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We propose that the disordered state of a two-dimensional spin-2 Heisenberg antiferromagnet is

physically equivalent to the incompressible liquid state of the fractional quantum Hall system. The
fractional quantum Hall state for bosons is shown to be an exact spin singlet and to possess a low
variational energy for the near-neighbor Heisenberg model on a triangular lattice. Variational wave
functions for neutral spin- —excitations are constructed and shown to form an exact spin doublet.
Variational energies of these states are calculated, and their spin density profiles are determined.
We find that a localized spin-2 quaisparticle has a size comparable to a lattice bond length and an

excitation energy 5= 1.3J. The energy-momentum dispersion of quasiparticles and spin-1 collective
modes, obtained variationally, supports the hypothesis that the spin liquid state has a finite energy
gap. The

2
fractional statistics exhibited by the quasiparticle excitations is explicitly demonstrated.

I. INTRODUCTION

In a recent paper, we suggested' that the "resonating-
valence-bond" (RVB) spin liquid state proposed by An-
derson to exist in frustrated Heisenberg antiferromag-
nets is physically equivalent to the fractional quantum
Hall state. The purpose of this paper is to furnish some
details supporting this idea and to report new results, in-
cluding a proof that our ground state is a spin singlet and
an estimate of energy dispersion of quasiparticles and col-
lective modes.

The nature of the spin liquid state and its elementary
excitations has recently been the subject of increasing in-
terest in connection with the RVB theory of high-
temperature superconductivity. The properties of this
state, and even its existence, are controversial. Anderson
originally suggested the near-neighbor Heisenberg model
on a planar triangular lattice as a plausible candidate for
the occurrence of a spin liquid. He constructed a disor-
dered state for this Hamiltonian and found it to have a
lower energy than the Neel state corrected for spin
waves. The variational energy we reported' was essen-
tially identical to Anderson's. Huse and Elser subse-
quently constructed wave functions exhibiting long-range
order which reportedly had a lower variational energy
than either ours or Anderson's. This suggested that
second-neighbor antiferromagnetic interactions were re-
quired to stabilize the liquid state. Recent results of An-
derson, Liang, and Doucot have demonstrated that the
energy of variational wave functions for the Heisenberg
model with near-neighbor coupling on a square lattice
has an extremely weak dependence on the amount of
Neel order inherent in the wave functions. In light of
this controversy, exact solutions will probably be re-
quired to establish the existence and properties of the

spin liquid state in a convincing way.
Our theory' is based on the hypothesis that an adiabat-

ic evolution of the fractional quantum Hall Hamiltonian
into that of the antiferromagnet preserves the energy gap.
Since the most important qualitative properties of the
quantum Hall state, the incompressibility, nondegenera-
cy, and existence of fractionally charged particles, are as-
sociated with the presence of a gap, ' this hypothesis is
quite powerful. In particular, it implies that the ground
state is a nondegenerate spin singlet with no translational
long-range order, and that neutral spin- —,

' excitations
must be present. These are the "spinons" proposed to
occur in the RVB state. ' Our identification resolves
the conceptual problem posed by spin- —,

' excitations in a

system like the Heisenberg antiferrornagnet, where all
basic degrees of freedom carry integer spin.

Since these properties of the spin liquid state follow
necessarily from the adiabatic evolution hypothesis, it is
incumbent on us to show that this hypothesis is reason-
able. To do this, we shall show that the wave functions
borrowed from the theory of the fractional quantum Hall
effect provide a consistent description of the spin liquid.
In particular, we shall show that the ground state is an
exact spin singlet and a liquid, and that the variational
energy of this state is competitive for the near-neighbor
Heisenberg model on a triangular lattice. %'e shall also
show that the collective mode wave function of Girvin,
MacDonald, and Platzman" provides a sensible descrip-
tion of spin waves and that the quasiparticle wave func-
tions form an exact spin doublet, as appropriate for spi-
nons. The energy-momentum dispersion of spinons and
collective modes, calculated from our variational basis,
suggests that the energy gap is finite for all momentum-
carrying excitat&ons. Finally, we present numerical evi-
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dence that spinons, described by quantum Hall wave
functions on a lattice, obey fractional statistics. '

II. SPIN MODEL AS HARD-CORE BOSE GAS

&=J $ S;.S/,
(ij )

(2.1)

where J &0, SJ =—,'crJ is the spin operator at j'" lattice
site, and the sum is over all sites i and, for each i, over its
six near neighbors j. It is convenient to rewrite this
Hamiltonian using the Holstein-Primako6' representation
of the spin operators:

+
SJ ~aJ

(2.2)S —+a

1S'~a a —
—, .

The operator a. creates a hard-core boson at j'" lattice
site. Thus every spin state generates a configuration of
the lattice bose gas where each up-spin site is occupied by
a single bosop and all down-spin sites are empty. We
note that the triplet of operators (2.2) transforms accord-
ing to the spin-1 representation of the spin algebra. The
particle created by a thus carries spin equal to unity.
The lattice gas Hamiltonian which follows from the
Heisenberg interaction (2.1) is then

(2.3)

We consider the spin- —, antiferromagnetic Heisenberg
model with near-neighbor interactions on a two-
dimensional triangular lattice as the prototype of a sys-
tem possessing a spin liquid ground state. This choice of
the model is reasonable, but not essential: The adiabatic
mapping procedure, discussed below, suggests that the
spectrum of the system survives any change in the in-
teraction Hamiltonian, as long as the system remains in
the disordered phase. Our starting point is the Hamil-
tonian

The term T can be identified as the kinetic energy of
noninteracting charged particles moving on the lattice in
the presence of a uniform "magnetic field" produced by
the vector potential

A(r) =—(xy —yx),
2

(2.4)

where the strength 8 of the magnetic field is chosen to
produce exactly one-half of a fiux quantum Po per ele-
mentary plaquette of the lattice. The vector potential
changes the phases of the single-boson hopping matrix
elements according to

J; = —Jexp f Adl
4o

(2.5)

The matrix element ( —J) for free bosons in zero field is
negative. Evaluating the phases induced by the magnetic
field, we find

J/ =JG(z;)G(z. ) .

Here,

(2.6)

z=b l+ —m +i m
2 ' 2

is the complex coordinate for the j'" lattice site, I and
m are integers, b is the bond length, and G(z ) is the
gauge phase for the j'" site, given by

G(z/) =( —1) ' (2.7)

Thus, G(zj ) is —1 on all lattice sites where
(I,m)=(even, even) and +1 on all other sites. Figure 1

shows the distribution of bond signs defined by Eqs. (2.6)
and (2.7). This bond pattern differs from that appearing
in T (all bonds positive) only by a local gauge transforma-
tion which rt:verses the sign of all single-boson orbitals at
(even, even) sites, shown by solid circles in Fig. 1. The
Hamiltonian (2.3) therefore describes a two-dimensional
(2D) bose gas with near-neighbor repulsive interactions
V, subject to a uniform inagnetic field which represents

T= —g (a,ta, +a;ta, )
J

(Ij)

describes near-neighbor hopping of bosons, and

V=J g a;ta;a a —6J, + a; a;+ 3JN, —
(&J )

(2.3a)

(2.3b)
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(2.3c)

is, up to a constant, the potential energy of near-neighbor
repulsion between bosons. X, is the number of lattice
sites. & also contains an implicit hard-core repulsion
term

'I /
IL /

/
/

/
/

/
/

/

/

which, in the limit U ~~, suppresses unphysical
configurations with more than one boson on any site.
This allows one to treat a and a~ as ordinary boson
operators.

FIG. 1. Distribution of signs of the matrix elements defined
by Eqs. {2.5) and {2.6). Solid lines, positive bonds; dashed lines,
negative bonds. Solid circles denote sites where 6 {z)= —1.
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1 ( —IZ4)(Izl'+Iz I') (In)z*z
e

~2m
(2.&)

where z is the coordinate of the o.'" site. The continuum
quantum Hall problem is then defined completely by the
matrix elements of the Hamiltonian and the overlap ma-
trix S:

S p
— d zg zppz (2.9)

A continuum boson in the orbital y has a nonzero prob-
ability to be also found in the orbital y&. Imposing the
lattice constraint amounts to reducing the off-diagonal
matrix elements of the overlap to zero.

This adiabatic mapping is almost certainly possible if
the spin Hamiltonian has a spectrum with a finite energy

the frustration inherent in the lattice.
The connection between the spin system and the frac-

tional quantum Hall problem can now be established by
the following thought experiment. Consider the continu-
unz two-dimensional gas of charged bosons in a magnetic
field. Now apply a periodic external potential which con-
sists of a series of narrow wells centered on lattice sites,
as shown in Fig. 2. One can then imagine slowly increas-
ing the depth of these potential wells from zero to a point
where all the bosons are effectively constrained to lattice
sites. In the process the hopping matrix elements are
kept constant and the range of the Coulomb repulsion is
reduced to near-neighbor sites. One thus arrives at the
lattice gas Hamiltonian (2.3). For the boson density cor-
responding to a half-filled lattice, the ground state of the
initial continuum system is expected to be a nondegen-
erate liquid with an energy gap for elementary excita-
tions. ' The same properties then characterize the spin
Hamiltonian (2.1), provided the lattice perturbation can
be varied adiabatically and the energy gap remains finite
as the continuum system is projected on the lattice.

In an equivalent realization of this adiabatic procedure,
the fractional quantum Hall Hamiltonian is expressed in
the complete basis of Gaussian orbitals,

gap. (We dismiss the unlikely possibility of a gap vanish-
ing and then opening up again in the course of the time
evolution, in which case the eigenstates of the spin and
quantum Hall problems need not be related. ) If the gap
vanishes, the spectrum of the fractional quantum Hall
Hamiltonian may still survive. Thus, fractional (spin- —,)

excitations exist in a one-dimensional (10) Heisenberg
chain' although the energy gap is zero in this system. A
more probable result of the gap collapse is the onset of
long-range antiferromagnetic order, analogous to Wigner
crystallization in the quantum Hail system. '" In what
follows, we assume that the energy gap remains finite in
the course of the evolution of the Hamiltonian, so the
true ground state of the spin system (2.1) is a liquid.

