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Vortices in the classical two-dimensional anisotropic Heisenberg model
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The structure and dynamics of vortex spin configurations are considered for a two-dimensional

classical Heisenberg model with easy-plane anisotropy. Using both approximate analytic methods

based on a continuum description and direct numerical simulations on a discrete lattice, two types

of static vortices (planar and out-of-plane) are identified. Planar (out-of-plane) vortices are stable

below (above) a critical anisotropy. The structure of moving vortices is calculated approximately in

a continuum limit. Vortex-vortex interactions are investigated numerically. A phenomenology for

dynamic structure factors is developed based on a dilute gas of mobile vortices above the

Kosterlitz-Thouless transition. This yields a central peak scattering whose form is compared with

the results of a large-scale Monte Carlo —molecular-dynamics simulation.

I. INTRODUCTION

Two-dimensional magnetism has attracted heightened
interest in the past few years because of (i) the availability
of much improved quasi-two-dimensional ferromagnetic
and antiferromagnetic materials, including layered struc-
tures, magnetically intercalated graphite, and, most re-
cently, Cu-based high-temperature superconductors; (ii)
rapidly increasing information on spin dynamics from in-
elastic neutron scattering, particularly at low frequencies
and long wavelength; and (iii) advances in numerical
simulation capability on large lattices which can guide
and test modeling of nonlinear structures and their dy-
namics.

Classical, anisotropic Heisenberg models are importaot
for a large class of magnetic systems. Easy-plane (XY)
symmetry is especially interesting because it admits vor-
texlike spin configurations and the possibility of a topo-
logical vortex-antivortex unbinding transition, as pro-
posed by Kosterlitz and Thouless. The advances outlined
above now allow us to seriously probe the dynamics asso-
ciated with such a transition in real magnetic materials.

In this paper we consider the classical Heisenberg fer-
romagnet in two spatial dimensions and with easy-plane
exchange anisotropy,

H= —I y (S"S„"+S~S~+XS'S„'),
(m, n)

where J is a coupling constant and the summation is tak-
en over the nearest-neighbor square-lattice sites. Our
principal concern is to understand in detail the structure
and dynamics of vortex spin configurations and their sig-
natures in dynamic structure factors, S ( q, co ), as mea-
sured by inelastic neutron scattering.

In Sec. II we review existing literature and show that
continuum theory yields two types of static vortices, viz.
"planar" (in which spin components are confined to the
XY plane) and "out of plane" (in which there is a pulse-

shaped S, distribution accompanying the vortex shape in

S, and S~). In Sec. III we study these vortices via a
direct numerical simulation of the discrete system (1.1),
using Landau dynamics and Landau-Gilbert damping.
We find a critical A. (A,, ): for A, ) A,, ((k, ) the out-of-

plane (planar) vortex is stable. By studying square, tri-
angular, and hexagonal lattices, we conjecture that A,, in-

creases with lattice coordination number. The exact nu-

merical studies also support the qualitative vortex energy
dependence on A, obtained in a perturbative continuum
calculation.

Turning to vortex dynamics, an approximate analytic
calculation in the continuuin limit (Sec. IV) suggests that
asymmetric out-of-plane spin components develop for
both vortex types, with the asymmetry occurring about
the direction of vortex motion. This is confirmed by nu-
merical studies on the lattice. Preliminary numerical
studies of vortex-vortex interactions (Sec. V) reveal that
the anisotropy parameter A, is also important for the com-
petition between the attractive and/or repulsive force ex-
isting between a vortex-(anti)vortex pair and the pinning
forces due to the discreteness of the lattice. For A, ) A,„
the forces between the pair easily dominate the pinning
forces of the lattice but, for A, (A.„unless the pair separa-
tion is rather small, or A, is very near k„ the pinning
forces of the lattice are predominant.

Finally, in Sec. VI we consider a phenomenology based
on a dilute gas of mobile vortices to calculate S(q, co)

above the Kosterlitz- Thouless transition temperature.
This suggests an intrinsic "central peak" component (i.e.,
spectral weight at co-0). In particular, we note that the
correlation of S, spin components [S„(q,to)] is very sen-

sitive to the vortex shape. Thus the velocity dependence
of the shape noted above has a direct inAuence. We com-

pare our predictions with numerical simulations on a
100X 100 square lattice using a combined Monte
Carlo —molecular-dynamics technique, and discuss the
relevance of dynamic vortices to the observed central
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peak structure. Section VII contains a summary and
concluding remarks.

