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Field dependences of surface magnetization in the semi-infinite spin-% Ising ferromagnet with a

nonrandom surface or surface amorphization are investigated by the use of the effective-field theory
corresponding to the Zernike approximation in the bulk. We find that the system behaves in a
variety of notable ways for both the random and the uniform models.

I. INTRODUCTION

The problems of surface magnetism have been investi-
gated for many years. In particular, the semi-infinite sim-
ple cubic spin-1 Ising ferromagnet with a (100) uniform
surface has received much attention and has been studied
by using a variety of approximations and mathematical
techniques.! ™" For this simple model with modified ex-
change interaction J; only at the surface, it was pointed
out, on the basis of the standard mean-field approxima-
tion, ! that for J, greater than a critical value J?, the sys-
tem could order on the surface before it ordered in the
bulk. Since then, a number of authors have investigated
the possibility of the surface magnetic phase. This
mean-field prediction is now found to be qualitatively
correct. This phase is characterized by a surface Curie
temperature higher than that of the bulk. Experimental-
ly, surface magnetic order has been exhibited mainly in
crystalline systems such as Ni, Cr, and Gd.*

The temperature dependence of magnetization at the
surface have also been investigated experimentally and
theoretically. They show some characteristic behaviors.
For instance, linear temperature dependence of surface
magnetization has been observed in the temperature re-
gion near the bulk transition temperature when J, is tak-
en as a value smaller than J&.*® However, as far as we
know, the magnetic field dependence of magnetization at
the surface has not been examined.

On the other hand, in the previous work® we have in-
vestigated the phase diagrams and magnetizations of the
semi-infinite spin-. Ising ferromagnet with surface
amorphization by the use of the effective-field theory cor-
responding to the Zernike approximation in the bulk.’
We found a number of characteristic behaviors for the
surface magnetic properties, such as the possibility of sur-
face reentrant phenomena, and proposed that research on
a surface with an amorphous layer may open a new field
of surface magnetism.

The purpose of this work is to study the field depen-
dences (or magnetization processes) of surface magnetiza-
tion in the semi-infinite simple cubic spin-1 Ising fer-
romagnet with a (100) uniform surface or surface
amorphization within the same framework as that of the
previous work.”® We find some characteristic behaviors
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for the magnetization processes of surface and bulk mag-
netizations in the system with a uniform surface, depend-
ing on whether J; is larger (or smaller) than a critical
value J{. The field dependence of surface magnetization
for the system with an amorphous surface layer indicate
that the research of the system in an applied field is also
extremely interesting.

The outline of this work is as follows. In Sec. II, we
present the basic points of the theory. In Sec. III, we ex-
amine the field dependences (or magnetization processes)
of the surface and bulk magnetizations for the system
with a (100) uniform surface. In relation to the results of
the previous work, the temperature dependences of sur-
face magnetization for the system with an amorphous
surface layer are investigated in Sec. IV, changing the
value of applied magnetic field.

I. FORMULATION

We consider a semi-infinite spin-J Ising ferromagnet
with a (100) uniform surface or surface amorphization.
The Hamiltonian is given by

H=—1 AJijS,‘szZ—H > S7, (1)
L] i

where the summation is carried out only over nearest-
neighbor pairs of spins. S} takes the values +1. J;; is the
exchange interaction, which takes the value J; if both i
and j sites belong to the (100) surface, J, between spins
on the surface and its nearest neighbor at the first layer,
and the bulk interaction J otherwise. H is the external
field. For the surface amorphization, J, and J, are as-
sumed to be randomly distributed according to the in-
dependent probability distribution functions P(J;) and
P(J,). For the uniform surface, on the other hand, .73
and J, are taken as the fixed values J, and J,.