III. GROUND-STATE PROPERTIES

We use the m =2 fractional quantum Hall wave func-
tion ' to describe the ground state of the spin system.
This choice leads to a liquid state which is a spin singlet
and has a low variational energy. The wave function is

( —1/4) ~z/ ~%(z„.. . , z )= g (z —z„)2 g G(z, )e
j(k 1=1

(3.1)

Here, z =x +iy is the complex coordinate of the lattice
site occupied by j'" boson and X is the number of bosons.
Since bosons mark the locations of up-spins in the lattice,
)II(zi, . . . , z)v) is the amplitude to find up-spins at sites
z1, . . . , z& and down-spins at all other sites. The factor
G(zi ) is a gauge sign, defined in Eq. (2.7), which puts )II in
the proper gauge where all hopping matrix elements in
the term T of the Hamiltonian (2.3) are positive. All
lengths are measured in units of the magnetic length
lo =b(&3/4m)', where b is the bond length.

The wave function (3.1) describes a lattice bose gas of
uniform density p = I /4m. To verify this, note that the
normalization sum for the ground state wave function
(3.1) can be written as

(3.2)

where P= —,', each boson coordinate zj, j=1, . . . , N is
summed over the whole lattice, and

8 g»lz. z; I+ g Iz; I

«'j& i =1
(3.3)

O

6$

I
'

I I I

3 4 5
Distance (bond lengths)

FIG. 2. Periodic external potential representing the lattice.
As the depth of the potential wells increases, particles are
confined to lattice sites.

We identify Z as the partition function of a classical one-
component lattice plasma. This plasma consists of Xpar-
ticles with "charge" 2 which move on lattice sites, in-
teracting with each other via a repulsive Coulomb poten-
tial

U(z. —z; ) = —4 ln~zj —z, ~,

as well as with a uniform neutralizing background of
charge density I/(2m). It will be shown below that this
lattice plasma is a liquid, so the density of plasma parti-
cles is invariant under lattice translations. The density of
bosons is thus uniform, i.e., the same on all lattice sites,
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and is equal to 1/4m, the background charge density di-
vided by the fictive charge of the plasma particles, as re-
quired by plasma neutrality. In our system of units the
unit cell area is 0=2m, so the average occupancy of any
site is —,. Translated into spin language, this means that
each spin is equally likely to be either up or down, and
the magnetization in the ground state is zero.

In order to show that the ground state (3.1) is a liquid,
we calculate its two-spin correlation function,

c(i —j)=&qiS, S, ie) =3&eiS,'S;ie& .

The last equality follows from rotational invariance of the
state ~%'), proved below. Evaluating this in the lattice
boson representation (2.2), we find

1.2—

1.0—

0.8—

0.6—

0.2—

ms ~C1 L3
CT El ~ Kl

a Monte Carlo

~ HNC

c(i j)=—,'[g(-i —j') —1],
for i', where g(i —j}is the radial distribution function
defined as

4X(N —1)
g(zi —zz)= g ' & le(zi, zq, . . . , z~

3 N

(3.4)

Z is the normalization sum (3.2). The function g (r) is the
probability of finding two particles a distance r from each
other, divided by the average occupancy of a site. We
have computed g (r) by a semiclassical Monte Carlo algo-
rithm and by a lattice generalization of the hypernetted
chain (HNC) procedure which is described in Sec. V.
The results of the two methods for the triangular lattice
are compared in Table I and are plotted in Fig. 3.
Beyond the third near-neighbor distance r=2b, g(r) is
within 0.3% of its asymptotic value of 1, indicating the
absence of translational long-range order.

The decrease of g(r) as r~O is a direct efFect of
screening in the equivalent lattice plasma. Equation (3.4)
indicates that g(z, —zz ) is proportional to the probability
of finding two plasma particles at lattice sites z& and zz.
When ~z, —zz ~

))b, the "charges" of the two particles
are completely screened by the plasma, and this probabil-
ity is a constant. As the particles are brought within a
screening length of each other, screening becomes incom-
plete, and the Coulomb repulsion between the two parti-

0 I,:
0

I I

2 3 4
r (bond lengths}

FIG. 3. Radial distribution function g (r) in the ground state
(3.1). The solid curve is an analytic fit to g (r) defined by (6.14).

cles reduces the probability of such configurations. The
plasma analogy requires that the size of the screening
hole in g (r) satisfy two sum rules:

(3.5)

y ~z~ [g(z) —1]=—4 . (3.6)

Equation (3.5), known as the neutrality sum rule in con-
tinuum plasmas, states that the amount of "charge" miss-
ing from the screening hole is exactly equal to the
"charge" of a plasma particle. Equation (3.6) is the
constant-screening sum rule which follows from the 1/q
divergence of the Coulomb potential in momentum space
(cf. Sec. V). Both the Monte Carlo and the HNC results
for g (r) satisfy the two sum rules with 2%%uo accuracy, i.e.,
within the error bars of the algorithms.

We now prove that the state (3.1) is a spin singlet. Al-
though it is generally believed that the true ground state
of the Heisenberg antiferromagnet is a singlet, this has
only been shown'" for unfrustrated systems. Our proof

TABLE I. Radial distribution function in the ground state (3.1), calculated by the Monte Carlo and
HNC methods, and by the analytic fit formula (6.14).

Monte Carlo HNC

0.0000
1.0000
1.7320
2.0000
2.6458
3.0000
3.4641
3.6056
4.0000
4.3589

0.0000
0.7773
1.0210
1.0273
1.0052
1.0030
0.9904
1.0049
0.9941
1.0012

0.0008
0.8022
1.0258
1.0182
0.9972
0.9984
1.0004
1.0003
1.0002
1.0000

0.0000
0.8020
1.0225
1.0094
1.0002
1.0000
1.0000
1.0000
1.0000
1.0000
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depends crucially on the analyticity of the ground-state
wave function 4' and holds for both the triangular and
the square lattices.

Since the wave function (3.1) is unmagnetized in the z
direction, we need only prove that the tota1 spin lowering
operator S =Q.SJ annihilates the ground state: —i G.r e {0'z —Q*z)/2 (3.1 1)

since the set of lattice vectors on which the gauge func-
tion G(z) is negative is just the set of all lattice vectors
multiplied by 2. We then evaluate the second sum in re-
ciprocal space. The plane wave associated with any wave
vector G may be written in the manner,

(3.7) where (z =6» i—G, . Now if 0 is taken to represent a re-
ciprocal lattice vector, then for any function F (z),

In the lattice boson language, the action of S gives a
state of (i)i —1) bosons, IV ) =g.a IV}, which is de-
scribed in coordinate representation by the wave function

QF(z) =—QF( &),
Q

.(3.12)

Q 4(Z1,22, . . . , Z»/)
z,

This wave function is identically zero, as a consequence
of the following theorem: if F(z) is any polynomial, then

where F((z) is the Fourier transform of F(z), evaluated
on the reciprocal lattice, and 0 is the unit cell size. Ap-
plying this to the last sum in (3.10), we find

y Jd2 e o ve lgl e(g7) —0 g)/2
27K g

g G(z)F(z) exp( —
—,
'

Izl )=0, (3.8) (g/2)(zo —g /2)
e

2 (3.13)

where the sum is over all lattice sites and G(z) is the
gauge factor in the ground state (3.1). This theorem ap-
plies as well to the square lattice with unit cell area 2~,
provided the gauge factors G(z) are defined by (2.7) with
zj. =b(l&+imj ).

An equivalent statement of theorem (3.8) is

y G( )
o (

—1/4)lzl —0 (3.9)

for every complex number zo, since this series can be
differentiated term by term. To establish (3.9), observe
that

( I/2)zo z ( &/4) tzI (1/2)zo z
( &/4)Iz~2G&zje e = e e

(3.10)

In carrying out the integral, we have used the rule

Id2riF(ri)e( —1/2m)lvl e(1/2m)U*z 2~»»iF(z) (3 14)

which holds for any polynomial F(z). Now, because of
our choice of the bond length for the direct lattice, the set
of all 9's is the same as the set of all direct lattice sites z.
We then have

zo z
l

l2 (1/2)zo z
( 1/4)lzl2 (3.15)

z z

which proves the theorem.
This proof reveals the special role of analytic wave

functions in describing lattice spin systems. Evidently,
any symmetric polynomial F(z„z2, . . . , Z)v ) of continu-
um variables z, satisfying the hard-core constraint
F(z„z„.. . , z)v )=0, yields a lattice spin state

N
q (zi z ) F(zi z)v) + G(z, ) exp( —

—,
'

Iz, I')
j=l

(3.16)

which is annihilated by S . If, furthermore, S, l+) =0, and if )I( vanishes identically outside the sample boundary, then
)Il is a spin singlet state of the sample containing i', spins. The singlet property of the liquid ground state (3.1) holds
with exponentially high accuracy for X, )&1.

These arguments remain fully intact if the wave function %' is replaced by its time reverse 4 . We have thus con-
structed two disordered singlet states which are degenerate since the Heisenberg Hamiltonian is real. A direct calcula-
tion shows that the four-point correlation function in the ground state (3.1) is complex and, consequently, that the two
states 4 and +* are physically distinct. The four-point function is defined by

4N (X—1)
g2(z', ,zz Iz„z2)= (Z), Z2, Z3p ~ ~ ~ p Z+ )0 (Zipz2pz3p ~ ~ ~ p Z)V )z

3 N

(3.17)

When z„zI, z2, and z2 are triangular lattice sites, we find
that y2 generally has a nonvanishing imaginary part such
that IIm y2I is maximized when z, =z'„z2, and z2 are
vertices of an elementary plaquette. A Monte Carlo cal-
culation yields

Img2(0, b( —,'+ i&3/2) IO, b ) =0.172+0.003, (3.18)

while an estimate based on analytic continuation of
g(z, —z2) (as discussed in Sec. VI) gives Imy2=0. 15 for
the same set of arguments.
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antiferromagnet. ' ' The energy of our state is surpris-
ingly low, given the absence of any variational freedom.