II. EQUATIONS OF MOTION AND STATIC
SOLUTIQNS

S„=S(cosO„cos@„,cosO„sin4&„, sinO„ ) . (2.1)

In a continuum approximation, Hamiltonian (1.1) can be
written as

JS 2
H= fd r [1—5(1—m )]

™
2 (1—m)

The Hamiltonian given by (1.1) reduces to the well-
known isotropic Heisenberg and XY models for X=1
and 0, respectively. The classical spin vector,
S„=tS„",S~,S„'), can be specified by two angles of rota-
tion O„and 4„,

as a planar vortex. The energy of a single planar vortex

F~ =~JS in(R, /r, ), (2.7)

has the well-known logarithmic dependence on R„ the
size of the system. r, is a constant of the order of a lat-
tice spacing and corresponds to a cutoff for the radial in-
tegration.

Another particular static solution of Eqs. (2.5) (for the
two-dimensional case) has been obtained by other au-
thors ' by noticing that taking (2.6b) for 4 one can ob-
tain a static solution of (2.5a) by requiring m to be a func-
tion of the radial polar coordinate, i.e., m =m(r). The
explicit expression for m (r) should be obtained from the
remaining equation (2.5b). Analytical (instantons) solu-
tions for the isotropic Heisenberg model (A, = 1) have
been obtained by Belavin and Polyakov and also by
Trimper. Unfortunately, Eq. (2.5b) cannot be solved
analytically for general A, . However, for the conditions

where

+(1—m )(V4) +45m (2.2)

(2.3)

+S for r=0,
m(r)= '0

asymptotic solutions can be given as

(2.8)

and m = sinO. The variables m and @constitute a pair of
canonically conjugate variables, which means that

(2.4)

t

mout

a r
pS 1—

2E'

1/2

cS
r

for r~0,

exp(r/r„) for r ~ oo,

(2.9a)

(2.9b)

where A is the Hamiltonian density in (2.2).
The equations of motion obeyed by m and 4 can be ob-

tained by using (2.4)
where p =+1 depending on the sign of m, „, at the origin,
and r„ is defined by

1 Bm 2=(1—m )b,4—2mVm V4,JS Bt

1 8@
JS Bt

(2.5a)
1

r, =—
2 1 —

A,

1/2

(2.10)

+m [45—(V@) ]— 2 z (Vm )
(1—m )

(2.5b)

These equations agree with the ones obtained by Takeno
and Homma' after an appropriate change of variables is
performed. Those authors presented a general theory to
derive a classical spin system from the original quantum
Hamiltonian for generalized Heisenberg models. Howev-
er, only the one-dimensional case was studied in detail.

We are mainly interested in studying nonlinear excita-
tions in this two-dimensional system and we will start our
discussion by considering static solutions to Eqs. (2.5).
Later in this paper, we will study the small distortions
suffered by these objects due to their motion.

It can readily be seen that the set of expressions

and is interpreted as being the "radius" of the vortex
core. a and c are constants that can be fitted by matching
the asymptotic solutions (2.9). (If we match at r =r„we
obtain a = ere /5 and c =3'�/10.) Equations (2.9) were ob-
tained for q =+1 since this is the case of main interest.
We will refer to this solution as the out-of-plane vortex.

The asymptotic solutions obtained by Takeno and
Homma are of similar form although there are some
differences between their expressions and ours, partially
because they included an external field applied along the
z axis. Hikami and Tsuneto arrived at slightly different
vortexlike solutions because they neglected the contribu-
tion of a term 6sinOcosOVO in their continuum Hamil-
tonian. Expressions identical to those in Eqs. (2.9) were
obtained by Nikiforov and Sonin for the Hamiltonian

m =0, (2.6a) H= —J g (S S„+S~S„+S'S„')—5J g (S' ), (2.11)

@ =q tan '(y/x), q=+1, +2, . . . (2.6b)

corresponds to a particular solution to Eqs. (2.5). The
condition expressed by (2.6a) requires S„'=0, in which
case Hamiltonian (1.1) reduces to the planar model and
(2.6b) describes the usual vortex of the Kosterlitz-
Thouless theory. Hereafter, we will refer to this solution

m, n

i.e., with local instead of exchange anisotropy. For this
model, the vortex radius is r„=1/(25)' . Hamiltonians
(1.1) and (2.11) become equivalent for A, ~l, 5~0, and,
in this limit, r, and r, diverge. The difference between
these two models becomes greater in the opposite limit,
A, ~O and 5~ 1. In particular, we have r, =0 and
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r, = 1/&2 for A, =0 and 5= 1, respectively.
If we insert A, =O into (2.5), we do not obtain a decay-

ing solution as in Eq. (2.9b). Thus the only meaning-
ful static vortex solution is the planar one —which is
in agreement with our vortex radius definition

[r, (A, =O)=0]. It should be stressed that r, is less than
one lattice spacing for an appreciable range of A, (r„& 1

for A, & 0.8). This leads us to consider whether the
discrete nature of the lattice introduces eA'ects that invali-
date a continuum approach. Numerical simulation stud-
ies on a discrete lattice have been performed (Sec. III) in
order to obtain information about the behavior of vortex
solutions as functions of A, . In particular, we have deter-
mined the ranges of X for which the static planar and
out-of-plane vortex solutions are stable.

