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We introduce a new procedure to obtain the internal stress tensor in constant-pressure molecular
dynamics (MD} simulations of molecular solids. We show that the internal stress tensor which
governs the dynamics of the MD cell depends not only on the center-of-mass positions and veloci-
ties of the molecules, but also explicitly on the molecular orientations and angular velocities. The
importance of these rotational contributions in a two-dimensional diatomic molecular monolayer
system is discussed.

In recent years, constant-pressure (in general, constant
external stress) molecular dynamics has been extremely
useful in studying structural phase transitions in solids. '

Such studies in molecular solids have elucidated the un-
derlying physics of ferroelastic phase transitions which
are usually accompanied by an orientational order-
disorder transition. In constant-pressure simula-
tions, the periodically repeating molecular dynamics
(MD) cell is assigned a fictitious mass and the volume and
the shape of the MD cell are allowed to change, this
change being determined by the internally generated
stress tensor and the externally applied pressure (stress).

In most of the early works on molecular solids, ' the
internal stress tensor is determined by the positions and
the velocities of the molecular center of mass. The
molecular orientations only appear indirectly in the cal-
culation of the intermolecular forces. In the present
work, we argue that there are additional important con-
tributions to the stress tensor P„which depend explicitly
on the molecular orientations and angular velocities. We
will discuss the significance of these new contributions in
orientationally ordered molecular systems. Their e6'ects
on the ferroelastic phase transition temperature and the
coupled translational-rotational dynamics will be dis-
cussed in a later publication.

In the isoenthalpic-isobaric molecular dynamics of a
monoatomic system, ' the essential idea behind the cal-
culation of the internal stress tensor that determines the
dynamics of the MD cell is to start from the Lagrangian
X, for the system given by

X,=—,
' g trtr, —g g V(r,, ),

i j(&i)

and scale the coordinate of the particles r; by the vectors
a and b [in two dimensions (2D), and a, b, and c in 3Dj of
the parallelogram (parallelepiped) MD cell, i.e.,

where h is a transformation matrix given by

h=(a, b) in 2D or (a, b, c) in 3D . (3)

Both the kinetic energy and the potential energy terms in

Xi are now expressed in terms of the scaled coordinates
and velocities s; and s;, respectively, and one usually
neglects a term proportional to h in the kinetic energy
part. The dynamics of the variables s; and the matrix h
are determined by the following Parrinello-Rahman La-
grangian:

N

ms, Gs, —g g V[h(s, —s )]
i =1 - i j()i)
&eQ+ 2 8 Trh +h,

where the gauge matrix Cx=h+h (h is transpose of the
matrix h}, 0=det(h) is the area (or volume in 3D) of the
MD cell, p, is the externally applied (constant) pressure,
and 8' is the mass associated with the MD cell. The
equations of motion (EOM's} for h which determine the
dynamics of the MD cell can be obtained from the La-
grangian equation

which leads to

Bh„

Wh=(P —p, J )A, (6)

where 2 is the identity matrix and

A=A(h+ )

In Eq. (6), P is the internally generated instantaneous
stress tensor. For monoatomic systems, P is given by

1P„=—+mr';"r', . + g g F,i'(r, —r)".
i i j()i)

r; =hs;, (2) where p, v=x, y, z, and F;.= —c)V(r, )fc)r,. is the force
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between atoms i and j.
Now we consider a system .of rigid polyatomic mole-

cules described by the Lagrangian
N

+2 2 g g mikr ik g g g V(rik, jl )
i=1 k i k j()i) l

(9)

rik Ri+Pik ~ (10)

where R; is the center-of-mass coordinate and P;k is the
relative coordinate. Then conventional procedure ' to
handle the MD cell dynamics is to scale only the c.m.
coordinates R; by h and treat p;k as a constant. In this
case the internal stress tensor in Eq. (6) is given by

P„,=—+MR ;"R;+g g Fp~(R; —RJ)
I i j(&i)

where M =+km;k and

where i,j are the molecular and k, l are the atomic in-
dices; r,.k l=r l

—r,.k. There are two ways of obtaining
the internal stress tensor. In the first one, coordinates of
each atom can be separated as

P =Pkin+ ppot

with

(16a)

P„=—g m;k(hs;k)"(hs;k)"=1
i, k

1 v 1+~ g g Q~C, ,i&'k, ,i+~ gf"kP,"k (14)
i, k j(&i) l i, k

where f,k is the constraint force acting on the atom ik
with the condition gk f;k =0. We can write Eq. (14) in a
more transparent form as

1 . p. 1
p Py, +

II X m'kP kPik'+ X (+k+f k )Pik
i, k i, k

(15)
where P„', is the stress tensor given in Eq. (11);
F k XJ(~ )XiF;k,)j is the force acting on the ato m ik.
The stress tensor given in (15) has translational and rota-
tional contributions from both the kinetic (kin) and po-
tential (pot) ehergy parts of XM. Equation (15) is the cen-
tral result of this paper. We can formally write

Fij= X XF;k,,i .
k l

Tbe Force between atoms ik and jl is

(12a) pkin pkin, c.m. +pkin, rot

ppot ppot, c.m. +ppot, rot

(16b)

(16c)
dI'«;k, ,v)

F;k
erik l

(12b) where

pkin, c.m. +Ppot, c.m. pc. rn. (16d)
Note that F; and hence P„„do depend implicitly on the
molecular orientations, although only the center-of-mass
(c.m. ) coordinates R; and their velocities R; appear in the
expression for P„explicitly.