IV. SPIN INVERSION SYMMETRY

%(ri„. . . , 'riz) =%'(z„. . . , z~ ) . (4.1)

The ground-state wave function has been taken to de-
pend on the coordinates of up-spins. The same amplitude
can equally well be considered a function of the down-
spin locations g, , . . . , gz.-

-0.7—

-0.8 I l I l I

0 0.05 0.10 0.15 0.20 0.25

(Ns) '"

FIG. 4. Energy of the ground state (3.1) as a function of sys-
tem size. Open circles: kinetic (XY) energy, triangles: poten-
tial (Ising) energy.

It is not clear at this point whether spontaneous break-
ing of time reversal symmetry is an essential property of
the spin liquid phase. There is some indication that the
liquid state of a spin- —, Heisenberg antiferromagnet on a
two-dimensional square lattice has a discrete degenera-
cy. ' If the time reversal symmetry is indeed broken by
the true ground state, then excitations acquire a handed-
ness which has an effect on their motion and statistics (cf.
Secs. IX—XI).

The energy of the state (3.1) has been calculated by the
Monte Carlo method for lattices of up to 400 sites. We
work with the lattice gas Hamiltonian (2.3) and use free
boundary conditions. The wave function (3.1) confines
the particles to a circular droplet of radius proportional
to X,' . The potential energy per site therefore has a
boundary contribution which scales like X, ' . The ex-
trapolation to the thermodynamic limit is well defined, as
shown in Fig. 4, and yields the following ground-state en-
ergy expectation values:

( T ) /JN, = —0.62+0.02,

We now show explicitly that + has the same functional
form as 4, up to a phase which is constant is the thermo-
dynamic limit

%(z„.. . , zz ) =%(z„.. . , zz)e' (4.2)

In the boson language, this is a statement of particle-hole
symmetry of the ground state: the amplitude to find bo-
sons on a given set of sites is the same, up to a global
phase, as the amplitude to find holes (empty sites) at the
same locations. This symmetry is a special case of the ro-
tational invariance of the ground state established in the
previous section. The independent proof given here
serves as a cross check of the singlet sum rule (3.8) and
the product rule (4.3) below, both of which will be used in
later sections.

The proof makes use of the following theorem:

(0k CJ ) coG(kk ) exp(-,' l4 l'»
jwk

(4.3)

lnfk(g) =R (g)+6 Rk(g)+i 4k(g),
where

(4.5a)

where g. are lattice sites, G(gk) are the gauge signs (cf.
Sec. II), and Co is constant in the thermodynamic limit.
To prove (4.3), we define the following function of a con-
tinuous complex variable g:

N

(4.4)
jWk

We are interested in the behavior of this function as
g~gk. Taking the logarithm of (4.4), we get

( V) /JX, = —0.32+0.01 .
N,

(4.5b)

Since ( T ) and ( V) arise, respectively, from the XI'and
Ising terms in the Heisenberg Hamiltonian, the virial re-
lation ( T) =2( V) is consistent with spin-rotational in-
variance of the singlet state %. The total energy
E= —0.94+0,02 is compared in Table II with other
ground-state energy estimates for the triangular lattice

(4.5c)

@k(g)=arg[fk(g)] . (4.5d)

The term R (g) can be interpreted as the two-dimensional

TABLE II. Estimates of the ground-state energy for the near-neighbor Heisenberg antiferromagnet
on the triangular lattice.

Exact diagonalization of small clusters (Ref. 16)
Three-parameter variational wave functions (Ref. 4)
Near-neighbor RVB state (Ref. 2)
This work

—1.09+0.02
—1.07
—0.95
—0.94+0.02



39 THEORY OF THE SPIN LIQUID STATE OF THE. . . 11 885

Coulomb energy of a particle of charge —
—,
' located at g

and interacting with a system of fixed unit charges at lat-
tice sites g .. Isolating the energy due to the average
charge density I/2m, we write,

R ( g)
—1

~ /~
2 g e(1/2)(QC —Q*C)

~~0 I
&I'

(4.6)

R(g)+bRI, (g) = —,'~g„~'+Ra . (4.7)

The remaining task is to calculate the phase @&(g).
Consider the phase change

When g approaches a lattice site, the exponentials in (4.6)
all tend to unity, and the sum diverges logarithmically.
For the special case g~gi„ this logarithmic divergence is
offset by the divergence in b R I, (g), so their sum R 0 is in-
dependent of gl, unless gi, is very close to the sample
boundary. Thus,

If the lattice is finite, both R(g) and 41, (g) contain
boundary terms. The finite-size correction to R(g), for
example, is the two-dimensional Coulomb potential pro-
duced by a zero-average "lattice charge" distribution re-
stricted to the exterior of the sample. Such corrections
are essentially higher multipole fields which are
guaranteed to be negligible for all g inside the sample.

Eqn. (4.3) can be used to rewrite the ground-state wave
function (3.1) as follows:

0'(z, , . . . , zN)= g (z —
zl, ) Q'(g —

zI, ) 'Co
jWk a, k

(4.13)

Here, g runs over all lattice sites while the z's are loca-
tions of bosons. The prime on the second product ex-
cludes the terms g =zl, . If Iq, , . . . , g~) is the corre-
sponding set of unoccupied site coordinates, then we may
write

where gl, and gl, are near neighbors, and let g;d be any
point along the bond kk'. Then, (4.5d) implies

a, k jWk a, n

(4.14)

and (4.13) takes the simple form,
(4.&)@k'(0 id) @k(0 id)

4'(z, , . . . , z~) = — g (ri —z„) 'Co (4.15)
and, using the definition of h4kk, we obtain

be„„.=~+ I Ve, dr+ J VC,"dr . (4.9)

Since the function in[f&(g)] is differentiable at g=gl„ its
real and imaginary parts satisfy the Cauchy-Riemann
equations

a, n

Inversion symmetry of the ground state is now manifest
since interchanging z„and g in (4.15) gives only a global
sign change. The amplitude for a given spin
configuration to occur in the ground state is thus equal to
the amplitude of its spin-Hipped image.

a
[R (g)+bRI, (g)]=

[R (g)+ bRI, (g)]= — @q(g),
Bx

(4.10)

A(r) =—( —yx+xy)
2

is precisely the vector potential which changes the signs
of all bonds when combined with the gauge transforma-
tion G (z), as follows from Eqs. (2.5) and (2.6). Therefore,

e ""'=G(g» )G(g„) . (4.12)

Combining (4.7) and (4.12), we obtain the product rule
(4.3).

where x+iy=g. These equations allow one to replace
the gradient of the phase along the bond kk' by the
derivative of R(g)+b,RI, (g) normal to the bond. Evalu-
ated along the line kk', this normal derivative vanishes
by reAection symmetry about kk' for all terms in
R (g)+hR&(g) except for the uniform background poten-
tial —,

'
~g~ . Differentiation of this term gives

~~ I,i, =~+ ( —-'ydx+-'«y )
k

=n.+— A r ~ r, (4.11)B
where

V. THK HYPERNKTTKD CHAIN PROCEDURE

The hypernetted chain algorithm' is an approximate
method of calculating the radial distribution function
g(r) [cf. Eq. (3.4)] of a classical liquid with short-range
pair interactions v(r). If the particles of the liquid are
confined to a lattice, we write the HNC equations as

h(r )=g(r ) —1,
g(r~ )= exp[ I3v(rj ) c(r~ )+h(r—

&
)], — .

h(r )=c(r )+pQ+c(rj —r~)h(ri, ),
k

(5.1)

(5.2)

(5.3)

where Q is the unit cell area, p is the particle density per
unit area, P ' is the temperature, and the sum is over all
lattice sites. The approximation step in the continuum
version of the HNC equations involves setting to zero a
"bridge function" in the exponential of Eq. (5.2). The
bridge function, which must be included to obtain the ex-
act g(r), is known to be small and short ranged for the
continuum liquid. ' Restricting the HNC equations to
the lattice has an unknown effect on the bridge function;
thus, the validity of the lattice HNC procedure rests on
comparison of the results with Monte Carlo calculations.

We use Eqs. (5.1)—(5.3) to calculate g (r) for the lattice
plasma defined by the probability distribution in the
ground state (3.1). As discussed in Sec. III, this plasma is
characterized by the temperature P ' =2 and the
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Coulomb pair potential

pu(r)= —41n(r) .

then updated according to

c"'"(r )=c" (r, )+g"'"(r ) —1 —h"'"(r, ) . (5.12)

2 e 2Pv, (r )=—. I d q =4K~(qor ),sgp+p00J (5.4)

c, (rj }=c(r )+—J d q .
q2( 2+Q2) (5.5)

Here, qo is the fictive inverse "screening length", Q is an
arbitrary cuto6' momentum whose value is chosen to im-
prove convergence, and Eo is a modified Bessel function.
In the limit qo ~0, the potential U, reduces to the
Coulomb form:

Pu, (r )~—41n(qor /2) .

Since this potential is long-ranged, the lattice HNC equa-
tions must be regularized in order to be computationally
stable. This is done in a manner analogous to the contin-
uum plasma calculation. For a liquid, the function h (rj )
is short-ranged; therefore, in the limit r ~~, the loga-
rithm in Pv, (r—) must be cancelled by a long-range
term in c(r. ), as indicated by Eqs. (5.1) and (5.2). To
make use of this cancellation, we de6ne the short-ranged
potential U, and function c, :

With Q =2b ', this procedure converges to 0.1% level in
16 iterations.

The radial distribution function calculated by the lat-
tice HNC procedure agrees with g(r) calculated by the
Monte Carlo method within 5%, the largest discrepancy
being in the near-neighbor value g(b) (see Fig. 3 and
Table I). Figure 5 shows the Fourier transforms c, (q)
and f(q), used in the HNC calculation of g(r), for q
along the line from the center to the corner of the Bril-
louin zone. Since the Coulomb divergence has been ex-
tracted from c,(q}, this function is finite in the limit

q ~0. Although c, (q) depends strongly on the choice of
the cutoff momentum Q, the converged results for h (q)
and g (r) are independent of Q in the range 1 ~ bQ ~ 4.