The energy of a single out-of-plane vortex E,„, is calcu-
lated in the Appendix. We find that, for A, &(0.8, E,„, is
higher than E and increases with A, . This X dependence
of E,„, is in agreement with our simulation results,
presented in Sec. III.

III. SINGLE-VORTEX SIMULATIONS

totic solutions at r =r, (Sec. II).
The stability of the planar vortex for small A,

(A, «0.80) can be established analytically by considering
small perturbations, (N&, m& ), to the static vortex

(@~,m~ ). We use the ansatz

@=+&++&,' m =m +m&

r j j j /8/w~~~~~~~ggg y y

t t t t t1t

In order to clarify the behavior of the two static vortex
solutions identified in Sec. II as functions of the anisotro-

py k and the location of the vortex center on the lattice,
simulation studies were performed on a 40X40 square
lattice. The discrete equations of motion used in the nu-
merical simulations are

X = 0.80

S, =S, XF, —eS; X(S;XF;),
F, =Jg (S;x+S~y+ AS;z) .

fJ

(3.1)

(3.2)

The sum on j only runs over the nearest neighbors of i.
The parameter e is the strength of a Landau-Gilbert
damping, which was included for testing vortex stability
and for damping out spin waves generated from nonideal
initial conditions. Neumann or free boundary conditions
were used for simulating single vortices. The equations
for the xyz spin components were integrated using a
fourth-order Runge-Kutta scheme with a time step of
0.04 (in time unit fi/JS). Conservation of energy and
spin length (to about 1 part in 10 ) served as checks of
numerical accuracy.

The first set of simulations used a single planar vortex
in a unit cell of the lattice as the initial condition. The
equations of motion were integrated for several hundred
time units, using 'a damping strength a=0. 1 for 0 ~ A, ~ 1.
We observe that for all A, &(0.72+0.01), the planar vor-
tex remains as the stable configuration; a bell-shaped
out-of-plane spin component centered at the vortex
center is seen to develop only for I, )0.72. Figures l(a),
and 1(b) show the stationary long-time configuration ob-
tained for X=O. 80 and 0.90. They agree rather well with
the asymptotic expressions given by (2.9). The radius of
the area where m difFers appreciably from zero ——3 lat-
tice sites for X=0.80 [r, (A. =O. 80)= 1] and -4.5 for 0.90
[r, (A, =0.90)=1.5]—increases with A, in the same way
that r, does. Fitting Eqs. (2.9) to the resulting out-of-
plane structure, we obtain a =0.39~ and c =0.65m. which
are close to the values we find when matching the asymp-

r jjj»&~
~rrrrj~~~--
ttrrt tr»- »»
tt t tttt~~~~~~j]k&&&&
~&S~ «« --~ggCCli~~

&/kC/CI~Xt~«&~ -- ~~~a/l l C

C
p p p

4 4

A7/7(P

X, = 0.90

FIG. 1. Single vortex for {a) A, =0.80 and {b) X=0.90 after in-

tegration time for 400 time units starting from a planar vortex
{0=0).The arrows (inside the upper square) represent the spins
projected on the xy plane. The out-of-plane angles 0 are shown
in the lower square. The lengths of the lines are proportional to
0; the angles from the horizontal axis are 0.
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in the Hamiltonian (2.2) obtaining

5H =H(N, m ) H—(@~,m~ )
P

R

=ADJS

J r dr A,(Vm, ) +m~i 45—

+(V&&, ) (3.4)

The first and third terms in the integrand of (3.4) are al-
ways positive but the second term is positive only if
r) ro, where ro=1/ 25. For 0~A, ~3/4, ro is inside
the vortex core and integration from r =r, to R, always
yields 5H )0, i.e., the planar vortex is stable here.

Another set of single-vortex simulations was performed
using a static out-of-plane vortex as initial condition.
The initial configuration was specified by Eq. (2.6b) for 4&

and Eq. (A3) for m (only the first two coefficients, a, and
az, were taken). We find that the initial out-of-plane vor-
tex relaxes to a planar one for A, ~0.72. Again, only for
k)0.72 does the out-of-plane vortex stay as a stable
configuration.

Complementary simulations were performed using tri-
angular and hexagonal lattices. Similar behaviors were
found: viz. , there is a "critical" value A,, above which the
static out-of-plane vortex solution is the stable con-
figuration; for A, (i,„the stable configuration is the pla-
nar vortex. The static limit of the equations of motion
derived for these nonsquare lattices leads to asymptotic
solutions identical to the ones given by Eqs. (2.6) and
(2.9)—this result could be expected since these equations
are obtained in a continuum theory. Our numerical
simulations give A, =0.62 for the triangular lattice and
A,, =0.86 for the hexagonal lattice. This suggests that the
static planar vortex stability decreases with increasing
coordination number.

