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The behavior of ordered quantum Heisenberg antiferromagnets is analyzed from the nonlinear cr

model in two and three dimensions. Many thermodynamic and dynamic properties are found to be
universal at low temperatures and small magnetic fields. Finite-size e6'ects are also investigated in
detail; the results should be useful for analyzing numerical work on two-dimensional (2D) quantum
antiferromagnets. The X-Y phase transition in 2D which is induced by a magnetic field is discussed.
Applications to the ordered phase of solid 'He are also given.

I. INTRODUCTION

During the past decade, two antiferromagnets have
been discovered which are both extremely isotropic and
have strong quantum fluctuations in their ground states.
In one of these systems, solid He, ' three-dimensional
(3D) nuclear antiferromagnetism occurs only below 1

mK, while in the quasi-two-dimensional LaCu204, the
characteristic temperature for the 2D magnetism is above
room temperature. ' Nevertheless, both systems consist
of S=

—,
' spins coupled by short-range exchange, and both

systems show a suppression of the staggered moment in
the ground state down to -60% of the Neel value. '

This suppression is indicative of the strong quantum Auc-
tuations. In the case of He these are enhanced by frus-
tration in the interactions which leads to a complicated
ordered state and in LaCuOz they are due to the strong
2D quantum Auctuations caused by the small number of
nearest neighbors. Because of the strong quantum Auc-
tuations, analytic calculations (e.g. , spin-wave expan-
sions) are difficult and, as evidenced by the recent flurry
of work on the 2D spin- —,

' system, ' reliable interpreta-
tion of numerical calculations can be tricky.

In this paper, we show that in any ordered quantum
antiferromagnet (which leaves one of the spin symmetries
unbroken) the leading low-temperature, small magnetic
field and finite-size corrections are uniUersaI depending
only on the dimension and the basic energy and length
scales which are set by properties of the ground state.
The results we obtain should be useful both for analyzing
experiments on solid He and for analyzing numerical
calculations on 2D quantum antiferromagnets.

The basic observation, which had already been used in
solid He, ' and has come to prominence recently in con-
nection with the copper-oxide superconductors, is that at
long wavelengths and low frequencies, the dominant Auc-
tuations in an ordered antiferromagnet are controlled by
the quantum nonlinear o. model "with imaginary-time
action

where Y is the spin-wave stiffness, y is the (transverse)
susceptibility, and P= 1/T. We have normalized the field
so that the Larmor precession frequency is H. The unit
vector n describes the direction of the local staggered
magnetization.

At T=O and H=O in dimensions d &1, the fully or-
dered antiferromagnetic fixed point is stable to small Auc-
tuations. Thus as long as the system is in an antiferro-
magnetic phase, at long length scales at H = T=O, it will
renormalize towards this fixed point. In the process, oth-
er irrelevant operators which can be added to S will re-
normalize Y and y in a nonuniversal manner as they Aow
away leaving, at long length and time scales, only the
least-irrelevant operators (i.e., 1/Y and 1/y with eigen-
value 1 —d) which appear in Eq. (1.1). The long-
wavelength low-frequency fIuctuations involve only the
final approach to the ordered fixed point and will thus be
controlled by the fully renormalized, i.e., physical values
of Y and y. All physical quantities which we will calcu-
late thus involve these, not the "bare" values. So too,
will the behavior for small T and small H, although for
any HXO, the system fiows towards the X-Y' ordered
fixed point while for T)0 in d ~ 2, it eventually fiows to
infinite temperature. