to be calculated.

Carrier-carrier scattering is a two-particle process and
thus dependent on density. This leads to the existence of
parameter regions, where neither of these approximations
is applicable. When density decreases, the carrier-carrier
scattering time increases and may become comparable to
carrier-phonon or carrier-impurity scattering in a certain
density region. In this case both processes have to be
treated on the same level and, as in other fields of physics,
where length or time scales of different processes become
comparable, interesting crossover effects can be expected.

In a previous paper (hereafter cited as I) we studied
the perpendicular transport of an optically generated am-
bipolar plasma in a thin semiconductor slab within a ki-
netic model. The main issues addressed have been the
influence of the boundary conditions and the increase of a
ballistic contribution when the transit time of the gen-
erated carriers becomes comparable to the momentum re-
laxation time. In this paper we demonstrate the impor-
tance of carrier-carrier scattering for calculations of the
stationary profiles of density, average velocity, and tem-
perature of the plasma. Because these variables are usu-
ally not directly measurable in an experiment we also
present the optical spectra due to recombination.

II. KINETIC MODEL.

In order to avoid the problems arising from the two-
component nature of the electron-hole plasma in a semi-
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conductor, we use the same model semiconductor already
discussed in I, where the masses and relaxation rates for
electrons and holes are taken to be equal, reducing the
problem to an effectively one-component system which is
described by the stationary Boltzmann equation

irik, f (k, z) =g (k,z)+
m Bz

' '
Bt
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The hydrodynamic variables are given by

n(z)= ff(k, z)d k, (4a)

n (z)vd(z) =—f k,f (k, z)d k,
'2

m
,'n(z)ktiT—,(z)= f k, ——

vd f(k, z)d k
2m

(4b)

+f kiif(k, z)d k (4c)

where k~~=(k„, k~).
Integrating the Boltzmann equation (1) with respect to

the parallel components of the momentum gives an equa-
tion for the one-dimensional distribution function fo..

fo(k„z)= ff(k, z)d k~~ .

This function, however, is not sufficient for the calcula-
tion of the carrier temperature. The second integral in
(4c) defines a parallel temperature which does not neces-
sarily coincide with the temperature in the z direction.
Thus we introduce the second moment of f with respect
to kii.-

f,(k„z)=f k2~if (k, z)d'k (6)

The differential equation for f2 is obtained by multiply-
ing (1) by k~~ and integrating with respect to the parallel
momentum. The "Boltzmann equations" for fo and fz
together with the hydrodynamic variables (4) form a

Here, g(k, z) is the generation rate due to the absorption
of the laser light which creates carriers at a fixed excess
energy E„,above the band edge:

g(k, z)=ye '5(iri k /2m E,„,) .—

(df/dt), and (Bf/r)t), , are the collision operators for
carrier-phonon and carrier-carrier scattering, respective-
ly. We treat both processes in relaxation-time approxi-
mation. (Bf/Bt), , drives the distribution function to-
wards a heated and displaced Maxwellian f '(k, z), where
the carrier temperature T, and drift velocity Ud have to
be determined self-consistently from the distribution
function. ( df /dt ), leads to a relaxation towards a
nondisplaced Maxwellian at lattice temperature f (k, z):

closed set of equations that has to be solved self-
consistently.

At low temperatures, where only acoustic phonons
have to be considered, the relaxation time ~, is given by

=(l.g us~ )7g 'T

where TL is the lattice temperature. The prefactor is
chosen to reproduce the correct ambipolar diffusion con-
stant for Si. The carrier-carrier relaxation time ~, , is
varied in the calculations. The material parameters used
in the calculations can be found in I. The influence of the
surfaces is modeled by the momentum-independent
reflection coefficients Ro and RL at the surfaces z=O and
z =L, respectively. 1 —Ro and 1 —RL are thus the sur-
face recombination probabilities for a carrier arriving at
the surfaces. Bulk recombination could easily be includ-
ed, but in indirect semiconductors like Si it is a slow pro-
cess compared to surface recombination in all cases con-
sidered in this paper and thus negligible for transport cal-
culations. Including carrier-carrier scattering, the
Boltzmann equation is nonlinear even in relaxation-time
approximation through the parameters T, and Ud.