A fourth set of single-vortex simulations using an out-

of plane vortex as initial condition but considering
di6'erent positions of the vortex center was performed to
give insight into how the energy of this vortex depends on
the location of its center —relevant for vortex dynamics.
Three positions in a square lattice were considered: (a) at
the center of a square formed by four neighbors; (b) at the
center of a line joining two nearest neighbors; and (c) at
one of the lattice sites. For small A, , the total energy is
difFerent for each of the cases, being lowest for case (a)
and highest for (c). As A, increases the differences be-
tween these energies decrease, and for A, =0.7 all these
energies are close to each other. The A, dependence of the
energy can also be extracted from these simulations and
agrees qualitatively with the behavior predicted by the
calculations given in the Appendix.

IV. SINGLE MOVING VORTICES

e=e,+e, , m=m, +m, , (4.1)

where (@O,mo) denote the static solutions given by Eqs.
(2.6) and (2.9) and (4i, m

~
) are the distortions (assumed

small) due to the vortex motion. Inserting (4.1) into (2.5),
we obtain

Above the Kosterlitz-Thouless transition temperature
the system is in a disordered phase characterized by un-
bound vortices interacting with each other. Equations of
motion for single-moving vortices were derived by
Huber and Nikiforov and Sonin. In this section we will
study the distortion su6'ered by the static vortex solutions
given in Sec. III due to their motion. The procedure
chosen is the one adopted in Ref. 6 for Hamiltonian
(2.11). We will also be interested in obtaining the energy
of these moving vortices as a function of their velocity U.

We use an ansatz similar to the one given by Eqs. (2.2)
writing

v V+o
JS

Am)

(1—mo)

2mobmo 4mo(Vmo) (Vmo)
, , —[45—(V@ )']+,+, , +2 V4 V4,

(1—mo) (1—mo) (1—mo)

2mo+ Vm -Vm, ,
(1—mo)

v.Vmo

JS
= (1—m 0 )b @,—2moVmo Vm, —2moVm, VC&0,

(4.2a)

(4.2b)

after linearizing in m „@iand also in v. In Eqs. (4.2) we
have used

v'cy

JSr
= —Xaam &p+m &p 4$

r 2
(4.4a)

Bm= —v V4 = —v. Vm
Bt

(4.3) 0=6+ip, (4.4b)

for a steady-state vortex motion with velocity v.
It is clear from Eqs. (2.5) that a moving vortex cannot

be confined to the XY plane. The moving structure must
develop some out-of-plane spin component. Using Eqs.
(2.6) into (4.2) we have

where e& is the unit vector for the P coordinate. A par-
ticular solution of Eq. (4.4b) is given by @,p =0 and the
asymptotic behavior of m&z can be obtained from Eq.
(4.4a),
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v e&

JS " U

JS r sin(P —a), r~0

1 u sin(P —a)
45JS r 45JS r

(4.5a)

(4.5b)

a U
2

m~op= — r sin(P —a), (4.7a)

@lop p r cos(f a) (4.7b)

by substituting Eqs. (2.6b) and (2.9) into Eqs. (4.2). We
obtain

where a is the angle between the direction of the velocity
v and the x axis. We notice that the moving vortex does
not possess the circular symmetry exhibited by the static
vortex since it depends on the polar coordinate P and is
symmetric about the v direction. This symmetry could
be expected if we want the profile to define a distinct
direction for the velocity and is confirmed by our vortex-
antivortex pair simulation (Sec. V). We note that Eq.
(4.4a) can be solved exactly in the A. =0 limit leading to

u r sin(P —a)
m ip—JS 45&' —1

(4.6)

which has the asymptotic behavior predicted by Eqs.
(4.5). The above equation is an exact solution to (4.4a)
only for 6= 1 but we can expect that it is a good approxi-
mation for 5=1. Equation (1.6) has a singularity (and
changes sign) at r"=( I I45)'~ which for 5= 1 is less than
a lattice constant away from the vortex center. It is
reasonable to assume that keeping the neglected non-
linear terms would suppress the divergence and force
m, z to cross zero near r to justify the assumption of
small spatial derivatives. The reliability of our asymptot-
ic r~O solution is questionable but this will not affect
our calculations because this solution will be used only in
a negligible regime [0&r &r, and r, &1 for k&0. 8].
Also, we will be interested in correlation functions for
small q only (Sec. VI) where the asymptotic r ~ oo solu-
tion is sufficient. Nevertheless, this question will be prop-
erly handled using a numerical simulation (Sec. V).

