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We present computer-simulation results for the trapping rate (rate constant) k associated with
diffusion-controlled reactions among identical, static spherical traps distributed with an arbitrary
degree of impenetrability using a Pearson random-walk algorithm. We specifically consider the
penetrab1e-concentric-shell model in which each trap of diameter 0 is composed of a mutually
impenetrable core of diameter A,a., encompassed by a perfectly penetrable she11 of thickness
(1—

A, )o /2: A, =O corresponding to randomly centered or "fully penetrable" traps and X=1 corre-
sponding to totally impenetrable traps. Trapping rates are calculated accurately from the random
walk algorithm at the extreme limits of A, (A, =O and 1) and at an iritermediate value (A, =0.8), for a
wide range of trap densities. Our simulation procedure has a relatively fast execution time. It is
found that k increases with increasing impenetrability at fixed trap concentration. These "exact"
data are compared with previous theories for the trapping rate. Although a good approximate
theory exists for the fully-penetrable-trap case, there are no currently available theories that can
provide good estimates of the trapping rate for a moderate to high density of traps with nonzero
hard cores (X & 0).

I. INTRODUCTION

Diffusion-controlled reactions play an important role
in a host of phenomena, including migration of atoms
and defects in solids, heterogeneous catalysis, combustion
of liquid droplets, polymer chain growth kinetics, colloid
or crystal growth, precipitation, and Auorescence quench-
ing. A diffusion-controlled reaction is one in which the
time for two bodies to diffuse iri the same neighborhood is
the rate-limiting step, the reaction time being negligible
in comparison. Often one of the reaction partners is
large and may be regarded as static. Thus one considers
media composed of static traps (sinks) distributed
throughout a region containing reactive particles. The
reactant diffuses in the trap-free region but is instantly
absorbed on contact with any trap. At steady state (the
subject of this article), the rate of production of the
diffusing species is exactly compensated by its removal by
the traps. At sufticiently low trap densities, such that in-
teractions between traps can be neglected, Smolu-
chowski' derived an expression for the trapping rate (rate
constant) k for spherical traps. For arbitrary trap densi-
ty, there will be a competition between traps and the
trapping rate k will depend upon the concentration of
traps.

This paper reports computer-simulation results for the

steady-state trapping rate k of a medium containing a
random distribution of identical, static, perfectly absorb-
ing, spherical traps of radius R (which generally may
overlap one another in varying degrees) for arbitrary trap
volume fraction Pz. This is accomplished by considering
a Pearson random walk iri which the step size a is fixed
and successive directions are random and uncorrelated.
The trapping rate is simply the inverse of the average
time taken for the random walkers to get trapped, t.
Now if n denotes the mean number of steps taken by the
random walkers and n )&1, then the random walk be-
comes simple Brownian motion and we have

k = 3D$2
R2 (2)

and hence combination of Eq. (2) with the preceding re-
sults gives, for arbitrary P2, that

'2
2. E.

a (3)

nQ

6D

where D is the diffusion coeScient. For a dilute concen-
tration of spherical traps at steady state, Smoluchowski'
found
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By measuring n for a given Pz, one may compute the
trapping rate k using Eq. (3). Now, since n must be large,
then the step size a must be small compared to R in our
simulations. Accordingly, we compute k/k, for fixed $2
by varying the step size a and then extrapolating to the
a/R ~0 limit. Extrapolation is especially necessary at
high trap volume fraction $2.

Another way of computing the trapping rate is to cal-
culate the mean-square displacement r =na for the ran-
dom walkers before trapping, i.e., employ the relation

k 2R
k, yP

(4)
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FIG. l. A computer-generated realization of a distribution of
disks of radius R =o.f2 in the PCS model (Ref. 5). The disks
have an impenetrable core of diameter A,o. indicated by the
smaller, black circular region. Here A, =O. S and rtrz is about 0.3.

As a consistency check, we also compute the right-hand
side of Eq. (4) for various values of a and extrapolate to
the a /R —+0 limit.