A second procedure for calculating the internal stress
tensor which we propose here is to scale the position vec-
tors (r,k) of individual atoms of the molecules by h and
then use the rigid molecule conditions through the intro-
duction of fictitious time-dependent forces. There will be
additional terms in P„coming from the kinetic energy
term of the Lagrangian and these terms will depend upon
the arigular velocities (co;). The potential energy contri-
bution to P„now depends upon the forces acting on the
individual atoms of each molecule. In addition to the
external forces, one has to take into account the con-
straint forces acting on the atoms. The constraint forces
fix the internuclear distance of the molecules. In systems
where intra-atomic vibrations are important, one will
have to replace the constraint forces by the actual forces
acting between the atoms of a given molecule. The con-
straint force, which in general depends on the angular ve-
locities, can be obtained from the equation of motion of
the atomic coordinates. The dynamics of the MD system
is described by the Lagrangian

N

+M X X 'k 'k+ ik g g QI(r'k, i)
i =1 k i, k j(&i) l

f )= —f 2= —[—'Md8 +—'(F, —F.2) r;) Jr;),
—'MdO =F'~)
2 i i

(18)

(19)

where d is the internuclear separation and

To illustrate the significance of the above results in
MD simulations, we consider a system of homonuclear
(rigid) diatomic molecules for simplicity. Assume that
the molecules are confined to move in a two-dimensional
plane with their rotational motion confined to the same
plane (see Fig. 1). The rigid rotor condition yields

Pik
= 2dinik ~

—p, Q+ —,
' 8'Trh+h . (13)

/ 8-
/

From Eq. (5) with L replaced by X~ and adding the con-
straint force, we obtain Eq. (6) for the dynamics of the
MD cell with the internal stress tensor given by FICJ. 1. A diatomic molecule confined to the XFplane.
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p pc.m. + g I8z(gPQ& rPr—+
)

l

+—' y, dF,'"e
yP. ;, ,

l

where I =Md /4 is the moment of inertia of the mole-
cule. We find that the rotational kinetic energy contribu-
tion to the stress tensor [the stlcond sum on the right-
hand side of Eq. (20)] is

(20)

F,' '=(F;,—F;2).n;, is the total force acting on the mole-
cule i in the direction perpendicular to the internuclear
axis. Equation (19) is simply the equation of motion for
the orientational variable 8;. From Eqs. (15), (17), and
(18), we then have

&P ""')=&n)k~T[—I+4g, ksT+ ]X

with

(24b)

low-temperature ferroelastic phase (see Fig. 2). In this
phase, at low temperatures, the rotational motion is dom-
inated by the libron spectrum. ' Let the rotational Ham-
iltonian be H„,= ,'Q,—I8;+—,'g; D(R; —RJ )8,.8 with

8, =8,. —90. Defining D(q)=+Re'q' D(R), we obtain
the thermal-averaged values of P"'"' ' and P "'"'as

&P"""'&=&n&k T[1—2g k T

+2(g~ +g 2, )( k~ T) + . ]X, ,

(24a)

—cos28; —sin20, .
pkin, rot 1 ~ Ig 2 —sin20; cos28; (21)

1 0
0 —1

(24c)

and the rotational potential energy contribution [the
third sum on the right-hand side of Eq. (20)] is

PPot, rot l dF(0)=1
4. l

l

—sin20;

cos20, +1
cos20; —1

sin20, . (22)

The internal pressure is defined by p =TrP. From Eqs.
(21) and (22), it is interesting to note that p depends only
on P', i.e., p =TrP' . However, the antisymmetric
component A =

—,'(P„P~„)has i—mportant 8;-dependent
terms, i.e.,

~ —1(Pc.m. Pc.m.
)

I dP(8)1
2 xp px

l

(23)

The last term is extremely important in MD simulation
as it makes a significant contribution towards keeping the
total angular momentum conserved.

Next we consider the strength and the temperature
dependence of the rotational contributions to the stress
tensor in Eq. (20). To do so, we calculate the ensemble
average of P —P' and for simplicity we consider the

where & n ) is the average molecular surface density and
g„= I/(2m) jdq[D(q)] " (n =1,2, 3, . . . ), the integral
being over the first Brillioun zone. As can be seen from
Eqs. (24), the off-diagonal contributions to the stress ten-
sor coming from the rotational part vanish in the har-
monic theory. This is also true if one includes the effects
of linear rotation-translation coupling on the libron dy-
namics. However, near the ferroelastic structural phase
transition where the harmonic theory breaks down, these
off-diagonal terms were found to be significant in our
molecular dynamics simulations. '

Coming back to the diagonal terms, we give in Fig. 3
the temperature dependence of the xx components of the
internal streSs tensor. It is interesting to note that the
linear term in T of & P „P„'™) is id—entically zero due to
a cancellation between the kinetic and potential contribu-
tions and the net result is a quadratic (T ) increase. The
increase in P'„" and the corresponding decrease in P„'-"
with increasing T make physical sense since in the or-
dered state the molecules are orientated along the y direc-
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FIG. 2. Ferroelastic phase of a two-dimensional diatomic
molecular solid with a centered rectangular lattice structure.

FIG. 3. Temperature (T) dependence of the thermal-
averaged rotational contributions to the internal stress tensor
P'„" in the ferroelastic phase. T is measured in units of Sglk&,
where g& has the dimension of inverse energy.
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tion at T=O.
In summary, we have proposed that both the center-

of-mass and the rotational contributions to the stress ten-
sor should be considered in a proper treatment in the

molecular dynamics simulations of a molecular system.
In particular, the latter can be quite important near a
structural phase transition involving orientational de-
grees of freedom.
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