The origin of the constant screening sum rule for g (r),
Eq. (3.6), can now be clarified. This sum rule follows by
observing that the function h(r ) is always short-ranged
in a liquid. Hence, no matter what the approximate short
range form of Eq. (5.2) is, in the limit r ~ oo the
Coulomb potential must be exactly cancelled by the loga-
rithmic divergence in c(rj ). The exact g(rj ) can thus be
represented by the Ornstein-Zernike equation (5.11)
where

Hence, we have

2 e '
zPu(r )+c(rj ) =c,(rj )+—I 2 2 d q,J ~ J ~ 2+Q2 (5.6)

8mc(q)~co—

in the limit q ~0. Equation (5.11) then implies

(5.13)

and Eq. (5.2) assumes the following regularized form:

g (r ) = exp[h (rj ) c, (r~ ) 4—Ko(Qr )] . — (5.7)

The coupled equations (5.1), (5.3), (5.5), and (5.7) can
be solved iteratively by introducing the Fourier trans-
forms

h(q)~4m( —1+—,'q ),
and the sum rule (3.6) follows immediately:

g r h(r )= —lim V h(q) = —4 .
q ~0 27K

(5.14)

(5.15)

f(q)=2m gh(rj)e
J

c, (q) =2m g c, (r, )e
J

c(q) =c, (q) —8m
[(q+A) +Q ](q+cx)

(5.8)

(5.9)

(5.10)

0— ————0

-0.5

where q lies in the Brillouin zone and G runs over the re-
ciprocal lattice. Equation (5.3) then becomes

(5.11) -15— -1.5

since p = I /4~ and 0=2m. . Having chosen the value of
the cutoff momentum Q, we use the following iteration
scheme to compute g(r. ) numerically. First, the function
c, (r, ) is initialized to zero. Then, Eq. (5.9) is used to
Fourier transform c, ' (rj ) which is known either from in-
itialization or from the previous iteration. The function
h "'"(q) is then obtained from (5.10) and (5.11), back
transformed into h "' (r ), and compared with.

[g"'"(rj ) —1] calculated from (5.7). The function c,(r ) is

-20— -2.0

q (arb. units}

FICr. 5. Fourier transforms h (q} and c,(q) vs q along the line
I M in the Brillouin zone (inset). Dashed lines: c, (q) for bQ =2
and bQ =1 (upper and lower curves). h(q) is shown by circles
for bQ = 1, and by a solid line for bQ =2.
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Both sum rules (3.5) and (3.6) are satisfied within 2% by
the correlation function calculated using the HNC pro-
cedure.

VI. ANALYTIC CONTINUATION
OF CORRELATION FUNCTIONS

The noninvariance of the spin liquid state + under
time reversal, as discussed in Sec. III, is evidenced by the

behavior of the correlation functions in this state. In par-
ticular, Monte Carlo calculations indicate that the four-
point function y2(z', ,zz~z„z2) defined by (3.17) has a
nonzero imaginary part. We now verify this result by an
independent method which makes use of the analytic
properties of the ground-state wave function (3.1).

As a test of the analytic continuation technique, we
first prove that the two-point correlation function (the
density matrix) in the ground state, defined by

=1y(zi ~zi)= —g "g%*(zi,z2, . . . , z~)%(z, ,z~, . . . , z~) . (6.1)

is real when z& and z
&

are lattice sites. This is expected to be true because the wave function 4 is invariant under global
spin rotations: setting the normalization Z to unity, we may write, for zj Az;,

g(z Iz;)=(OIS,+S,-~e) =2(q'~s'S ~q')

=
—,'[g(z —z; ) —1],

(6.2)

where g(z) is the (real) radial distribution function defined by Eq. (3.4). An independent proof of the reality of y(z i ~z, )

uses the fact that

G(zi ) exp( —„' ~zi ~
)0'(zi, . . . , z~ )

is an analytic function of z, . Ignoring the irrelevant gauge signs G (z), y, therefore, has the form

X(zi lzi ) = exp[ —-„'(lz; I'+ lz, I')] y. ..,.(z;* )"(z, )
m, n

(6.3)

The coefficients c „and thus the whole function y(z', ~z, ) may be deduced from y(z, ~z, ) if it is known for all values of
z„ including those not associated with lattice sites. There is a simple algorithm for achieving this analytic continuation
of y: if the vp, lue of the function

F(z)= g e „(z')"(z) (6.4)

is known for all z, then we can evaluate
' m+n

Cm n

a dOF(re' )e'"
2a(m +n)1 dr

(6.5)

In the present case, y(z& ~zi ) is just a constant times the "probability" to find one of the particles at zi. This must be a
periodic function since all sites are physically equivalent, and thus we may write

y(z, ~z, ) = g a & exp[ —,
'

( Qz i
—9'z, )], (6.6)

where 9 is a complex reciprocal lattice vector [cf. Eq. (3.11)] and a& is a real number, as required by the reality of
y(z, ~z, ) and the inversion symmetry of the lattice. Analytically continuing this, we obtain

X(zi lzi)= exp[ —
—,'(lzi I'+

Izing')]

exp( —,'zi'zi) g ~g exp[-,'(&zi' —&'zi)] . (6.7)

We now constrain z, and z i to be lattice vectors. The imaginary part of the argument of the 9=0 exponential is then

Im( —,'z iz i ) =—,
' b Im t [j'+ ( 2

+ i&3/2 )k '][j+( —,
' —i &3/2 )k ] J

(jk' —j'k)=m(jk' —j'k) .v'3 2
(6.8)

This exponential is therefore real. However, since the set of all 0 s is the same as the set of all lattice vectors z, the ex-
ponential factors are real for every value of O'. This, together with the reality of a &, shows that y(z', ~z, ) is real.

The Fourier components as have been calculated by Monte Carlo and are found to decrease rapidly with
~
Q~. The

"density" profile y(z, ~z, ) across the unit cell is thus nearly constant, with most of the variation arising from the first
shell of 0 vectors. The Monte Carlo results for the coefficients a& are compared in Table III with the values obtained
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by inverting the equation

( —)/4)~z~ y (1/2)Qz* i [ ( ) 1]2
(6.9)

which follows from (6.2) and (6.7). The analytically continued form (6.7) of the two-point function y(z', lzi ) is seen to be
consistent with rotational invariance of the ground state.

The same analytic continuation argument can be used to obtain an approximate formula for the four-point correla-
tion function

4N(X —1)
y2(z, ,z2lzi z2) z (z i)z2)23), . ) Z)v)% (zi)z2)z3) . , ) z)v)

z3 cv

(6.10)

rV2(z 1 z2 lz 1 z2 ) const'(z i lzi )X(z2 lz2 )

+5g2(z), z2 lz i, z2 ), (6.1 1)

where 6gz is a function that is negligibly small unless
lz, —z2l ~ b. Since the continuation of g(z', lz, ) away
from z& =z& is already known, the task is to analytically
continue 6g2. From the Bose symmetry of the ground-

I

and to estimate its imaginary part. When z', =z, and
zz=z2, y2 is equal to the radial distribution function
g(z, —z2) of the classical plasma. Thus, if z, and z2 are
lattice sites, y2(z„z2lzi, z2) quickly approaches unity as
lz, —z2l becomes larger than a bond length b (see Fig. 3).
For any z& and zz we therefore have

+5f(zi, z2lzi, z2) . (6.12)

The remaining term 5f(z', , z2lz„z2) must be (i) analytic
in z„zz, z", , and z2*, except for the familiar Gaussian
factors, (ii) a periodic function in the center-of-mass coor-
dinates (zi+z2)/2, (z'i +z2)/2, and (iii) a short-range
function of the difference coordinates lz, —z2l, lz', —z2l,
etc. These conditions are satisfied by the following pa-
rametrization of 5f:

state wave function, y2(z', , z2 lz„z2) must be symmetric
under interchange z&+-+z2 or z&~zz. The analytic con-
tinuation of 5y2(z „z2 lz „z2 ) must therefore have the
form

5/2(zi, z2lzi, z2) =const/(zi lz2)g(zz lzi )

5f = exp[ ——'(lzi
l

+ lz2l + lzi l
+ lz2 )] exp[ —'(zi+z2)(zi*+z2" )] y b„[(zi—z2) (zi" —z2*) ]",

n=0
(6.13)

where b, are arbitrary coefficients.
The representation of y2(z', , zz lz„z2), defined by Eqs. (6.11)—(6.13), should reduce to g(z, —z2) when z, =z', and

z2=z2. If we now approximate the "density profile" y(zlz) within the unit cell by a constant by setting all Fourier
coefficients a& in (6.6) except for ao to zero, we obtain the following expression for the radial distribution function:

(6.14)

This form of g (r) can now be used to fit the coefficients
b„and thus to determine g2 analytically. Setting b3,
b4, . . . =0, the parameters C, bo, b„and b2 are uniquely
defined by the limiting behavior of g (r),

0.0000
1.0000
1.7320
2.0000
2.6458

Monte Carlo

1.00
0.13
0.04
0.05
0.06

Eq. (6.9)

1.00
0.12
0.00
0.00
0.00

TABLE III. Fourier coefFicients a& of the density function
giz, lz, ). 0 is a reciprocal lattice vector, and ao—:1 by nortnali-
zation. HNC values of g (r) shown in Table I have been used in
Eq. (6.9). The error bars on the Monte Carlo values are of order
+0.04.

lim g(r) =0,
r~O

(6.15)
lim g(r)=1,

I"—+ oo

and by the two plasma sum rules (3.5) and (3.6), whereby
C = 1, bo = —2, b] =0.0114, and b2 = 8 X 10 . With this
choice of parameters, the approximate form (6.14) of g (r)
gives the fit to the radial distribution function shown by
the solid line in Fig. 3.