We specifically consider a distribution of spherical
traps in the penetrable-concentric-shell (PCS) (Ref. 5)
model. In the PCS model (depicted in Fig. 1), each
sphere of radius R is composed of an impenetrable core
of radius A.R, encompassed by a perfectly penetrable con-
centric shell of thickness (1 —k)R, 0 ~ A. ~ 1. The extreme
limits k =0 and A, = 1 correspond, respectively, to the
cases of "fully penetrable" (i.e., randomly centered) and
"totally impenetrable" spheres. For A, ) 0 (i.e., for finite-
sized hard cores), the impenetrability condition alone
does not uniquely determine the distribution. One may
assume an equilibrium distribution or some nonequilibri- '

um ensemble, such as random sequential addition (RSA).
In this study, we shall compute k for an equilibrium dis-
tribution of spheres in the PCS model at X=O, 0.8, and 1

for a wide range of trap volume functions.
The PCS model is versatile in that it enables one to

vary the degree of the connectedness of the particle phase
by varying the degree of impenetrability A, . For example,
for equilibrium ensembles of fully penetrable (A, =O) and
totally impenetrable (A, =l) spheres, the particle phase
percolates (i.e., a sample-spanning cluster appears) at a

sphere volume fraction Pz of about 0.3 (Ref. 8) and 0.63
(Ref. 9), respectively. (A distribution of fully penetrable
spheres is a bicontinuous medium for 0.3 ~/&~0. 97,
where Pz=0. 97 corresponds to the point at which the
matrix phase fails to percolate. '

)

In a series of ground-breaking papers, Richards"
developed a theory to study the rate of diffusion-
controlled reactions among static, spherical traps. His
theory centered on obtaining the survival probability
$(t) which gives the probability that a random walker
which was not at a trap site at time t =0 has still not en-
countered a trap at time t. Clearly, the rate constant is
related to the survival probability by the relation

k '= St dt. (5)

Richards obtained k for two different distributions of
spherical traps: (1) fully penetrable spheres' and (2) to-
tally impenetrable spheres. ' In order to test his theory,
Richards carried out Monte Carlo computer simulations
using a lattice random-walk algorithm [in conjunction
with Eq. (I)] for fully penetrable spheres' and totally
impenetrable spheres distributed according to a random
sequential addition process. ' Since Richards's main in-
terest was to confirm his theory, his simulation study was
not intended to be comprehensive in nature.

Our simulations differ from Richards's simulations' '
in several ways. First, he utilizes a lattice random-walk
algorithm, whereas we employ a "continuum" random-
walk technique, i.e., the Pearson random walk described
above. As lattice random walks are restricted to move
only along the coordinate axes directions, one would ex-
pect raw data to contain some error due to the lattice
effects. (Extrapolating the data to the a/R ~0 limit, of
course, essentially eliminates lattice effects. ) Most of
Richards's data' ' were obtained for relatively large
step sizes (up to R /a =6) and in most cases were deter-
mined without extrapolation. Our Pearson random walks
are performed for a wide range of step sizes (from
R /a =4 to R /a =60, depending upon the volume frac-
tion) and the resulting data are always extrapolated to the
a/R ~0 limit. Second, we examine the more general
PCS model, of which the fully-penetrable-sphere limit
(A, =O) is a special case. Although Richards studied to-
tally impenetrable sinks, this distribution was generated
using an RSA process which is known to be generally
quite different than the equilibrium distribution employed
in the present investigation. For example, the radial dis-
tribution function (at moderate to high densities) and the
close-packing volume fractions are known to be different
for these two distributions. ' RSA configurations are
generated by sequentially adding particles to the unit cell.
The process continues until there is no accessible space
for additional particles. The final state is known as the
"jamming limit" which is considerably smaller than the
random close-packing limit associated with equilibrium
distributions. ' The maximum volume fraction which
Richards' could obtain using RSA was Pz-0. 41, which
is much less than the accepted value Pz-0. 63+0.01 cor-
responding to random close packing. For A, =1, we re-
port the trapping rate k up to Pz=0. 6. We also examine
the intermediate case A, =0.8. Third, we compute k at
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fixed A, for a large number of volume fractions. In his
study of fully penetrable spheres, ' for example, Richards
reported k for only a single volume fraction of traps.
Fourth, we employ a GRID method' to speed up the
time required to test if a walker has been trapped.