Asymptotic expressions for the small corrections to the
out-of-plane vortex due to its motion can be determined

I

for r~O and

u sin(P —a)
&QP 46JS

3/2 —r /r,curU e "u cos(p —a)
lop 1/2

(4.7c)

(4.7d)

'lTU

EMp =Ep+ ln(R, Ir, ),85J (4.8)

which is valid only in the low-velocity regime. Accord-
ing to Eq. (4.8), the energy of this moving planar vortex
EMp increases with its velocity.

The energy of a moving out-of-plane vortex, i.e., the
one specified by Eqs. (2.9), (4.1), and (4.7), is calculated by
the same procedure. Keeping terms up to second order
in m, op and N, op, we obtain from Eq. (2.3)

for r~ ~. As before, the out-of-plane component m is
asymmetric about the direction of motion but now this
asymmetry is a small correction to be added to the core
shape given by Eq. (2.9a), while in the previous case, Eq.
(4.5) corresponds to the predicted shape for the out-of-
plane component of a vortex moving with small veloci-
ties. The motion also destroys the circular symmetry of
the in-plane component. If the procedure we have adopt-
ed is a good approximation, the vortex radius will not be
strongly affected by the motion.

The energy of the moving vortex given by Eqs. (4.5)
can be evaluated using Hamiltonian (2.3). For small A. ,
we can use Eq. (4.5b) and expand the integrand in Eq.
(2.3) obtaining

Jg~ ( Vm ~op )
MQP +out + d r

(1 —mo)
5(Vm ~op ) +( 1 m o )( VC ~op) + 45 m &opr

(Vmo) Vmo'Vm &op

(1 —mo) (1—mo)
JQP 4mo 2 2

m ]Qp 4mom &Op VC 0 VC ]Qp (4.9)

where mo is the static out-of-plane vortex solution. The terms in first order in m&QP and NiQP are not shown in Eq.
(4.9) because they give zero contribution to the energy. Here we will be interested in A, )A, The calculation is straight-
forward and gives

~U 1 3Q 1
U

2 2

EMop=E, „,+ ln(R, Ir, )+ r, +
4J 25 ' ' e2 ' 2

2a 41 39k 5r„
2 (4.10)

where the logarithmic term is clearly the dominant one.
Thus, the energy of a moving out-of-plane vortex in-
creases with the velocity in essentially the same way as
the energy of a moving planar vortex.

V. VQRTEX-ANTIVQRTKX PAIR SIMULATB3N

In thermodynamic equilibrium a given vortex (or an-
tivortex) will be infiuenced by neighboring vortices, and

I

the idealized simulations of isolated vortices in Sec. III
are oversimplified. %'e can make an attempt to under-
stand vortex-vortex or vortex-antivortex interactions by
simulations of isolated pairs (either vortex-antivortex or
vortex-vortex). Here we report on vortex-antivortex
simulations. The results of these simulations may give in-
sight into how the interactions lead to corrections to
ideal gas phenomenologies. In particular, vortex pair
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simulations provide an opportunity for observing attrac-
tive forces and, additionally, forces transverse to the line
connecting the centers of the pair. Such a transverse
force has been suggested by Huber [Eq. (2.2) of Ref. 7].
These simulations also can indicate how the stability of a
planar or out-of-plane vortex might be affected by the
fields of neighboring vortices. Finally, we note that this
is an attempt to generate out-of-plane vortex profiles due
to the motion. These profiles can be fitted to analytic ex-
pressions for moving vortices, such as those derived in
Sec. IV.

We consider simulations where the initial condition is a
planar vortex-planar antivortex pair, separated by a dis-
tance ro between their centers

y= tan '
x+ro/2

—tan ' (5.1)
x —ro /2

A square lattice of side R =100 with periodic-boundary
conditions was used. For a large initial separation,
ro =R /2, the equations of motion with damping strength
a=0. 1, were integrated out to time t =400 units. (The
damping produces a slowing down of the motion and
leads, eventually, to annihilation of the vortex pair. ) We
find that the behavior of the solutions depends on wheth-
er k ~ 0.8 or A, ~ 0.7. In either case, there is an initial re-
laxation of the configuration on the boundaries because
the initial condition used involved an expression for a
pair in an infinite system, which necessarily was spatially
truncated to fit on a finite system. During this initial
boundary adjustment period of about 10 time units, the
total system energy decreases because of the damping,
while the configuration reorganizes slightly to adapt itself
to the finite system size. During this short-time relaxa-
tion, the pair remains planar, so that near t = 10 we have
a configuration for a planar pair confined in a finite sys-
tern. The longer times of the simulation can be -thought
of as testing the stability of this confined planar pair.