In the following, we assume that the site magnetiza-
tions o;=(S7), where ( ---) denotes the canonical
average are equivalent to each other on a layer for the
layered simple cubic system with a (100) surface. As dis-
cussed in the previous works,”® when we apply the
effective-field theory with correlations to our layered sys-
tem, the surface magnetization o after performing the
random-bond average, is given by
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o,=[{cosh(DJ,)),+o,{sinh(DJ,)),1*
X [{cosh(DJ,)),+o,{sinh(DJ,)),1f (x)|, -0 »

(2)
with
f(x)=tanh[B(x +H)], (3)
where B=1/kg T, D =3 /9x is a differential operator, and
( -+ ), represents the random-bond average. For the
magnetization o of the first (next) layer, we have
o,=[cosh(DJ)+ o sinh(DJ)]*
X[{cosh(DJ,)),+o{sinh(DT;)),]
X [cosh(DJ)+ o ,sinh(DJ)]f (x)]; = - (4)

In general, the magnetization o, of the nth layer is given
by

0, =[cosh(DJ)+ o ,sinh(DJ)]*
X[cosh(DJ)+o, _sinh(DJ)]
X [cosh(DJ)+a,, 4 sinh(DJ)]f (x)], = for n =2,
(5)
J
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where o, _; and o, are the magnetizations in the
(n —1)th and (n + 1)th layers, respectively.

Expanding the right-hand sides of (2), (4), and (5), we
obtain the following set of coupled equations:

o,=A,+44,0,+6A4502+4 4,03+ As0}
+o0,(Ag+4A4,0,+6A4302+4 44503+ A50%), (6)

0,=B,;+4B,0,+6B;0}+4B,0}+Bso}
+0,(B,+4Bgo,+6By02+4B yoi+B,,0%)
+0,(B,+4B;0,+6B,02+4Bs0}+Bgo?)

+0,0,(Bg+4By0,+6B03+4B 01+ B,0}),
@)

and

0,=K,+4K,0,+6K;02+4K,0) +Ks0+(0,_+0,. 1)K, +4K;0, +6K,0%+4K 0> +Kcoh)
+0,410,_1(K3+4K,0,+6Ks02 +4K.0)+K,0%) (8)

where coefficients 4; (i =1-10), B; (i=1-12), and K
(i =1-7) are given in the Appendix. When H =0, these
equations reduce to those in Ref. 9 [namely Egs. (16),
(17), and (18) of Ref. 9.]

We are unable to solve the above coupled equations
analytically. Even if we use a numerical method, they
must be terminated at a certain layer. As discussed in
previous work, > 10 the simplest method for solving them
is to assume that the magnetization remains unaltered
after the second layer, namely,

0,=03= " =0,=0pg,

where o p is the bulk magnetization determined from

op=K,+6K,0p5+15K;0%+20K 0%

+15Ks0%+6Ke03+K 0% . 9)

The approximation may be called the three-layer approx-
imation. As shown in the previous works,”!® the
three-layer approximation gives a rather reasonable result
for the zero-field (H =0) thermal behavior of o except
in the temperature region very near T =T? (or T?),
where T? (or T¥) is the bulk transition temperature (or
the surface ordering temperature). In the following, let
us use the three-layer approximation to evaluate the field
dependences of o and o 3 as a whole.

[
III. NONRANDOM SURFACE

In this section, we at first investigate the field depen-
dences of o, and o for the system with a (100) nonran-
dom surface. Then, the exchange interactions J; and J,
are given by constant values J; and J,. Before showing
the numerical results, it is worth mentioning that the
phase diagram of the present system with H =0 has been
investigated in previous work.” The surface exchange in-
teraction Jj is scaled with that of bulk in the form

Jy=J(1+Ay) (10)

In the model with J, =J (Mills’s model), it is well known
that if the parameter A, is greater than a critical value
A, the system may order on the surface before it orders
in the bulk. The system exhibits two successive transi-
tions, namely the surface and bulk phase transitions, as
the temperature is lowered. If the ratio is less than A,
the system becomes ordered at the bulk transition tem-
perature. Within the present formulation, the critical
value A, is given by A, =0.3068, as discussed in previous
work.” The value can be compared with A,=0.25 for
the mean-field theory,! A, =0.6 for the high-temperature
series-expansion  method,> A_,=0.307 for the
renormalization-group approach,’® and A,=0.5 for the
Monte Carlo method.?