In Sec. II, we describe our simulation procedure. In
Sec. III, we present and discuss our results for the trap-
ping rate in the PCS model. Our results are compared to
Richards's theory' ' and Torquato's' calculations of
rigorous lower bounds on the trapping rate for the ex-
treme cases of fully penetrable and totally impenetrable
spheres. In Sec. IV, we make concluding remarks.

II. SIMULATION PROCEDURE

Obtaining the trapping rate from our computer simula-
tions is a two-step process. First, one must generate real-
izations of the random medium which, in this study, are
distributions of spherical traps at volume fraction (t)2 in
the PCS model. Second, employing a Pearson random-
walk algorithm, we determine the trapping rate per reali-
zation and then average over a suSciently large number
of realizations to obtain k.

Consider each sphere to have a radius R and an inner
impenetrable core of radius A,R. Because of interparticle
overlap one cannot fix the sphere volume fraction a priori
in a simulation. ' One can fix the reduced number densi-
ty rj=p4m. R /3 (where p is the sphere number density)
and then determine the volume fraction P2.

' For the ex-
treme cases A, =O and 1, the relations between pz and, il
are simple analytical expressions: $2=i) for A, =1 and
$2=1—exp( —rl) for X=O. For intermediate A, and arbi-
trary i), the theoretical determination of Pi is nontrivial
[although the inequality $2(A, = I)) Pz(A, ) for k( 1 and
fixed i) is known to apply generally]. From a simulation
standpoint, the problem becomes nontrivial if the degree
of overlap is nonzero, i.e., 0~ A, (1. Lee and Torquato'
recently computed p2 as a function of il for fixed A, in the
two- and three-dimensional PCS model using computer-
simulation methods. Certain aspects of the Lee-Torquato
study shall be incorporated in the present investigation.
It should be mentioned that the specific surface s (interfa-
cial surface area) for totally impenetrable spheres is al-
ways greater than s for A, ( 1 at fixed $2. Accordingly, the
trapping rate is expected to increase as A, increases.

In order to generate equilibrium realizations of spheres
for fixed k and reduced number density g, we employ a
conventional Metropolis algorithm. ' Particles are ini-
tially placed, with no hard-core overlaps, on the lattice
sites of a body-centered cubic array in a cubical cell of
volume L . The cell is surrounded by periodic images of
itself. Each particle is then moved by a small distance to
a new position which was accepted or rejected according
to whether or not inner hard cores overlapped. This pro-
cess is repeated many times until equilibrium is achieved.

Our system contains 490 particles in a given cell, and
each particle is moved 200 times before sampling for
equilibrium realizations. (Compared to previous simula-
tions of related transport properties, a 490-particle sys-
tem is a very large system and was found to be sufficiently
large to ignore finite-size errors. ) Trap distributions were
sampled at intervals of 10—20 moves per particle. In or-

der to ensure that equilibrium is achieved, we determine
the pressure as a function of g for a system of particles
having diameter 2A,R. The pressures so obtained were in
very good agreement with the accurate Carnahan-
Starling equation. '

The next step involves carrying out a large number of
Pearson random walks per realization in order to com-
pute the mean number of steps n, Eq. (3), and the mean-
square trapping displacement r, Eq. (4), for fixed i) and

Random walkers are initiaHy placed at randomly
chosen points in the trap-free region. The walkers then
undergo a Pearson random walk until they encounter the
trapping region. If x represents the position vector of the
random walker and s; denotes the position of the center
of the ith neighboring particle, then the walker is con-
sidered to be trapped if

~x —s; ~

~R for i =1,2, . . . , m,

where m is the number of neighboring particles. Search-
ing for neighboring particles must be carried out
e%ciently. One can use a so-called "cell-list" method, '

i.e., divide the system volume into cubical cells, each with
sides of length 2R. One then checks for particles in the
nearest- and next-nearest cells. We found, however, that
this method required an enormous amount of computing
time, most of which was spent to check trapping for each
step of the random walk.