We found that for A, ~0.7 the final configuration at
t =400 units is essentially unchanged from the "initial'*
(planar pair in the finite system) configuration at t =10.
The pair remains planar and neither vortex develops any
velocity. The configuration was determined to be stable
by the fact that the energy had become independent of
time. It is probable that there is a weak long-range at-
tractive force between vortex and antivortex (force decay-
ing as 1/r for the XF model) that can be canceled out by
pinning forces due to the discreteness of the lattice. We
note that for much smaller initial separations, and
A, =0.7, it is possible for out-of-plane components and ve-
locities to develop (see below).

On the other hand, for A, ~0.8, out-of-plane spin com-
ponents develop, even for large initial separations, and
the vortex and antivortex both develop velocity. In the
time interval 10&t &100 (Fig. 2), the out-of-plane spin
components have an (anti)symmetry about the line con-
necting the vortex and antivortex; the z components for
both vortex and antivortex are positive on one side of the
line and negative on the other side. This sort of
configuration is consistent with expectations for moving
planar vortices as discussed in Sec. IV. The vortex and

r r r r ~ ~ ~ ~~ ~~ e

r rrrrr~~~~~4r r r ~~ «~ e

y y y y y y y y r ~e- o- & W 5 % % W W X % W

y g g y y y y reer

psych

%aa

~/~~ii~~~~~r
( g ~ g y

~ ~~ & & t 't f K 'E

t

f $ ) q y ~ ~ ~ + l P t

j / l j ] ) g y q ~ ~~+ + ~ P ]
~~mr) fttt$&~

f
l l J $

- "r ~t tf&~~~

~~/i/i ~4~~ rett )

'h h % % h % h
y y g. r rrrrr~~~~~~~W%%W

rm~e-~~~~~~~~ ~~ ~ ~~l

re ~e ~~o-e

FIG. 2. Vortex-antivortex pair motion for A, =0.8 at t =70
starting from a planar pair [Eq. (5.1)] at t =0. Black and white

arrows denote positive and negative out-of-plane spin com-
ponent. Note the dependence of 0 on the azimuthal coordinate
for each vortex. Only a segment of the 100X 100 lattice simulat-

ed is shown. The initial separation was 25 lattice units.

antivortex move toward each other, and at the same time
they develop equal velocity components transverse to the
line joining their centers. In terms of q&, a unit velocity
vector with only a z component, whose direction is given
by a right-hand rule, the direction of the transverse veloc-
ity unit vector v„can be given by

v„=(r,2Xqi)p, . (5.2)

Subscripts 1 and 2 refer to the vortex and antivortex, re-
spectively, and r, 2 is a unit vector from particle 1 to 2. p;
was defined in Eq. (2.9a). (This direction is consistent
with the prediction by Huber. The equation is also valid
with the interchange of subscripts 1 and 2; rz&

= —r, 2 and
qz= —qi, with v2, =v„). For intermediate times t ) 100,
the particles develop much larger out-of-plane profiles,
similar to those found above in the single-vortex simula-
tion. In this case, however, we expect that the profiles
are not rotationally symmetric (Gaussian shaped), since
some spatial asymmetry is necessary in order for the
profile to define a specific velocity direction, as discussed
in Sec. IV. A small asymmetric part exists in addition to
a larger symmetric part; asymmetry is not obvious in our
results, and would be diScult to measure due to large lat-
tice discreteness effects. Estimates of the vortex radius
for these moving (and interacting) vortices are compara-
ble to those found in the single-vortex simulations. Final-
ly, at larger times, the particles continue to move toward
each other, the total energy continually decreases, and
eventually, annihilation occurs.

For A, =O. 7, we considered how the initial separation of
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FIG. 3. Vortex-antivortex pair for X=0.7 at t =15, starting
from a planar pair at t =0 (0=0). The initial separation was 10
lattice units. Upper and lower squares as explained in Fig. 1.

screened by the remaining vortex-antivortex bound pairs.
Using that model one can calculate the vortex contribu-
tions for the wave vector and frequency dependence of
in-plane, S, (q, o3), and out-of-plane, S„(q,o3), dynamic
structure functions.

The in-plane and out-of-plane correlations must be
carefully distinguished: the in-plane correlations are
globally sensitive to the presence of vortices while the
out-of-plane correlation function is sensitive to the vortex
shape and size. It is clear from the previous sections
that, for the XY model, the correlations of the out-of-
plane spin movements must derive from moving planar
vortices which have nonzero out-of-plane spin com-
ponents. The previous phenomenology used only the
out-of-plane vortices but, as discussed earlier, out-of-
plane vortices are unstable for the XY model and also for
the anisotropic Heisenberg model with k 0.72. In this
section, we calculate the out-of-plane correlation func-
tion, S„(q,co), taking into account moving planar vor-
tices. The modifications due to vortex motion affect only
the vortex shape and size. The in-plane correlation func-
tion is not sensitive to these features and, for S„„(q,o3),
the results given in Ref. 8 will not be changed.