The imaginary part of gz comes entirely from the
short-ranged term (6.13). The maximum of Imy2 is at-
tained when zI =z

&, zz, and zz are the vertices of an ele-
mentary triangular plaquette. Explicit evaluation of ex-
pression (6.13) gives

Img2(0, b(1/2+i &3/2)lO, b ) =0.151, (6.16)

while the Monte Carlo value is

Imp~ =0. 172+.003
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for the same set of arguments, The magnitude of this
imaginary part is a measure of how far the ground-state
wave function 4' is from being equivalent to its time re-
verse.

VII. SPIN-
~ QUASIPARTICLK EXCITATIONS

eigenstate

$1, o(z) =z"exp[( —1/4) ~z~ ).
I

in the symmetric gauge is represented by a thin annulus
with mean radius

It is an experimental fact that fractionally charged ele-
mentary excitations exist in quantum Hall samples. ' '
Their existence is consistent with the fractional quantiza-
tion of the Hall conductance' and follows necessarily
from the nondegeneracy of the quantum Hall ground
state and the presence of an energy gap in the excitation
spectrum, To review the reasoning leading to this con-
clusion, ' consider the quantum Ha11 system of electrons
in the ground state with uniform density p =1/(2n. m)
where m is an odd integer. Now insert a thin solenoid
(Aux tube) at the origin and slowly thread the magnetic
Aux through it. When one quantum of Aux Po has been
injected, the vector potential produced by the solenoid is
a pure gauge, so the system Hamiltonian is unaffected by
the presence of the extra Aux, Since low-energy excita-
tions are absent, the evolution of the system is adiabatic
and results in an exact eigenstate of the quantum Hall
Hamiltonian. This eigenstate is an excitation, since work
has been done on the system. The charge carried by this
quasiparticle excitation can be determined by noting that
threading one fIux quantum through the solenoid shifts
the lowest Landau level states over by one. This is shown
schematically in Fig. 6(a), where the lowest Landau level

FIG. 6. (a) The flux-injection experiment for the coritinuum
quantum Hall system. The annular "tracks" represent lowest
Landau level eigenstates. (b) A similar experiment for the lat-
tice system smoothly connected to a continuum sample. The
size of the dots is proportional to the strength of the confining
lattice potential ~

The charge of the quasiparticle excitation is thus equal to
the ground-state charge per state in a Landau level, or
e /m, where e is the electron charge.

Similar fractionally charged excitations are expected to
occur in the continuum 20 gas of charge e hard-core bo-
sons, provided a nondegenerate liquid state with an ener-

gy gap exists in this system. If the density of this gas is
1/(4m. ), corresponding to the m =2 quantum Hall
ground state, quasiparticle excitations have charge e/2.
What happens to these fractionally charged quasiparti-
cles as the continuum system is projected on the lattice7
Suppose the liquid state with a nonzero energy gap sur-
vives on the lattice. One can then imagine a sample
where the strength of the external potential confining the
particles to lattice sites is slowly reduced with radia1 dis-
tance from the center, and is zero beyond some large ra-
dius R, as shown in Fig. 6(b) where the strength of the
lattice potential is indicated by the size of the dots. A
Aux tube is now placed at the origin (in the lattice region),
and the Aux-winding experiment of the previous para-
graph is repeated. Although the behavior of the bose gas
near the Aux tube is unknown, the amount of charge
crossing a circular boundary of any radius r & R lying in
the continuum region is certain to be e/2. Since the en-

ergy gap is assumed to be finite everywhere in the sample,
the ground-state charge distribution slides rigidly, except
near the Aux tube. This region of the lattice thus con-
tains a quasiparticle excitation of the lattice gas, carrying
a total charge exactly equal to e/2.

In terms of spin degrees of freedom, a quasiparticle
with charge e/2 represents a neutral spin —,' excitation of
the antiferromagnet. This follows from the fact that
creating a lattice boson with charge e is tantamount to
Gipping a single spin, which increases the total S, by one
unit of A. These spin- —,

' quasiparticles should exist as ex-

citations of the spin Hamiltonian as long as the system
ground state is a liquid with a finite-energy gap. The spin
of the quasiparticle is exactly —,', as follows from the Aux-

winding argument given above. The finite energy re-
quired to create a quasiparticle can be interpreted as the
self-energy of formation of the charge cloud in the
equivalent lattice gas. For a rotationally invariant Ham-
iltonian, the quasiparticle and its spin-reversed state, the
quasihole, are degenerate and should be viewed as two
polarization states of a spin- —,

' particle.
Such neutral spin- —, excitations are known as spinons in

the context of the RVB state. ' Their existence appears
to be a generic feature of the liquid state in spin- —,

' mag-
nets. ' The visible lack of trial wave functions for the spi-
non indicates that combining spin-1 objects in a coherent
quantum state with total spin —, is a difficult task. Since
this is exactly what the fractional quantum Hall wave



11 890 VADIM KALMEYER AND R. B. LAUGHLIN 39

functions do, we use them as a variational basis for
describing spinons. A spin-down spinon localized at the
point zp is represented by the quasihole wave function

transform as components of a spin doublet. Since the
wave function (7.1) is analytic in the up-spin coordinates,
Eq. (3.8) iinplies

%'z (z». . . , zN )—Sz 0 (z». . . , zN ), (7.1) S 0,' =0.
0

where 1II is the ground state (3.1) and S,~ is the quasihole
0

creation operator

One can also show that S converts a quasiparticle into a
quasihole

N

S, =g(z; —zo).
i=1

(7.2)
S %J =const g~ (7.6)

The action of the operator S,~ is to push the lattice bo-
0

sons away from the quasihole center zp, which produces a
dip in the up-spin density near zp. The spin-up quasipar-
ticle is the spin-Hip image of the quasihole: we obtain its
wave function from Eqs. (7.1) and (7.2) by replacing bo-
son coordinates Iz„.. . , zNI by empty site coordinates

I /1««9N I

It suffices to prove (7.6) when zo is a lattice site, since any
quasiparticle wave function can be written as a linear
combination of such states (cf. Sec. IX). In the lattice bo-
son representation, the state vector representing a quasi-
particle localized at zp is

Zl

lII, (zl, . . . , zN) =S, 0'(zl, . . . , ZN ) . (7.3) (7.7)

where the quasiparticle creation operator S, is de6ned as
0

(7.4)

where the vacuum ~0) is the state with no bosons. For
every finite sainple with N bosons in the state ~%t ), the

0

action of the total spin lowering operator S produces a
state with (N —1) bosons, described by the wave function

Here the product is over all empty site coordinates corre-
sponding to the occupied site configuration Iz„.. . , zN I.
The ground-state wave function 4' is unafFected by the in-
terchange z+ g because of its spin inversion symmetry
(cf. Sec. IV).

These wave furictions have the correct spin-rotation
properties expected of spin- —,

' particles: %', and
0 0

z (Z «Zl«. . . «ZN 1)
Z'

(7.8)

where the sum is over all sites z'. We now observe that,
up to a normalization, %' is identical to
0', (z„.. . , zN, ). First, examine the term z' =zo in

0
(7.8). Using the product rule (4.3), we have

2
—{1/4))z0 ~~ —{1/4)~zl (+(, „.. . , , )= g(g —

) / (;— )'G( )
' g(, — )'g G( )

a i=1 j(k 1=1

—C+z (Zl, . . . , ZN 1) (7.9)

where C is a constant in the thermodynamic limit. The remaining terms in (7.8) can be shown to sum to zero, as fol-
lows. When z'Azo, the amplitude 0', (z', z„.. . , zN, ) vanishes unless the quasiparticle center zo is occupied by one of
(N —1) bosons, say the jth one. Since lpt is symmetric under interchange of boson coordinates, we can repeat the ar-

guments leading to (7.9) to get

lTi1 C 5 —aTsT ( I
~z ( «1«'''« '«'' «N —lj ~z ~ZO«1« ''«Z «'''«N —10 J 0

C+z (Zl« ~ . «Z « . «ZN —1)
0

(7.10)

The right-hand side of (7.10) is exphcitly of the form G(z') F(z')e "~ ' ', where F(z') is a polynomial in z'. The
"singlet" sum rule (3.8) is thus applicable and gives

'0, (z',z„.. . , zN, )=C g %l (z„.. . , z', . . . , zN, )=0,
Z XZ0 Z'

(7.11)
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which proves (7.6). The states l+t & and l+t & thus
0 0

transform into each other under spin rotations like two
components of an s =

—,
' spinor.

VIII. EXCITATION ENERGY AND SPIN DENSITY
PROFILE GF A SPINON

The wave functions (7.1)—(7.4) can be used to calculate
the spinon excitation energy variationally. Before doing
this, we point out that rotation properties of the
quasihole and quasiparticle states lead to a generally valid
"virial" relation between the contributions of the terms T
and V in the Hamiltonian (2.3) to the total energy of a
spinon. We have

1.0—

0.4—

0.2—

0.8-
p
47

UJ

0.6—

0X
LLI

O
C:
CL

CO

gTHNC
~)

ik pyHNC4

&sl Tls & =2&sl Vls &, (8.1)

where Is & is a spinon state with S, =s. The same relation
holds for the T and V values in the singlet ground state
(3.1), as discussed in Sec. III. Without loss of generality,
we prove (8.1) for the quasiparticle state If &. Since the
term T follows from the XF part of the Heisenberg in-
teraction, invariance of

I 1 & under rotations about the z
axis implies

( t
I
rl t &

=w t z s,*s,* t) .
(ij )

(8.2)

Let R be the operator for a global spin rotation by n/2
about the y axis:

( —i m. /2}s
R =e

V
(8.3)

where S = g. SJ The .spinon state
I

1'
& is polarized in

the z direction. Under the action of 8, it is oriented
along the x axis:

R, l»= -(I»+I»),
2

while the xx interaction transforms into

(8.4)

&Ry Q S"S" R '=J Q S'S'= V
(ij ) (ij )

(8.5)

Thus, (8.2) implies

& ll TI t &
= ( & t I+ & & I ) v( I 1 &+ I & & ) . (8.6)

Since V conserves S„the cross terms in (8.6) vanish while
the remaining terms are equal, which proves the virial re-
lation (8.1).