In order to significantly reduce computing time, we
employ the so-called GRID method employed previously
by Lee and Torquato' to measure the porosity of ran-
dom media composed of D-dimensional distributions of
spheres in the PCS model. Spherical traps are placed in a
unit cell which is tesselated into cubical pixels with a
resolution of 80 X 80X 80 (i.e., about 10 pixels per diame-
ter). We then determine whether each pixel lies entirely
in the trap or trap-free region or if it contains an edge of
the two-phase interface. Initially pixels are "unpainted"
(an integer 0 is assigned). If a pixel lies entirely in the
particle phase, it is painted (an integer 1 is assigned). If it
contains an edge of the two-phase interface, the pixel is
assigned a particle identification number which ranges
from 2 to %+ 1, where X is the total number of particles.
Pixels containing more than one particle edge are stored
in a separate table. Associated with each column of the
table are the particle identification numbers, and each
pixel is denoted by the negative of the corresponding
column numbers. Once the pixel image of the trap distri-
bution is completed, trapping of the random walkers can
readily be determined. Testing Eq. (6) is necessary only
when the random walker chooses the next step to be in a
pixel which contains the two-phase interface. Particles
that need to be checked for trapping are identified im-
mediately from the integer assigned on the pixel array.
Note that the number of such particles is also greatly re-
duced relative to the cell-list method.

When a random walker is considered trapped, the walk
is terminated and the time and distance traveled by the
walker are stored. For each step size a, reduced density
g, impenetrability index A, , and realization, we carry out
1000 random walks and average over the walks to obtain
n and r . This process is repeated for four smaller step
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0.10
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.30

1v

1V

sizes. Thus, the total number of step sizes we consider is
five. Results are then averaged over 100 realizations for
each value of g and X and, for selected t) and A, , are aver-
aged over 250 realizations. The step sizes used in our
simulations are listed in Table I.

III. RESULTS AND DISCUSSIONS

Our simulation results for k/k, were found to increase
linearly with decreasing step size. The final results re-
ported here were obtained by extrapolating to the
a /R —+0 limit. In a recent theoretical study, Ziff
showed that the trapping rate for a random walker in a
medium containing a single spherical trap is indeed linear
in the step size. Interestingly, we find the same trend for
many traps.

The trapping rates obtained from Eqs. (3) and (4) were
basically very close to each other, as expected, and the
difference ranged between 0.06 and 0.6% for all models
of trap particles. The simulation results reported here
were determined from Eq. (3). Results for the impenetra-
bility parameter A, =O, 0.8, and 1 are summarized in
Tables II, III, and IV, respectively. The data represent
averages over 100 realizations. - Values of n from realiza-
tion to realization changed very little. For selected
values of g and k, we averaged over an additional 150
realizations for a total of 250 realizations. In these in-
stances, we first obtained "batch" averages and then aver-
aged over the number of batch runs; each batch run was
are average over 50 realizations. The largest deviations
between pairs of batch runs were very small, varying be-
tween 0.02 and 1.2%. The standard deviations were also
small, e.g. , at g=0. 8 for A, =O, the scaled rate constant
k/k, was found to be 4.752+0.048; and at g=0.2 and

TABLE I. Range of scaled step sizes for each value of the re-
duced density g=4pmR /3 and impenetrability parameter: (i)
R/a =4, 5, 7, 10, and 15; (ii) R /a =5, 7, 10, 15, and 25; (iii)
R/a =7, 10, 15, 25, and 40; (iv) b/a =10, 15, 25, 40, and 60.
Here a and R are the step size and particle radius, respectively.

A, =O. 8

TABLE II. The scaled trapping rate k/k, obtained from Eq.
(3) for fully penetrable traps (A, =O) in the limit a/R ~0. Here
g and $2 are, respectively, the reduced density and the trap
volume fraction.

0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6
1 ' 8
2.0
2.3

0.181 27
0.259 18
0.329 68
0.393 47
0.451 19
0.550 67
0.632 12
0.698 81
0.753 40
0.798 10
0.834 70
0.864 66
0.89974

k/k,

2.017
2.476
2.837
3.301
3.735
4.739
5.834
6.822
8.199
9.765

11.273
13.03
16.15

TABLE III. The scaled trapping rate k/k, obtained from
Eq. (3) for X=0.8 in the PCS model (Ref. 5) in the limit
a/R ~0. Here q and Pz are, respectively, the reduced density
and the trap volume fraction. The relation between g and P, is
obtained from Ref. 15.

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.090 61
0.19844
0.295 83
0.391 51
0.484 63
0.575 22
0.659 56
0.737 55
0.812 80
0.883 95

1.;945
2.592
3.560
4.837
6.627
8.970

12.47
17.27
26.66
40.53

0.5 for A, = 1, k/k, =3.219+0.013 and k /k,= 13.89+0.19, respectively. Averages over two batch
runs (100 realizations) are seen to be within the relatively
small error bars associated with averages over five batch
runs (250 realizations), thus justifying the less-computer-
intensive calculations of averaging over 100 realizations.

Before discussing these results in more detail, we
would like to comment on the relatively small amount of
computing time required to obtain k/k, with the high
accuracy just described. Recall that each value of k/k,
reported in Tables II—IV was obtained by considering
1000 random walks per realization (consisting of 490 par-
ticles) for five difFerent step sizes, extrapolating to the
a/R ~0 limit, and finally by averaging the extrapolated
values over 100 realizations. Generally speaking, for
fixed g, the computing time increased with decreasing A. ;
the cases A, =O required between 4.5 and 9 CPU hours (on
a VAX 3200) and the instances k= 1 required between
1.5 and 6 CPU hours. Considering that our comprehen-
sive random-walk simulations employ an order of magni-
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0.10
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.10
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

2.032
3.230
3.949
4.964
6.107
7.677
9.899

13.74
18.25
23.67

tude more particles than other simulation techniques
used to compute related transport properties of random
media, ' our algorithm has a relatively fast execution
time.

Results for k/k, for fully penetrable traps are plotted
in Fig. 2 and compared with the rigorous interfacial-
surface lower bound ' computed by Torquato )6,z5 and
also with analytical calculation by Richards. ' Monte
Carlo data lie above the rigorous lower bound and are
slightly below Richards's theoretical expression given by

7l

pz[1 —v'aye~ erfc(y ) j
(7)

where y=(3g/~)' . The latter expression, which was
claimed to be an upper bound, provides a good estimate
of the trapping rate for a wide range of volume fractions:

25

TABLE IV. The scaled trapping rate k /k, obtained from Eq.
(3) for A, = 1 in the limit a /8 ~0. Here g and P2 are, respective-
ly, the reduced density and the trap volume fraction.

k/k,

the greatest deviations occurring at relatively high
volume fractions (0.6 & P2 &0.8). Note that for low trap
concentrations, Eq. (7) yields

k =1+~3&»'+
k,

(8)

where the ellipsis represents higher-order terms, which
shows the nonanalytic dependence on density first de-
scribed by Felderhof and Deutch. The latter authors ac-
tually. studied totally impenetrable traps and found

k,
= 1+v'3(t ' +2 (9)

Recall that $2 =g only for A, = 1; for A, =0,
(()2=1 ex—p( —r/). To lowest order in g, however, $2=r/,
and hence relations (8) and (9) are equivalent. As noted
in the Introduction, Richards' computed k for this mod-
el for the single volume fraction $2= —,

' and a single step
size R/a =5 using a lattice random-walk simulation
technique. Our corresponding result is considerably
higher than his result. In a subsequent paper, Richards
and Torquato presented simulation results for this
volume fraction and for (()2=0.9 by extrapolating results
for various step sizes to the R /a~0 limit. These two
data are in good agreement with our results.

Results for k/k, for impenetrable spherical traps are
plotted in Fig. 3, and compared with the interfacial-
surface lower bound ' by Torquato' and with the
theoretical prediction of Richards. ' Our simulation data
are above the rigorous lower bound for the entire range
of (()2 studied here. For $2&0.3, Richards's prediction
overestimates the trapping rate. However, for Pz) 0.3,
the data sharply increase and rise above Richards's
theory. In fact, his result violates the rigorous lower
bound for (tz-0. 5. There are two possible reasons why

20

25

20—

15—

X=1.0

(I

/

I
I

I
I

I
I

/
/

I
/

I

10

10

0
0.0 0.2 0.4 0.6 0.8 1.0 0

0.0 0.2 0.4 0.6

FIG. 2. Trapping rates for fully penetrable spherical traps
(A, =O) as a function of trap volume fraction $2. The dashed line
is a spline fit of the simulation data (solid circles). Included in
the plot is Richards's theory (Ref. 12}, and the interfacial-
surface lower bound computed by Torquato {Ref. 16).

FICr. 3. As in Fig. 2 for totally impenetrable spherical traps
(A, =1}.Included in the plot is Richards's theory (Ref. 12), and
the interfacial-surface lower bound computed by Torquato (Ref.
16).
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trapping rate at the intermediate value of the impenetra-
bility parameter X=0.8. For purposes of comparison we
have included in the figure the previously discussed re-
sults for X=O and 1. For A, =O. 8, we determined the rela- '

tionship between the reduced density g and the sphere
volume fraction Pz from the simulation results of Ref. 15.
The rate constant for A, =0.8 lies roughly between the
trapping rates for the extreme values of A, . As P2 —+0,
trap interactions become negligible and the data for al1
three cases approach, as expected. For arbitrary and
fixed $2, the trapping rate increases with increasing A, .
This is physically reasonable since the surface area avail-
able for reaction increases as A, increases for fixed P2 (see
discussion at the beginning of Sec. II).

IV. CONCLUSIONS

0
0.0 0.2 0.4 0.8 0.8 1.0

2
FIG. 4. Trapping rates for spherical traps in the penetrable-

concentric-shell model for A, =O, 0.8, and 1. Dashed lines are
spline fits of the simulation data (solid symbols).

Richards's theory breaks down at high trap concentra-
tions. First, he makes use of a second cumulant approxi-
mation to obtain his expression. One can in fact show
that going to the next (third) cumulant has the effect of
increasing k relative to Richards's result. Second, he em-
ploys a step function for the radial distribution function
g(r ), i.e., Richards employs g(r ) =0 for r (2R, and unity
otherwise. This radial distribution function is exact in
the zero-density limit. For higher densities, however,
g(r) is known to oscillate about its long-range value of
unity in a complex fashion. It can further be shown that
use of the full density-dependent g(r ) tends to decrease k
in the second cumulant approximation, so that the agree-
ment obtained by Richards for it 2 (0.3 may be somewhat
fortuitous: although for very dilute conditions,
Richards's expression agrees with relation (9). [For total-
ly impenetrable traps, we carried out simulations for
$2 ~ 0.05 (not shown) and found good agreement with Eq.
(9).] Observe that we report data for A, = 1 up to tt 2 =0.6;
a value which is near the random-close-packing limit of
Pz =0.63+0.01 (Ref. 9). Finally, we note that the
corrected effective-rnediurn theory of Cukier and Freed
significantly overestimates the trapping rate at high
volume fractions.

In Fig. 4 we plot our simulation results for the scaled

We have devised an efficient continuum random-walk
algorithm which enables us to compute the rate constant
for diffusion-controlled reactions among static, perfectly
absorbing traps. In particular, we consider an equilibri-
um ensemble of spherical traps in the PCS mode1 and find
that the trapping rate, at fixed trap density, increases
with an increase in the impenetrability parameter A, . Our
random-walk simulation technique combined with the
GRID method (to test trapping) is seen to have a relative-
ly fast execution time. Although Richards's theory pro-
vides good estimates of k for fully penetrable traps, there
are presently no available theories which accurately pre-
dict k for traps with nonzero hard cores at moderate to
high densities. In a future study, it would be of interest
to employ our simulation technique to examine the effect
of spatial dimension on k. It is recommended that simi-
lar random-walk algorithms (with some modifica-
tions) be employed to compute related transport proper-
ties of continuum models of disordered media (e.g. ,
efFective electrical conductivity, dielectric constant, etc.).

Note added in proof. We recently learned of a study by
L. H. Zheng and Y. C. Chiew [J. Chem. Phys. 90, 322
(1989)] that estimates k by simulating the Brownian
motion of a diffusing particle as we do but with a
different algorithm. Their study is less comprehensive
than the present one in that they only consider the ex-
treme limits of the PCS model and employ 50—200 parti-
cles (as opposed to 490 particles in our simulations).
Nonetheless, on the scale of our figures, mutual results
are in good agreement.
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