In particular, for H =0, the bulk equation (9) reduces
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to
0p=6K,05+20K,0%+6Ks0% , (11)

from which the bulk transition temperature T can be
determined from

or
tanh(683J)+4 tanh(4J)+5 tanh(2B8J)=1¢ . (12)

The equation (12) is equivalent to that obtained by Zer-
nike,!' using another method. Then, T? is given by
kpT?=5.073 J, which can be compared with k;T?=6J
for the mean-field theory result, kg ch=4.933 J for the
Bethe-Peierls approximation result and kzT?=4.511 J
for the high-temperature-expansion-method'? result.

Figure 1 shows the temperature dependences of o and
o p for the system with J,=J and J, =J, when the value
of H is changed. Solid and dashed lines represent o, and
o g, respectively. As mentioned above, the surface for
H =0 can order at T =T, since the system satisfies the
condition A; <A,. As is seen from the figure, the magne-
tization curve o, for H =0 [solid curve labeled (a)]
changes linearly with 7. Experimentally, such a linear
temperature dependence of o has been observed in many
semi-infinite crystalline magnets.*

In Fig. 2, the magnetization processes for the system of
Fig. 1 are plotted for the selected values of T, namely
kyT=4.0 J, kyT=kyT?=5.073 J, and kzT =6.0 J.
Solid and dashed lines represent o and o g, respectively.
The magnetization process of o5 is always above the cor-
responding curve of o for the whole range of H.

Figure 3 shows the temperature dependences of o for

FIG. 1. Temperature dependences of surface and bulk mag-
netizations for the system with a (100) uniform surface, when
the value of H is changed; The curves (a) and (a’) are obtained
for H=0. (b) and (b’) are plotted for H =0.1J. (c) and (c') are
for H =J. The parameters A; and J, are then taken as A;=0.0
and J; =J. The solid and dashed lines represent the surface and
bulk magnetizations.
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Ay=00
J=J
3 kgT =404
biT=1)

¢ kgl =6.0J

0 10 20 3.0 4.0 5.0 6.0 10

FIG. 2. Magnetization processes of o; and o for the system
of Fig. 1 at some selected temperatures; the curves (a), (b), and
(c) are plotted for kz T =4.0J, T=T?, and kz T=6.0 J, respec-
tively. Solid and dashed lines represent, respectively, o and
Op.

the system with J; =J in some applied fields, when A; is
taken as A;=1.0. Since A; is larger than the critical
value A_, surface magnetization may take a finite value
even in the temperature range above T=Tc”, as is seen
from the solid curve (a) with H =0 in the figure. Then,
the solid curve (a) exhibits a small dip at T=T?. Howev-
er, when the applied field takes a finite value, such a dip
disappears in the magnetization curve of o,. The dashed
line expresses the o 5 curve for H =0.

In Fig. 4, the magnetization processes of o (or o) for

1.0

%

05

0.5

FIG. 3. Temperature dependence of o for the system with
A;=1.0 and J, =J, when the value of H is changed as follows:
(@) H=0, (b) H=0.1J, and (c) H=J. The dashed line
represents the magnetization curve of ap for H =0.
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FIG. 4. Magnetization processes of o for the system of Fig.
3 when T is fixed as follows: (a) T=T2, (b) kyT=6.017, and (c)
kT =7.0J. The dashed line represents that of oz obtained at
kpt=7.01.

the system of Fig. 3 are plotted, when the temperature is
fixed at T=T? [curve (a)], KT =6.0 J [curve (b)], and
kT =17.0 J [curve (c)]. The dashed line represents the
magnetization process of oz at kz T =7.0 J. The magne-
tization processes of oy at T=T? and kzT =6.0 J are
equivalent to the dashed curves (b) and (c) in Fig. 2. In
contrast with Fig. 2, the magnetization process of o in
Fig. 4 is always above the corresponding curve of o 5 for
the whole range of H. In particular, the initial rapid rise
of the solid curve (a) from the value for H =0 comes
from the disappearance of the dip seen in the solid curve
(a) of Fig. 3.