Though it can be solved analytically in the spatially
homogeneous case with an electric field, ' spatially inho-
mogeneous problems can only be solved numerically. We
use the iterative procedure explained in I.

Figure 1 shows the spatial profiles of the hydrodynam-
ic variables density, average velocity, and carrier temper-
ature for various carrier-carrier scattering rates in a 20-
pm sample at lattice temperature of 5 K. The carriers
are generated by a stationary laser beam with an excess
energy of 50 meV. The reflection probabilities are"
Ro= 1, R~ =0. Without carrier-carrier scattering (solid
lines) the density behaves approximately as should be ex-
pected in a diffusion process: it has its maximum where
the carriers are generated and decreases monotonically
with increasing distance from the irradiated surface. The
temperature profile has virtually no gradient. With in-
creasing carrier-carrier scattering rate the shape of the
density profile becomes qualitatively different. When the
scattering rates of carrier-phonon and carrier-carrier
scattering become comparable (r, is here typically in
the order of 100 ps), the maximum of the density begins
to move from the surface into the sample, although there
is still no surface recombination at the front surface. Be-
cause of the continuity equation the particle current den-
sity j must be constant everywhere outside the generation
region. Thus the average velocity U =j/n has to decrease
when the density increases. Due to the totally reflecting
surface at z=O, the velocity is zero at the boundary and
positive everywhere inside the slab. A maximum of the
density inside the sample thus leads to a maximum of the
velocity between the surface and the density maximum.
As can be seen in Fig. 1(b), the velocity at the maximum
is nearly 1 order of magnitude larger when carrier-carrier
scattering is dominant, compared to the velocity at the
same distance without this scattering mechanism.

The possibility of a density gradient in the same direc-
tion as the current density, a "reverse diffusion, "has been
pointed out in earlier papers. ' Its origin is a strong
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ture gradient between the surface and the bulk of the
slab.

In Fig. 2 the hydrodynamic variables are plotted for
different slab thicknesses. The carrier-carrier scattering
time is 10 ps. Both surfaces are now totally absorbing,
R p

=R =0. At a given slab thickness this gives theL
strongest nonequilibrium effects because the effective life-
time of the carriers inside the slab is the smallest. In the
5-pm slab the temperature never relaxes towards lattice
temperature and there is no region of reverse diffusion.
10 pm is approximately the energy relaxation length and

th 20- and 30-pm slabs there is an increasing region of
~

l
0 fisothermal transport. Because of the longer effective i c-

time in a thicker slab, the nonequilibrium effects (carrier
temperature and average velocity) near the front surface
become smaller with increasing thickness. If reverse
diffusion occurs, the position of the density maximum is
mainly given by the energy relaxation length, and for
slabs thicker than this length it is approximately indepen-
dent of thickness.

III. HYDRODYNAMIC MODELS

If one of the scattering processes is dominant and the
thickness of the slab is large enough to ensure e%cient

25.0 --
I

0.0
0.0 5.0 10.0

z m)

15.0 20.0

FIG. 1. (a) Density, (b) average velocity, and (c) carrier tem-
perature profiles for TL =5 K, E,„,. =50 meV, RO=1, RL =0 in
a slab of 20 pm thickness with ~, , = ~ (solid lines), 100 ps
(dashed lines), 10 ps (dotted lines), and 1 ps (dash-dotted lines),
calculated within the kinetic model. ~, ~ in the order of 100 ps.
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temperature gradient [Fig. 1(c)] leading to a strong ener-