The excitation energy for a localized spinon described
by Eqs. (7.1)—(7.4) has been calculated by the Monte Car-
lo and HNC methods, as discussed below. The Monte
Carlo results for the T and V contributions to the spinon
creation energy 6, are shown as discrete points in Fig. 7
for lattices of various sizes (up to N, =300). The dashed
lines in Fig. 7 represent the HNC value AV =0.42J
and the prediction AT =0.84J which follows from
(8.1). These numerical results are consistent with the
virial relation (8.1) and yield the total excitation energy
5, =35V =1.26J for a spinon localized on a lattice site.
(The previously reported estimate' of b,, was incorrect. )

The Monte Carlo calculation of the spinon energy 6,

0
0

I

100
I I

200
Ns (arb. units)

I

300 400

FIG. 7. Excitation energy for a spinon localized on a lattice
site. Dashed lines are drawn at HNC values; points are Monte
Carlo data. Triangles: potential energy; circles: kinetic energy.

(8.8)

where

Pe =
—,'lz, l' —2 y. lnlz, —z, l

—4 y. lnlz, —z„l+-,' y lz, l'
j (k

(8.9)

is the Coulomb potential energy of a lattice plasma con-
sisting of N particles with "charge" 2 interacting with a
neutralizing background and with a "phantom" particle

was carried out for the state lz„g,zs 1 & containing a
quasihole at site z„and a quasiparticle at zz, where

Ized
—zz I

=4b The .addition of a second spinon with op-
posite polarization makes the total S, zero; the region of
the lattice occupied by bosons is therefore the same in the
state Iz„l,z~ 1 & and in the ground state IV&. This
causes the boundary effects (which scale as X, '~ for V,
as Fig. 4 indicates) to disappear from 6, which is ob-
tained as fol1ows:

~, =-,'(&z& g, z& y IWlz& S,z&1& —
& +IWI+&) (8 7)

This expression is valid if the two spinons are separated
by a distance z~ —zz large on the scale of the plasma
screening length, and are thus independent (see discus-
sion below). When Iz„—

zeal

~3b, we find the left-hand
side of (8.7) to be unchanged as we vary the separation
distance.

The energy and correlation functions in the localized
spinon state have also been calculated using a generaliza-
tion of the HNC method described in Sec. V. The gen-
eralized HNC procedure for the quasihole localized at zo
derives from the partition function

( —1rW}~z ~'
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of "charge" 1, fixed at zo. If the phantom is allowed to
move on the lattice, it wiH be found on any site with
equal probability, The plasma is thus a mixture of two
interpenetrating liquids: one made up of type-one parti-
cles with charge 2 and uniform density pi =1/(4m. ); the
other consisting of type-two particles (phantoms) with
charge 1 and density p2=1/(4' ).

The two correlation functions of interest are
g»(z, —zz), which measures the probability to find two
type-1 particles separated by a distance z

&

—zz, and

g,2(z i
—zo), which gives the probability to find a type-1

particle a distance z, —zo from the phantom. These are
calculated using the two-component HNC equations

h,b(r, )=g,&(r )
—1,

gab(r ) =exp( Pu b(r )+" b{» ') c b(r )1

h.b(r, )=c.b(r, )

+0 g p, g h„(r —r„)c,b(rk ) .
c k

(8.10)

(8.11)

(8.12)

Here, a, b, and c run over the two types of particles, r.
and rk run over lattice sites, u,b(r) is the Coulomb poten-
tial energy of particles of type a and b separated by r, and
A=2m is the unit cell area. These coupled equations can
be solved perturbatively, ' as described below, by ex-
panding in the small parameter p2.

The function h, z(r) is equal to the twice the average
spin at r due to a quasihole centered at the origin. This
spin density profile is plotted in Fig. 8 as a function of r.
The quasihole wave function (7.1) forces the spin at the
origin to be down; hence, Ii i2(0) = —1, as expected.
Apart from this dip at the quasihole center, the spin den-
sity is close zero. One can therefore think of the
quasihole (quasiparticle) creation operator as simply

fixing the spin at zo to be down (up). The rest of the spin
liquid then adjusts to this, but because of the short plas-
ma screening length the change in the local spin density
away from zo 's small.

The potential energy required to create a localized
quasihole is obtained by noting that the presence of the
quasihole also changes the radial distribution function by
a small amount 5g»(r) of order 1/N, relative to g (r) in
the ground state. The near-neighbor value 5gii(b) yields
the potential energy hV required to create a localized
quasihole:

EV=3JN5g„(b) . (8.13)

gI, '(r )=exp[hP'(r ) —c,' '(rj) —2m, Ko(Qr )] (8.14)

The HNC calculation gives N5g» (b) =0.14, whence
b V =0.42J, as shown in Fig. 7. Since 5g» —1/N,
5V is a constant independent of N in the thermodynamic
limit.

The finiteness of 6, is an indication that the liquid
ground state remains incompressible on the lattice. How-
ever, a complete variational estimate of the energy gap
should take into account the energy-momentum disper-
sion of moving quasiparticles and collective excitations.
These will be discussed in Secs. IX and X.

We now review the perturbative solution ' of the
two-component HNC equations which yields the correla-
tion functions g»(r) and g,z(r). The approach is first to
solve Eqs. (8.10)—(8.12) with p2 set to zero, then to linear-
ize (8.11) and (8.12) in all quantities of order 8(p2) and
compute the correlations h»(r) and h, 2(r) to that order.
The first step involves regularizing Eq. (8.11) along the
lines of Sec. V, which gives
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FIG. 8. Spin distribution around a quasihole localized at the
origin. Circles are values calculated by the two-component
HNC procedure. The solid curve is a guide to the eye.

FIG. 9. Change in the radial distribution function due to the
presence of a quasihole excitation. Circles are values of
%5h»(r) obtained by the two-component HNC method. Solid
curve is a guide to the eye.
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~(0)( ) ~(o)( )
4~m, Q

[(q+G) +Q ](q+G)
(8.15)

where m, =2 and m2=1 are the plasma "charges" of
type-1 and type-2 particles, respectively, and the super-
script indicates 0th order of perturbation theory in p2. In
terms of the Fourier transforms, defined by Eqs.
(5.8)—(5.9), the short-range c functions are given by

quantities of O(1/N). Besides p2=1/(4~N), these in-
clude the small corrections 5c i„5h„,a = 1,2 caused by
the presence of the type-2 particle. The correction 5h, 2,
a small change in the spin density distribution around the
quasihole, vanishes in the thermodynamic limit and is ir-
relevant. The quantity of interest is 5h» =5g», since it
determines the quasihole energy, according to (8.13).
Linearizing Eq. (8.11) for g», we find

where the sum on 6 is over the reciprocal lattice. The
Ornstein-Zernike equation (8.12) with p2=0 is 5gii(r )=[5h„(r )

—5c, i(rj )]g', , '(rj ), (8.17)

~ (p)
(oih „(q)=

1 —p, c ',,'(q)
(8.16)

or, in view of (8.10),

5h „(r ) =5 c„(r J) I 1+[h P, '( rj) ] (8.18)
Having solved Eqs. (8.10) and (8.14)—(8.16) for a=1,2
iteratively, as discussed in Sec. V, the second step consists
of expanding Eqs. (8.11) and (8.12) to first order in all

An expansion of Eq. (8.12), expressed in Fourier space,
yields

5f»(q) =5c»(q)+pi[5~ii(q)c Ii'(q)+~'ii'(q)5cii(q)]+p2~ ip (q)c I2'(q) (8.19)

which is combined with (8.16) to give

5f„= 5c„(1 +pe ', , ') +p (f ', , ') (8.20)

that the basis of localized orbitals (9.1) is nonorthogonal,
so the itinerant state (9.2) must satisfy a Schrodinger
equation of the form

The pair of linear equations (8.18) and (8.20) are finally
solved for 5h» and 5c» with the 0th order quantities h ', , '

and h '&z' entering as input from the first step. In Fig. 9 we
show the solution 5h»(rj ) which gives the correction to
the ground state g ( r ) due to the presence of the
quasihole. For the near-neighbor separation b, we find
5g»(b)=5h»(b)=0. 14 in units of 1/N. This leads to
the value of the quasihole energy given above.

(% EkS)gk
=—0

where

S)= &z, , a~z, a &

is the overlap matrix and

&,, =&z, , a~&~z, , a&

(9.3)

IX. ITINERANT QUASIPARTICLE STATES

For a translationally invariant Hamiltonian, the spin- —,

eigenstates can be described by extended wave functions
in a complete basis of states. We choose this basis to be
the set of all localized spinon orbitals of the form

( —its)~Z ~'
(9.1)

~k, a) = g 1tk(zo)~zo, a),
ZQ

(9.2)

labeled by a crystal momentum k. We note, however,
I

where a = f, $ is the spin index, zo is the center of the spi-
non, and the operators S, are defined by (7.2) and (7.4).

Q

If zp is allowed to range over all lattice sites, this basis is
twice overcomplete, as we shall demonstrate below. Our
goal is to construct extended spinon states

is the Hamiltonian projected on the spinon subspace
(9.1). Since the Hamiltonian has the translation symme-
try of the lattice, the matrices & and S have the same set
of eigenvectors. The energy Ek is therefore given by the
ratio of the eigenvalues of & and S corresponding to the
common eigenvector gk.

The- overlap matrix for the localized spinon states may
be found using the analytic continuation technique
developed in Sec. VI to analyze the ground-state density
matrix. The overlap matrix &zo, p~zo, a) is diagonal in
the spin indices a and p and is a periodic function of zo
when zp=zp. The latter follows from the plasma parti-
tion function (8.8) and (8.9). The definition of the spinon
operators implies that the quantity & %~(S, ) (S, )~ql ) is

ZQ

analytic in zp* and zp. Repeating the arguments of Sec.
VI, we obtain the following analytic continuation of the
overlap matrix for all zp, zp..

&zo,p(zo, a) =5 @xp[——,'()zo[ + [zo[ )]exp( —'zo zo) g A&exp[ —'(Qzo* —Q*zo)], (9.4)

where 0 are the complex reciprocal lattice vectors and A& are real coefficients. The matrix elements of the Hamiltoni-
an & have the same analytic structure as the overlap matrix, since & acts only on the boson degrees of freedom.
Therefore, &zo, p~&~zo, a) has the form (9.4) with A& replaced by the real Fourier coefficients Bs defined by
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&zp a~&~zp, a ) = g Bgexp[ —,'( Qzp —9 zp) J (9.5)

where zo is allowed to vary throughout the unit cell of the lattice.
We can now write down the solutions of the Schrodinger equation (9.3). These spinon states have the form

~Q, b„a) = g expI —2[Q*(z„+b ) —Q (z„'+b,*)JI ~z~ +b„a ) . (9.6)

Here the sum is over sites on the "even" sublattice zz =2z, as indicated by the prime. The state ~Q, b„a) is a plane
wave superposition of spinons localized in Gaussian orbitals centered at points (z„+b,), as shown in Fig. 10. The wave
vector Q =Q iQ—„,the displacement b, = 6 „+id,», and the spin index a are the quantum numbers characterizing the
moving spinon. To prove that the state (9.6) is a solution of (9.3), consider the action of the overlap matrix on this state.
Using (9.4), we find

&zp, alQ, ~, a& =~g g/4g' exp[-,'(lzpl'+ lz, +&I')Jexpf-,'zp (z~+~) JexpI-,'[Q*(z~+~)—Q(z~+~*)JI, (9.7)

where zo is any complex number and A, & &&4 is de6ned by

(9.8)

Since the Hamiltonian matrix differs from the overlap matrix only by its Fourier components Bg, the action of & on
~ Q, b„a ) follows trivially:

&zp', a~&~Q, h, a &
= "

&zp', a~Q, b„a&,
Q —5/4

(9.9)

where s& z/4 is given by (9.8) with A& replaced by B&. This proves that ~Q, h, a) is an eigenstate of A with energy
Ek =Ek /4, where k =Q —5/4.

We identify the quantity k =Q —6/4 as the crystal momentum associated with the state
~ Q, b„a ). This

identification is confirmed by the fact that states with diff'erent k's are orthogonal: using the eigenvalue equation (9.7),
we find

(9.10)

where k = Q —5/4, k'=Q' —b, '/4, and

(g g~) — ( —(/8)(h 6'~ 1/8(h' 6 —6'6 —
) 1/2[k(h' —5 ) —k (6' —5)] ( —1/2}~z( zk —z k 1/2(zh' —z 6);e e e e e (9.11)

Furthermore, as expected of a crystal momentum, the
quantum number k is conserved in neutron-spinon
scattering. If the momentum transfer is q, the matrix ele-
ment for a neutron to scatter a spinon from the state

~ Q, b„a ) into the state
~
Q', 5', a ) is zero unless

(Q —b, /4) —(Q' —6'/4) =q .

Within each subspace (a, k=const), there are exactly
two independent states. This is verified numerically by
computing the determinant of the matrix Mk(b„b, '); for
any three states with the same k, this determinant is zero.
There are therefore two degenerate spinon bands for each
polarization state a, which we label

~
k, b,„a) and

~k, b, z, a). Although we have not done so, the eigenvec-
tors of Mk can be used to construct the two orthogonal
states for each (k, a).

The overlap of localized spinon orbitals reduces the
range of crystal momenta by "folding" the lattice Bril-
louin zone. Equation (9.6) implies that states ~Q, b„a)
and

~ Q ', b, a ) with Q' —Q =G /2, where 6 is a reciprocal
lattice vector, are linearly dependent. The crystal
momentum k can thus be chosen to lie in the Brillouin

zone of the "even" sublattice zz =2z. This zone is half
the linear size of the zone of the full lattice, as shown in
Fig. 11, and contains X, /4 k points, for a lattice of X,
sites. Therefore, the set

(9.12)

0 0 0 0 0 0 0
O WO WO

0 0 0 0 0 0 0
WO WO WO

0 0 0 0 0 0 0

FIG. 10. Locations of Gaussian spinon orbitals superposed in
the itinerant state (9.6). The arrows denote the displacement
vector A.
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FIG. 11. Brillouin zone of the sublattice z~ =2z (shaded),
and of the full direct lattice (outer contour). Gl and 02 are the
generators of the reciprocal lattice.
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and compare the energy of this state with the total energy
of a localized spinon, E,„„.„.The energy gained by hy-
bridization is

—t cosO
on-site hybrid ( +J cose

(9.14)

where t and f are the near-neighbor energy and wave
function overlaps defined by

Eon-SIte (9.15a)

(9.15b)

The overlaps t and f were obtained by a Monte Carlo
calculation similar to the one used in Sec. VIII to deter-
mine the on-site spinon creation energy 6, . For the
near-neighbor overlaps, we find

where k is in the "small" Brillouin zone in Fig. 11, 6& =0
and A2 =b span the two-dimensional subspace
(k, a=const), and a=1, $ is a spin label, is a complete
basis of itinerant spinon states. The number of indepen-
dent states with a given polarization is thus equal to
N, /2, half the number of lattice sites. This proves that
the basis (9.1) with zo ranging over all sites is twice over-
complete.

The folding of the Brillouin zone and the twofold de-
generacy of crystal momentum eigenstates are precisely
what one expects for a change-e/2 particle moving on
the lattice in a background magnetic field with one-half
of a Aux quantum 2hc/e per unit cell. Our description of
itinerant spinons is consistent with the picture of the
frustrated antiferromagnet as a lattice gas of charge-e bo-
sons, where a spinon is a quasiparticle of charge e/2.

The amount of dispersion in the spinon energy bands
can be estimated from the overlaps of the localized orbit-
als (9.1). We consider the state in which a spinon local-
ized on size z~ hybridizes with a near-neighbor orbital
Zg o

(9.13)

FIG. 12. Spinon energy band in the near-neighbor tight-
binding approximation. The dashed line is drawn at the HNC
value of 6, .

and

t /J =0.042+0.024,

f =0.389+0.005 .

The range of the hybridization energy (9.14) as a function
of the phase angle L9 is then 0.098 J, an order of magni-
tude smaller than the excitation energy 6, = 1.3J for a lo-
calized spinon.

Since spinons behave as charge-e/2 particles moving in
a background magnetic field, a tight-binding approxima-
tion for the spinon energy band should look qualitatively
similar to the dispersion of a charge-e boson, with three
modifications. First, the size of the Brillouin zone is re-
duced in half, reAecting the fractional "charge" of the
spinon; second, the bandwidth must be adjusted by the
ratio of the spinon and boson hybridization energies;
finally, a positive self energy b, must be added. The
shape of the resulting doubly degenerate spinon energy
band is shown in Fig. 12. Since the energy overlap t is
positive, the band disperses down from the zone center
and reaches a minimum at the zone corner (point M, in
Fig. 11). In spite of the large error bars on the band-
width, we expect the spinon excitation energy to remain
positive everywhere in the Brillouin zone.

X. COLLECTIVE KXCITATIONS
AND STABILITY OF THE SPIN LIQUID STATE

In view of the existence of competitive ordered varia-
tional wave functions for the Heisenberg model on the
triangular lattice, we address the question of stability of
the spin liquid phase against crystallization, or antiferro-
magnetic long-range order. At suf5ciently low densities,
the two-dimensional electron gas in a magnetic field un-
dergoes a phase transition from the fractional quantum
Hall liquid state to a Wigner crystal. Crystallization
occurs as a result of critical softening of a collective
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mode which becomes macroscopically occupied at the
transition point, in a manner analogous to superAuid con-
densation in helium. This scenario is supported by the
numerical results of Girvin et al. " which indicate that,
as the electron density is reduced, the collective mode en-
ergy gap decreases, and its minimum as a function of q
occurs close to the reciprocal lattice vector for a Wigner
crystal.

Following Ref. 11, we use the variational ansatz

iq & =Spiv& (10.1)

to describe the spin-1 collective excitations of the tri-
angular lattice antiferromagnet. The operator Sq" is the
Fourier component of the spin density,

N
iq r.$'= g Sfe ', p=x, y, z,

Qx, J=t
(10.2)

and ~%'& is the spin liquid state (3.1). Since both ~4 & and
the Hamiltonian are rotationally invariant, the modes
generated by the operators S",S~, and S' are degenerate.
When q is close to the critical wave vector q, located in
the corner of the full Brillouin zone (point M in Fig. 11),
S" has a nonzero expectation value in a three-sublattice
Neel state. We expect Neel ordering to be caused by
macroscopic occupation of a mode with wave vector q„
as its energy vanishes.

The expectation energy of the collective mode S' is
given by the Feynman-Bijl formula":

1 &q ~[S' „[W,S;]]~e&
+(q) (10.3)

provided ~%& is the exact ground state of &. Since we
approximate the true ground state by (3.1), expression
(10.3) can lead to an error of either sign in b, (q). The
static structure factor S(q) = &%'~s' ~S~ ~'P & is related to
the ground-state radial distribution function g (r) (cf. Sec.
III) as follows:

N,

S(q)= g I —,'[g(r)) —1]+—,'5„OIe
j=1

(10.4)

where

y(bio)=&qiS,",S; iq &

is the near-neighbor value of the ground-state density ma-
trix and 5„are the vectors from a site to its near neigh-
bors. Rotational symmetry of the ground state leads to
the relation

y(b~O) =
—,'[g (b) —1]

(see Eq. (6.2). All parameters in b, (q) are thus contained

Evaluation of the matrix element in the numerator of Eq.
(10.3) yields

6

&+l[S' „[m,Sq]]~+&=—2JZ(b~O) g (1—e "),
n=1

(10.5)
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FIG. 13. Dashed line: static structure factor for the ground
state (3.1); solid line: energy of the collective mode (10.1) along
symmetry directions in the zone.

XI. STATISTICS OF SPINON EXCITATIONS

The statistics of spinons has recently been the subject
of some debate. ' ' * On the other hand, there is con-
siderable evidence that quasiparticle excitations in the
quantum Hall system obey fractional statistics. Fraction-
al statistics, originally discussed by Wilczek, has been
identified by Halperin as the root cause of the hierarchy
of fractional quantum Hall states. ' It has also been
shown to follow directly from the properties of the
quasihole wave function.

The physical content of the fractional statistics hy-
pothesis in the quantum Hall system is in the collective
behavior of fractionally charged quasiparticles at large

in the ground-state radial distribution function.
The static structure factor S (q) and the collective

mode energy h(q) on the triangular lattice are shown in
Fig. 13. The minimum of h(q) at the critical wave vector
q, corresponding to three-sublattice Neel order is a direct
eff'ect of the peak in S(q) at the same q. Because of the
moderate strength of this peak, our estimate of the collec-
tive mode energy gap is rather large: 6;„=1.1J. One
expects the actual energy gap at q, to be lower, since
Neel-ordered states with energy close to the ground-state
value have been. shown to exist. The large magnitude of
the gap 6;„is likely to be related to an underestimate of
the peak in the correct S(q) by the variational ground
state ~qI &. A single-mode approximation for the energy
gap of a spin-1 Heisenberg chain, based on an approxi-
mate jastrow ground state for this model, ' exceeds the
numerically determined zone-edge gap by a factor of 2,
while yielding a tight upper bound on the gap of the ex-
tended Heisenberg model, ' for which the Jastrow
ground state is exact. More work is necessary to obtain a
reliable estimate of the energy gap in the 2D antifer-
romag net.
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distances. Consider two identical quasiparticle excita-
tions with charges ve, located at z~ and z& and suppose
the distance ~z„—zz ~

is large compared to the magnetic
length. The two quasiparticles then behave as if they
were charge-e bosons, each carrying a thin solenoid con-
taining magnetic fiux P=v(hc je) normal to the sample.
Thus, if we treat excitations as bosons, the Hamiltonian
for the quasiparticle at zz must contain, in addition to
Coulomb interactions and external fields, a long-range
gauge coupling to the vector potential

yst„( C)=,A(z „,z~ ).dI =2m.v,=2~
0

(11.2)

where c is the closed trajectory of quasiparticle A. Cal-
culations of Arovas, Schrieffer, and Wilczek have
shown that the Berry phase for the quasihole excitation
in the quantum Hall system contains a statistical contri-
bution given exactly by (11.2).

The results of a similar Berry phase experiment on the
lattice are difticult to interpret since the excitations then
have energy dispersion, which introduces additional
phases to the time-dependent wave function as the local-
ized quasiparticle moves across the unit cell. We note,
however, that the statistics of excitations of a lattice sys-
tem can be determined from other quantities which are
sensitive to the presence of the vector potential (11.1),
e.g., from the hopping matrix elements between localized
excited states, as discussed below.

It has been suggested' that spin- —,
' excitations of the

RVB liquid state interact by the vector potential (11.1)
with the fraction v= —,'. Disputing thi. s claim, Kivelson
and Rohksar have argued that in a time-reversal-
invariant system where the ground state and excitations
are nondegenerate, only bose or fermi statistics are possi-
ble, and that spinons behave as fermions with no long-
range forces. The key premise in this argument, the non-
degeneracy of the eigenstates, is an assumption which has
not been demonstrated to hold for the spin liquid state.
It certainly does not hold for the variational spinon wave
functions (7.1)—(7.4), since the time reverse of the state

is %~~*, which is distinct from +~~. Insofar as these
wave functions provide a correct description of the spi-
non, numerical evidence indicates that there exists a
spin-dependent gauge interaction between spinons, medi-

A(z„,z~ )= V „[arg(z~ —z~ )],
2m'

produced by the solenoid attached to the quasiparticle at
ZB-

In the continuum problem, the presence of the vector
potential (11.1) can be detected by measuring the Berry
phase acquired by the wave function of the two-
quasiparticle systetn as quasiparticle A is adiabatically
transported around a loop enclosing 8. If the quasiparti-
cles are boson-Aux tube composites, the Berry phase con-
tains two contributions: an Aharonov-Bohm phase due
to the external magnetic Aux through the loop, and a
statistical phase generated by the Aux tube attached to B.
For quasiparticles with charge ve, the statistical part of
the Berry phase is given by

0 0 0 0 0 0 0

0 0 0 0

o o
B

0 0 0 0

9 A Q
\

o o
ZA

0 0

0 0 0 0 0 0 0

FIG. 14. Initial configuration of the quasihole ( $-spinon) and
the quasiparticle ( f'-spinon) in the calculation of the off-
diagonal matrix elements between states (11.4).

, T)= &
—irsHI'~I'+I'~I St S,t (1 1.4)

which is symmetric under interchange of (z„,l) and
(zz, f ), since the operators S," and S,t defined by (7.2)

B
and (7.4) commute. The matrix elements of the overlap
(z„',z&1'~z~, z~ 1') in the this representation have been
evaluated by the Monte Carlo method. The phases of
these matrix elements for near-neighbor hops z~ ~z„' are

TABLE IV. Phases of the matrix elements
(z„' $,z~ t ~z„ t, z~ t ) in the representation (11.4) for each of the
six near-neighbor hops z„~z~. The initial state is z& =2b,
zz = —2b, and the units are radians.

z~ /b

3
(5+ i&3)/2
(3+i+3}/2

1

(3—i&3)/2
(5 —i&3}/2

Monte Carlo

—0.0008
—0.9994+m

—0.1241+~
—0.0001

0.1056+m

0.0947+ m

Eq. (11.5)

0.0000
—0.0951+n.
—0.1213+m

0.0000
0.1213+m.

0.0951+m

ated by the vector potential

1 o
A( ZA, trA', gz, &B)—

2 2
VA[arg(ZA ZB)]tr A'&8

(11.3)

where 1/2o. ~ and 1/2o. z are the spins of the two parti-
cles. The phase generated by the vector potential (11.3)
during the motion of two spinons changes sign depending
on their relative polarization state. For two identical ex-
citations, this gauge interaction is expected to follow
from the quasihole wave function (7.1) and (7.2). Our re-
sults for the quasihole-quasiparticle pair suggest an ex-
tension of the fractional statistics for spin- —, particles,
given by (11.3).

Evidence for the gauge interaction (11.3) comes from
numerical calculations of the off-diagonal overlap matrix
elements between two-spinon states. Consider a
quasihole localized at z~ and a quasiparticle at z~, and
suppose the quasihole hops from z~ to z~, as shown in
Fig. 14. In the boson representation, the initial state is
described by
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lfbFIG. 15. Aharonov-Bohm phases fb=e in the hopping
matrix elements of a quasihole. Solid lines, fb =1; dashed lines,

fb = —1; dotted lines, fb =i in the direction of the arrows. The
circle denotes the origin.

compared in Table IV with the phases generated by the
total vector potential A acting on the quasihole. We as-
sume the A consists of the statistical term (11.3) and the
contribution (2.4) which describes the uniform back-
ground frustration Aux. The total phase change is then
obtained as follows:

I
ZA

—ZB
r(zg z~ )=1'b —

—,'arg
ZA 2

(11.5)

lgbThe background Aharonov-Bohm phase factors e ' for
all near-neighbor hops of a charge- —,

' quasihole are shown
in Fig. 15. We note that the off-diagonal matrix elements
of the Hamiltonian % must behave in the same manner
as functions of z„,z„', and zz since & acts only on the in-
dividual spin degrees of freedom. The spinons, as
represented by Eqs. (7.1)—(7.4), can thus be thought of as
charged bosons moving in a uniform magnetic field and
interacting via the vector potential (11.3). This implies
that the natural wave function representation for the spi-
nons is the fractional statistics representation, ' in
which long-range gauge interactions disappear from the
effective spinon Hamiltonian.

XII. SUMMARY AND CONCLUSIONS

We have presented a theory of the spin liquid state in a
two-dimensional quantum antiferromagnet which draws
on an analogy with the fractional quantum Hall effect
system. The ground state of the theory is described vari-
ationally by the m =2 quantum Hall wave function
which is shown to be a liquid, by employing the analogy
with the classical lattice plasma, and a spin singlet, by
virtue of its analytic properties. The spin liquid state can
be viewed as evolving from the ground state of the con-

tinuum quantum Hall Hamiltonian for bosons, as the lat-
tice perturbation is turned on adiabatically, transforming
the system into a lattice gas representation of the antifer-
romagnet. If the quantum Hall energy gap remains finite
in this process, which we believe to be the case, the
theory predicts the existence of spin- —,

' neutral excitations
(spinons). These appear as the magnetic analogues of the
fractionally charged quantum Hall quasiparticles. We
describe the two polarization states of a spinon by the
quantum Hall. quasihole wave function and its spin in-
verse. This representation is shown to behave as a spin- —,

'

doublet under rotations and to yield a finite excitation en-
ergy for the spinon states, supporting the idea that the
excitation spectrum of the system has an energy gap. A
single mode approximation for the collective mode ener-
gy also gives a finite, though probably overestimated,
value for the gap. Finally, the structure of the overlaps
of spinon states in the quantum Hall wave function repre-
sentation shows that these wave functions describe spin- —,

'

particles with fractional —, statistics.
These results reveal a similarity between the fractional

quantum Hall system and the two-dimensional antifer-
romagnets characterized by an RVB-type spin liquid
ground state. There remains, however, the task of prov-
ing that such an incompressible spin liquid and its excita-
tions exist as true eigenstates of a 2D spin- —, Hamiltonian.
The low variational energy of the spin liquid state for the
near-neighbor Heisenberg model on the triangular lattice
and the short range of its spin correlations indicate that
longer-range spin interactions, e.g. , second-near-neighbor
coupling, can push the system further into the liquid
phase. Among questions deserving further attention is
the lack of time reversal symmetry, a property of the spin
liquid state which follows from the quantum Hall analo-
gy, and its effect on the statistics of excitations in the
RVB state.
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