Figure 5 shows the Arrott plots for the system of Fig. 3

- Ay =10
~ =J 7~
o6 | . s i
. T=T; 79
o~ r 2 / G.S
% 0% /
04 /
//
L j //
02 | | e
| / o
L I/
| /
0 . V4 A
0 0s 10 15
H/Jog o His

FIG. 5. Arrott plots of o; and op for the system with
A,=1.0 and J,=J at the surface ordering temperature T =T,
when the vertical ‘axis is plotted by H/Jop. The solid line
represents the o2 vs H/Jo,. The dashed lines represent the o2
(oro%)vs H/Jog.
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with A;=1.0 and J, =J, when the temperature is fixed at
T =T:. The T} is given by kzT;=6.45 J from the solid
curve (a) of Fig. 3. As is seen from Fig. 5, when the o2 is:
plotted by H /Jo,, then the solid curve at first increases
linearly with H and then exhibits the downward curva-
ture, as is usually observed in the Arrott plots of fer-
romagnets. On the other hand, when o2 and 0% are plot-
ted by H/Jo g, they show a bid difference, as shown in
the dashed lines. Thus, from the difference the existence
of magnetic ordering on the surface may be confirmed.

Figure 6 shows the temperature dependences of o for
the system with A; =0.0 and J,;=0. 1J, when the value of
H is changed. The surface is coupled to the first layer by
the weak exchange interaction J,=0.1J, so that the sur-
face magnetization [the solid curve (a) with H =0] at first
follows the two-dimensional bulk magnetization curve
[the bulk transition temperature for z =4 is given by
kpT? (z=4)=3.090 J'3 (where z is the coordination
number], takes small values above T=TC" (z=4) and is
reduced to zero at the bulk transition temperature
kpT?=5.073 J. The dashed line represents the bulk
magnetization curve o for H=0. Comparing Fig. 1
with Fig. 6, the field dependences of o has a form similar
to that of Fig. 1.

IV. SURFACE AMORPHIZATION

In the previous work,’ we have investigated the phase
diagrams and the temperature dependences of o, and op
for the semi-infinite Ising system with a surface amorphi-
zation. Experimentally, the surface amorphization can
be achieved by using a short laser pulse to melt a thin lay-
er on the surface.'* Then, we have found a number of in-
teresting phenomena for the thermal behavior of surface
magnetization. In this section, let us examine the effects
of an applied magnetic field on some surface magnetiza-

FIG. 6. Temperature dependences of o for the system with
A;=0.0 and J,=0.1J, when the value of H is changed as fol-
lows. (a) H=0, (b) H=0.1J and (c) H=J. The dashed line
represents the magnetization curve of o 3 for H =0.
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tion curves, selecting the most interesting cases, such as
the surface reentrant phenomenon, from the previous re-
sults for H =0.

Now, in order to evaluate the random bond averages in
(2) and (4), it is necessary to provide the appropriate
forms of the probability distribution functions P (J,) and
P(J,), describing the structural disorder in a simple way.
In the previous work,? therefore, we have taken P(fs)
and P(J;) as

P(J)=1[8(J,—J,—AJ)+8(J,—J,+AJ,)],
P(J)=18(J,—J;—AJ)+8(J,+J,+AJ )],

as has been done in work on amorphous bulk ferromag-
nets.'> The random-bond averages in Eq. (2) and (4) are
then given by

(cosh(DJ,)),=cosh(DJ,8,)cosh(DJ ) ,
(sinh(DJ,)), =cosh(DJ ,8,)sinh(DJ,) for a=s or 1,
(14)

where we defined the parameter §, as

AJ,
5,= fora=sorl, (15)
JCZ

The result (14) can be also obtained by using the so called
“lattice model” of amorphous magnets. !¢

Figure 7 shows the thermal behaviors of o for the sys-
tem with A;=0.0, §,=1.2, and §,=0.0 when J, is taken
as J; =0.1J, changing the value of H. As discussed in the
previous work, the curve (a) with H =0 exhibits a
minimum and a maximum with the increase of T, which
corresponds to the trace of the reentrant phenomenon in
the two-dimensional frustrated bulk ferromagnet. In