gy current density and, by means of the thermodiffusion
coefficient, also to a particle current density. If this
current density becomes too large compared to the gen-
eration of new carriers by the laser light, a positive densi-
ty gradient is built up to limit the current density. The
temperature gradient, now, is strongly related to the
carrier-carrier scattering rate. The carriers are always
generated with an energy much larger than the mean en-
ergy at lattice temperature ( -0.5 meV at 5 K compared
to the excess energy of 50 meV}. Without carrier-carrier
scattering, those carriers with a small velocity component
perperpendicular to the surface remain in the generation re-
gion for a relatively long time, while the fast carriers are
leaving this region leading to a narrow distribution func-
tion, which means a temperature which is small com-
pared to the excess energy. Thus no strong temperature
gradient can build up. On the other hand, with strong
carrier-carrier scattering, the carriers are efficiently redis-
tributed on small time scales. Total energy and momen-
tum are conserved in this scattering process. The carrier
temperature is mainly determined by the excess energy of
the generation process. This leads to a strong tempera-
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FIG. 2. Same as Fig. 1, but for RO=RL =0 and ~, , = p.. =10 s

in slabs of different thicknesses: 5 pm (solid line), 10 pm
(dashed lines), 20 pm (dotted lines), and 30 pm (dash-dotted
lines).
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scattering before the carriers recombine at the surfaces,
the shape of the distribution function can be
parametrized by very few space-dependent variables. For

«~, „carrier-carrier scattering can be neglected,
since the equilibrium distribution for carrier-phonon
scattering is also an equilibrium distribution for carrier-
carrier scattering. The temperature is given by the lattice
temperature and the system can be described by a simple
diffusion equation for the carrier density n:

k~ TL =G (z) .
m

Go is the carrier generation rate:

Go(z) = fg (k, z)d k =goe

Since all equations are linear with respect to the density,
the absolute value of go is not important —the density
scales with go.

In the opposite case, ~, , && ~, , carrier-carrier
scattering drives the shape of the distribution function to-
wards a heated and displaced Maxwellian, but since this
is not an equilibrium function for carrier-phonon scatter-
ing, that scattering mechanism leads to a relaxation of
the average velocity and temperature. With the assump-
tion of a heated and displaced Maxwellian, the
Boltzmann equation (1) implies the following differential
equations for density n, average velocity v, and carrier
temperature T, (given in terms of 0= k& T, Im):

(12)so, L 1+RO, L

The third condition for Eqs. (10) is the requirement that
the variables are finite everywhere. (10a) and (10c) con-
tain the average velocity v in the denominator. Since
there is always one point inside the slab where the veloci-
ty is zero, the numerator of the respective terms must
vanish at this point, leading to a connection between den-
sity and temperature at this point:

(Gz —5OG0) if v =0 .
L

(13)

The diffusion equation (8) can easily be solved analyti-
cally with the boundary conditions (12); Eqs. (10) togeth-
er with the boundary conditions (12) and (13) have to be
solved numerically. Figure 3 shows the profiles of the hy-

1.00

bination velocities so and sL at the surfaces z=O and
z =L, respectively. With the assumption of an approxi-
mately unperturbed Maxwellian for the carriers moving
towards the surface, density and current density at the
surface can be calculated from the kinetic boundary con-
ditions. Elimination of the density gives the surface
recombination velocities
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and OI =k~ TI /m. G2 is a measure of the energy associ-
ated with the generation of the carriers.

For unique solutions of the hydrodynamic equations (8)
or (10) boundary conditions are necessary. Recombina-
tion at the surfaces leads to finite velocities of the carrier
system at the boundaries, the well-known surface recom-
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FIG. 3. (a) Density, (b) average velocity, and (c) carrier tem-
perature for the parameters of Fig. 1 calculated within the iso-
thermal diffusion model (solid lines) and the heated and dis-
placed Maxwellian model (dashed lines). For comparison the
profiles of the kinetic calculations are included as dotted lines.
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drodynamic variables for isothermal diffusion (solid line)
and for a heated and displaced Maxwellian (dashed line).
For comparison the curves of Fig. 1 are included as dot-
ted lines. The diffusion profiles are similar to the kinetic
calculations without carrier-carrier scattering. The
agreement is not perfect because, although there are no
strong temperature gradients, the temperature is not ex-
actly constant and it is everywhere somewhat larger than
lattice temperature. The displaced Maxwellian calcula-
tion is in good agreement with the kinetic profiles for a
carrier-carrier scattering time of 1 ps. Due to the higher
temperatures near the surface, which lead to a smaller en-

ergy relaxation time (7), the density maximum is shifted
to smaller z values. Because the heated and displaced
Maxwellian is the limiting case of the distribution func-
tion for the infinite carrier-carrier scattering rate, scatter-
ing times below 1 ps will not lead to significant changes in
the transport behavior inside the slab.