The procedure is the same as in Ref. 8. The spatial
Fourier transform of the out-of-plane correlation func-
tion is given by

S n
S„(q,t)= f d U P(v)[f(q, v)] e

(2@i)
(6.1)

the pair would inAuence the apparent stability of planar
pair configurations seen above. We found that with ini-
tial separations 4 & ro + 10 (Fig. 3), the pair acquired
equal and opposite velocities and quickly annihilated.
The out-of-plane spin components were (anti)symmetric
about the line connecting the particles' centers, being
positive on one side and negative on the other side (as
found above for 10&t &100 with A, +0.8). The time in-
tervals until annihilation were approximately 6, 10, 16,
and 25 time units for initial separations of 4, 6, 8, and 10
lattice units, respectively. For an initial separation of 12
lattice units, the pair also acquired velocities, which be-
came appreciable only after 200 time units, but the
motion was not rectilinear. Instead, the pair acquired an
orbital motion, moving through less than half a revolu-
tion in 100 time units before annihilating. Also, the out-
of-plane spin components were more like those of an
out-of-plane vortex as in Sec. IV. These results suggest
that at small separations, the attractive forces between
the pair can overcome the pinning forces due to the lat-
tice, and there is a well-defined critical radius beyond
which pinning is the dominant force.

VI. DYNAMIC FORM FACTOR
FOR THE OUT-OF-PLANE CORRELATION FUNCTION

A phenomenological model has been proposed by some
of us to explain the dynamic properties of spin vortices
in two-dimensional easy-plane ferromagnets. This phe-
nomenology assumed an ideal, dilute gas of free vortices
above the Kosterlitz-Thouless transition temperature
moving in the presence of renormalized spin waves and

where n, is the density of free vortices, P(v) is the
single-vortex velocity distribution, and

f(q, v)= f d r m(r)e (6.2)

is the velocity-dependent "vortex form factor. " Any
modifications concerning the vortex shape and size will
directly affect this vortex form factor.

We know from previous sections that for k & A,, the
static configuration has no out-of-plane component,
which gives f(q)=0. However, for the moving planar
vortex, m is given by

m(r)=ug(r) sin(P —a), (6.3)

f(q, v ) =i 2vru sina f rg (r)J& (qr )dr . (6.4)

For small q, it is a good approximation to use g (r)-(45JSr )
' and we obtain

and

f(q, v)=i —, A, &A,,. musino: 1

26JS q
' (6.5)

(q )
— U U —[co l(vq) ]

32(5J )2 ~1/2q 3 (6.6)

where U is the root-mean-square velocity. S„(q,co) exhib-
its a Gaussian central peak with width, I, =Uq. The in-
tegrated intensity is

where g (r) is some radial function whose asymptotic be-
havior is known (Eqs. (4.5). Inserting Eq. (6.3) into Eq.
(6.2) we obtain
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n —2

I,(q) =
325'J' (6.7)

xY{z =o)
The integrated intensity, as well as the form factor,
diverge when q~O. This divergence occurs because we
have been considering infinitely extended isolated vor-
tices [Eq. (6.3)]. The actual radius of a vortex is limited
by the presence of other vortices and therefore must be of
the order of the correlation length g. This can be taken
into account by the inclusion of a cutoff function such as
exp[ Fr/—g], in the integrand of Eq. (6.4), with e=O(1).
Proceeding in this way we remove the q=O divergence,
obtaining

f(q v)=f(q v)X(q»

I,(q) =I,(q)y'(q),

where

(6.8a)

(6.8b)

(6.9)

In order to compare with the autocorrelation function
of Huber we integrated over q

mn, u
—2

JI,(q)d q=
2 ln(gg/a) .

16/2J2 (6.10)

il depends on the cutoff, e.g. , g=vr/4e using (6.8b) for
0 ~ q ~ ~/a, or il = 1 if we simply restrict (6.7) to
vr/g ~ q ~ ~/a.

Equation (1.12) of Huber for the autocorrelation func-
tion reads in our notation

0 0.1 0.5

qa/H

mn,
(S„'(&)S„'(0))=

2 z (v(t) v(0)) ln(L/a), (6.11)
166 J

where a cutoff at L (size of the system} was made. Huber
calculated (v(t) v(0) ) assuming a diQusiue rather than a
ballistic motion of the vortices. Therefore the freqjuency
dependence of the Fourier transform (footnote 28 of Ref.
7) is different from that of our central peak in (6.6). How-
ever, the integrated intensity is independent of the kind
of motion and can be compared directly with our result.
In fact, (6.11) for t =0 is identical to (6.10), apart from
the logarithmic term because of the different cutoff.

For A. ) I,„the main contribution to the form factor
comes from the stable static out-of-plane vortex struc-
ture. The expressions for f(q), S„(q,co), and I,(q) are
then those given in Ref. 8. However, the expression for
the uortex radius must be replaced by our Eq. (2.10).