6.0 10

~ kgl
It%

FIG. 7. Temperature dependences of o for the system with a
surface amorphization, when the value of H is changed as
H=0.0, H=0.1J, H=0.5J, H=J, or H=2.0J. The parame-
ters Ag, Jy, 8, and §,, are then taken as A;=0.0, J,=0.1J,
8,=1.2, and §,=0.0. The dashed line represents the bulk mag-
netization o for H =0.
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fact, for 8, = 1.2, the surface exchange interaction J, can
take two values, J,=2.2J and J,=—0.2J, with equal
probability. If we put J; =0, the surface then reduces to
the two-dimensional bulk system (or square lattice),
which can exhibit the reentrant phenomenon as well as
the spin-glass phase.!” In Fig. 7, however, the surface is
coupled to the first layer by the weak exchange interac-
tion J;=0.1J, so that even for H =0 the surface state is
similar to that for which a weak magnetic field is applied
to the two-dimensional frustrated bulk system. With the
increase of H, the curves in Fig. 7 exhibit behavior very
similar to those obtained in Ref. 17 for the two-
dimensional frustrated bulk system. With the increase of
H, the curves in Fig. 7 exhibit behavior very similar to
that observed in Ref. 17 for the two-dimensional frustrat-
ed bulk system.

When J; is taken as J,=8.0J (or A;=7.0), we have
found characteristic behavior for the temperature depen-
dence of o, in H =0; the surface reentrant phenomenon
has been obtained in the temperature range above
T =T?, when J, is taken as J, =0.1J. The sharp discon-
tinuity of the derivative of o, at T =T? has been ob-
served for the system, when J, is taken as J; =J. In Figs.
8 and 9, therefore, we examine the effects of applied mag-
netic field on o for such systems.

In Fig. 8, the temperature dependences of o are plot-
ted for the system with J,=J, §;=1.1, and §,=0.0,
when the value of H is changed. The dashed line
represents the magnetization curve of o 5 for H =0. The
sharp discontinuity of the derivation of o is observed at
T =T? for the curve with H =0. With the increase of H,
however, such a discontinuity disappears. But, the
characteristic behavior of o, for H =0 remains even for
H =0.5J.

In Fig. 9, the field dependences of o are investigated
for the system with J,=8J, J;=0.1J, §,=1.1, and

N\ H=4.0J

L

10.0 120
k%

FIG. 8. Temperature dependences of o, for the surface
amorphization with A;=7.0,J,=J, §,=1.1, and §,=0.0, when
the value of H is changed as H =0.5J, H =J, or H=4.0J. The
dashed line represents the o 5 for H =0.
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FIG. 9. Temperature dependences of o, for the surface
amorphization with A;=7.0, J,=0.1J, §,=1.1, and 8§,=0.0,
when the value of H is changed as H =0.0, H =0.1J, H =0.5J,
H=J, H=2.0J, or H=4.0J. The surface-reentrant
phenomenon is observed for H =0.0. The dashed line
represents the oz for H =0.0.

6,=0.0. As is seen in the figure, the surface-reentrant
phenomenon is obtained for the case of H =0 in the tem-
perature region above T=T?, although it does not ap-
pear for J, =J, as shown in Fig. 8. The curve with H =0
also exhibits a characteristic behavior in the temperature
region below T =T?; it has finite values and furthermore
shows a minimum and a maximum in the region of T.
Such a phenomenon comes from the fact that frustrated
spins on the surface are coupled to the ferromagnetic lay-

ers and are apt to align to the z direction in that tempera- .

ture range, even if the surface-reentrant phenomenon is
observed above T = Tc". Even for H =0.1J, however, the
reentrant phenomenon easily disappears, although the
characteristic behaviors observed for the curve of o; with
H =0 remain. The figure clarifies how the characteristic
system approaches to its saturation magnetization with
the increase of H.

V. CONCLUSIONS

In this work, we have investigated the field dependence
of magnetization on the surface in the semi-infinite spin-J
Ising ferromagnet with a (100) uniform surface or a sur-
face amorphization by the use of the effective-field theory
corresponding to the Zernike approximation in the bulk.
The obtained results have revealed some characteristic
behaviors of magnetism at the surfaces.

In Sec. II, the magnetization processes of surface and
bulk magnetizations for the system with a (100) uniform
surface have shown some differences, depending on
whether A, is larger or smaller than a critical value A,.
In particular, the Arrott plots at the surface ordering
temperature show big differences, depending on whether
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ol is plotted as a function of H /Jo, or H/J o> as shown

in Fig. 5. From these differences, the existence of surface
magnetic ordering may be confirmed experimentally,
especially in the temperature range above the bulk Curie
temperature.

In Sec. IV, we have examined the field dependence of
surface magnetization for the system with an amorphous
surface layer in relation to the characteristic behavior
found in previous work.® The results also indicate that
the study of a surface with an amorphous layer in an ap-
plied field is extremely interesting.

As mentioned before, we have used in this work the
effective-field theory corresponding to the Zernike ap-
proximation in the bulk. In the approximation we have
decoupled multispin correlation functions (S7S}- - S7)
into (S7) (S7)---(S{) (see Refs. 7 and 15). The
decoupling simply corresponds to the Zernike approxi-
mation in the bulk.!! But it improves the results ob-
tained from the standard mean-field theory in a reason-
able direction. Especially, the application to the surface
magnetic problem is superior to that of the standard
mean-field theory, as discussed in detail in a review arti-
cle.!® Moreover, we can improve the decoupling approx-
imation by introducing the concept of a correlated
effective field and a new decoupling approximation into
the multispin correlation functions. The improved
theories give the results equivalent or superior to those of
Bethe-Peierls approximation. However, the approxima-
tions to the surface magnetic problems become more
complicated than that of the present framework, as dis-
cussed in Ref. 19.

Finally, we hope that our study will stimulate further
experimental and theoretical works on the systems con-
sidered here. A comparison of our work with experiment
should be worthwhile.

APPENDIX

The coefficients A4; (i =1-10), B; (i =1-12), and K;
(i =1-7) of Egs. (6), (7), and (8) are given by

A =(CH*Cf(x)] =0 »
A4,=(C,)’S,C,f (), =g ,
A3=(C)AS,’C,f(X)|; = »
A,=C(S,)’C f(xX), =0,
As=(S)*C f(xX), =0,
Ag=(C,)*S, f(x)|, =0 >
A7=(C,PS; S, ()|, =0 »
Az =(CH(S, VS 1 f(X)]x =0,
Ae=C (8,381 f X)), 40,
A1p=(S)*S1f(X)]5 =0 »

(A1)
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B,=(C)’C,f(x)|,=0 >
B,=(C)*SC,f(x)|, =0 »
By=(C(SPC,f(x)|, =0 »
B,=(CS)PC f (%) =0 »
Bs=C(S)*C,f(x)y=0 »
B¢=(S)*C,f(x)| =0 »
B,=(CYS,f (X)) =0,
By=(C)*SS,f(x)l, =0 ,
By=(C)S)S,f(x)|,; =0 »
B o=(C(8)S,f(x)| =0 »
B =C(S”*S,f (%)=,
B, =(8)’S,f(x)|,=0 >

(A2)

and

K, =(O®%f (x)|; =0 »
K,(CPSf ()|, —o >
K3=(OMSPf (X)), =o »
K,=(CP(SPf (%) =0 »
Ks=(C(S)f(x)| =0 »
K¢=C(SPf(x),—0»
K;=(8)f(x)], =0 »

(A3)
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where parameters (C,,S;), C;,S), and (C,S) are defined
by

C,={cosh(DJ,)),= fP(fs )cosh(DJ,)dT, ,

(A4)
S,=(sinh(DJ,)),= [ P(J,)sinh(DJ,)dJ, ,
C,={(cosh(DJ,)), ,

(AS)
C,={cosh(DJ,)), ,

and

C =cosh(DJ) ,

(A6)

S =sinh(DJ) .

In Sec. III, the functions P(J,) and P(J,) are taken as
P(J,)=8(J,—J,)and P(J,)=8(J;—J,). In Sec. IV, the
functions P(J,) and P(J,) are given by (13). Then, the
coefficients A4;, B;, and K; can be easily calculated by us-
ing a mathematical relation e"2f (x)=f (x +7).
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