Near the surface z =L, the agreement, especially of the
velocities becomes worse, because the boundary condition
(12) has been derived under the assumption of a velocity
small compared to the thermal velocity, which is not
satisfied for a totally absorbing surface (RL =0). Equa-
tion (12) always underestimates the true average velocity.
In order to get a better expression for the boundary con-
ditions, the Boltzmann equation (1) must be used to cal-
culate the deviation of the distribution function from a
heated and displaced Maxwellian in a small layer near the
surface. This is just the Knudsen layer as introduced in

gas-dynamic calculations and analyzed for the same
geometry but different kinetic boundary conditions by
Sone and Onishi. ' '' A higher velocity at z =L would
result in slightly larger velocities everywhere inside the
slab. This explains why the density maximum in the re-
verse diffusion region is not larger in the hydrodynamic
calculations than for ~, , =1 ps, as would be expected
from the trend for decreasing ~, ,

IV. LUMINESCENCE SPECTRA

Neither the full distribution function nor the space-
dependent profiles of the hydrodynamic variables are

where E is the gap energy, and E, and EI, are the band-
structures for electrons and holes, respectively. While for
the calculations of the hydrodynamic variables from the
Boltzmann equation only two moments of f with respect
to the parallel momentum were sufficient, now the full
dependence on k~~ is needed. We approximate this depen-
dence by a Maxwellian with the parallel temperature cal-
culated from the second integral in (4c). Additionally, for
the model semiconductor discussed in Sec. II the distri-
bution function for electrons and holes are the same, thus

g2
f, (k, z) =f„(k,z) =fo(k„z)

2~mkg T

h' (k'+k')
X exp

2mk~ T
(15)

Inserting (15) in (14) the luminescence spectrum can now
be calculated from the one-dimensional distribution func-
tion fo(k„z) according to

directly measurable in an experiment. So one has to look
for a quantity that is accessible by experiments and on
the other hand provides enough information to get in-

sight in the transport properties. The luminescence spec-
trum due to band-to-band recombination satisfies these
requirements: in an indirect semiconductor it is a slow
process which approximately does not influence the
transport behavior in a thin slab and depends on the
shape of the distribution function.

We assume that the optical dipole matrix element does
not depend on the wave vector in the relevant region of k
space where the distribution function is nonzero. In an
indirect semiconductor, momentum is not conserved in a
recombination process because of the participation of a
phonon; thus, the luminescence intensity at frequency h v
is given by

I(hv)- fd'k f d' k' f dz J;(k,z)J'A(k', z)

X 5(h v E —E—, (k) E„(k')—),
(14)

2

I(hv) —f dk, f dk,' f dz fo(k„z)fo(k,', z)[k&T~ (z)] (P—k, —k,
'

)exp — (P—k, —k,' )
2mk T

(16)

with

/3=(2m!%' )(hv Eg ) . —

In Fig. 4 the luminescence spectra of the 20-pm slab are
plotted for different carrier-carrier scattering times, the
hydrodynamic profiles of which are those of Fig. 1. With
decreasing scattering time the line first becomes broader
and then narrower. This can be understood by inspection
of the hydrodynamic variables: the distribution function
enters quadratic in (16), thus the region of density max-
imurn will dominate the spectrum. Without carrier-

carrier scattering C, solid line) the density maximum is at
z=0. The velocity at this point is zero and the tempera-
ture is somewhat higher than lattice temperature. For
r, , = 100 ps (dashed line) the density remains nearly con-
stant for about the first 6 pm. Temperature and average
velocity are higher in this region than without carrier-
carrier scattering, both leading to a broader spectrum.
At lower scattering times (dotted and dash-dotted lines)
the density maximum is inside the slab and, as already
mentioned, due to the continuity equation the average ve-

locity has a local minimum at this point. The tempera-
ture has nearly relaxed towards lattice temperature, so
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FICx. 6. Luminescence spectra for the thickness-dependent
calculations with the parameters of Fig. 2. L=5 pm (solid line),
10 pm (dashed line), 20 pm (dotted line), and 30 pm (dash-
dotted line).