Now we compare the predictions of this theory with
the results of our Monte Carlo —molecular-dynamics
(MC —MD) simulations for the XY model. The simula-
tions used a 100X 100 square lattice with periodic-
boundary conditions, allowing access to q ~0.02(~/a).
First, an MC algorithm of 10 steps per spin was used to
produce three equilibrium configurations at a desired
temperature. These were used as initial conditions for
MD using fourth-order Runge-Kutta time integration
with time step 0.04, sampling time b, t =N, (0.04), with

X, =4 or 8 depending on the wave vector of interest. A
Gaussian window function was applied to S(q, co) before
using a fast-Fourier transform (FFT) algorithm for the

FIG. 4. Width of the central peak in S„{q,u) for T=1.0.
Data points and error bars result from estimating I, from
MC —MD data. The solid line represents I,= uq {using u =1.6)
from the Gaussian {6.6).

n, -(2g) (6.12)

and the values for g and U were taken from fittings per-
formed in Ref. 8. We remark that the orders of magni-
tude for I, agree well with our predictions for both tem-
peratures. However, other processes can also contribute
to the central peak. Likely candidates are multi-spin-
wave processes and other effects due to vortex-vortex and

Fourier transform. S(q, co) was averaged over the three
initial conditions.

The simulation data show a central peak for tempera-
tures above T, -0.8JS . We cannot unequivocally de-
cide whether it has a Gaussian structure but we can esti-
mate upper bounds for its width I, and intensity I, and
compare those to our predictions. The half-width q
dependence, I,=Uq, is very well supported by our
MC —MD data (Fig. 4). Figure 5 gives the integrated in-
tensity I, (q) as extracted from our data. The dashed line
corresponds to Eq. (6.7) and the solid line to Eq. (6.8b)
where we used @=0.28. In order to estimate the free vor-
tex density we used
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other processes must be taken into account if one wants
to improve the description. Due to the local nature of S„
correlations, we can expect that multimagnon processes
and vortex-magnon interactions also give appreciable
contributions to the central peak. These features have
been studied by us and will be reported in future publica-
tions. On the other hand, in-plane correlations are glo-
bally sensitive to the presence of vortices and we believe
that the main contribution is properly given (at least for
A, & A, , ) by the phenomenological treatment of Ref. 8.
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APPENDIX

ay +di" ' ' y —+0,
yU

' 1/2 n

(A2)

yU

Vl =C
r

—r/r
e

oo yv1+ ga„ r
y~ 0O (A3)

where

We will estimate the energy of a single out-of-plane
vortex by using the continuum version of our Hamiltoni-
an, Eq. (2.2). We split the integral into two contribu-
tions: one from the region inside the vortex radius, the
core region, and the other from the contribution from the
rest of the system,

R,
H=mJS f &r dr+a JS f &r dr . (A 1)

0

Equations (2.9) correspond to only the first term of an
asymptotic expansion and, in evaluating Eq. (A 1), it is
necessary to take into account higher-order terms so that
we can find the order (1/r ) of the second term in the in-
tegrand of Eq. (2.2). One can easily verify that the ex-
pressions

and

4+1,
8A,

(A7)

We have replaced r, by r, [as in (2.7)] in the lower limit
of the integral. For A, (0.8, the best tractable truncation
in (A3) keeps only the coe%cients up to a3. (The result-
ing expansion will be valid for 0.01 &0.71.) The calcula-
tion is straightforward and yields

—2r /r
EQp =Ep+7TJS c y, e

X —— (32+322K,+153k, )
yU 4' (AS)

so tl)at the energy Eop increases with k and is higher
than Ep, the planar vortex energy.

For A, )0.8 the best truncation in (A3) includes only
the o., and a2 coe5cients. Here the energy of the out-of-
plane vortex is given by

2 2

Eop =Ep —
m JS ln(r/r, )+ (4—A )

— 25+ r2
2 y

constitute asymptotic solutions of the equations of
motion, Eqs. (2.5). The expansion (A3) does not con-
verge, the optimal number of terms depends on y and on
the A, parameter. In the denominator of each term of Eq.
(A3) we have [A(1 —

A, )]" and the expansion diverges in
both limits, X~O and I,—+l. (For A, =O, we have m =0
due to r,' multiplying the whole expansion. ) The op-
timal number of terms is obtained at the minimum which
is approximately situated where two successive terms
have the same magnitude.

For A, &0.8, we can assume that m, as well as its
derivatives, are small through the whole region of in-
tegration so that the integrand in (2.3) can be expanded
as

R,
Eop=~JS f r dr[A(Vm) +45m +(VN) (1—I )] .

a+ (1—35),
12r,

(A4)

2 4 (A9)

4+(2n —1) A,

n n —1 (A5)
EQp is lower than Ep and decreases as A, increases.
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