V. CONCLUSIONS

We have demonstrated that the profiles of hydro-
dynamic variables (density, average velocity, and carrier
temperature) depend strongly on the rate of carrier-
carrier scattering, even though this scattering process
cannot directly affect these variables. Without carrier-
carrier scattering the system behaves approximately
diffusively, and the density decreases monotonically with
increasing distance from the generation region. When
the carrier-phonon and carrier-carrier scattering rates be-
come comparable, the density maximum begins to move
away from the generation region. For ~, , &&~, the po-
sition of the density maximum is approximately constant,
but the ratio between the density in the generation region
and the maximum density decreases with decreasing ~, ,
This reverse diffusion is connected with a strong velocity
overshoot at the end of the generation region. This
overshoot behavior is, at first sight, counterintuitive, as
one tends to expect scattering to impair rapid motion.

The physical reason for this effect is easily understood
from the different temperature gradients. Only an
efficient carrier-carrier scattering establishes a hot distri-
bution function near the surface and thus a strong tem-
perature gradient, because the energy relaxation length is
approximately independent of ~, , If reverse diffusion
occurs, the position of the density maximum is deter-
mined by this length. It does not depend on the sample
thickness.

The limiting cases of very small or very strong carrier-
carrier scattering can be described in hydrodynamic
models, for ~, &&~, , by an isothermal diffusion and for

&&~, , by a heated and displaced Maxwellian. A ma-

jor problem is the calculation of the hydrodynamic
boundary conditions for the microscopic processes,

which control the kinetic boundary conditions. Our sim-
ple model fails for average velocities comparable to or
larger than the thermal velocity because it is well known
that, in a layer of the mean free path of the carriers (the
Knudsen layer in gas dynamics), the distribution function
differs significantly from a displaced Maxwellian and de-
pends on the carrier-carrier scattering rate. Neverthe-
less, the agreement between displaced Maxwellian and ki-
netic calculations for ~, , =1 ps is very good in the major
part of the slab.

The luminescence spectra also reflect the dependence
on carrier-carrier scattering. For decreasing ~, , the line
first becomes broader until both scattering mechanisms
have approximately the same rate, because the tempera-
ture near the surface increases and the density is still high
there. When ~, , is decreasing further the temperature at
the surface is still rising, but the density is decreasing. At
the position of the density maximum, which dominates
the spectrum, the temperature has nearly relaxed towards
lattice temperature, thus the spectrum now becomes nar-
rower.

While for large ~, , the whole distribution function
from the kinetic calculation is necessary to determine the
luminescence spectrum accurately, below 10 ps it is prac-
tically perfectly reproduced, if a heated and displaced
Maxwellian is used instead, where the hydrodynamic
variables agree with the correct distribution function.
For the main part of the luminescence line it is even a
satisfying approximation to use just a single heated and
displaced Maxwellian with temperature and drift velocity
in agreement with those of the density maximum in the
kinetic calculations. Only at the high-energy tail there is
still a significant deviation due to the high temperatures
and velocities in the reverse diffusion region.

In this paper we have restricted ourselves to the case of
an excess energy smaller than the optical phonon energy.
In most experimental situations this condition is not
satisfied; the laser energy is much larger than the gap en-
ergy. Due to the high-energy relaxation rate in optical-
phonon scattering, the carriers will lose their energy very
fast until it is below the optical-phonon energy. The de-
tails of this process and the resulting density, velocity,
and temperature profiles remain to be investigated. In ki-
netic calculations this is difficult because of the large
number of iteration steps for fast scattering processes, '

but the hydrodynamic description might be useful when
carrier-carrier scattering is the fastest process. For a
quantitative comparison with most experiments the de-
generacy of the carrier system has also to be included in
the calculations, but we expect that this does not qualita-
tively change our present results.
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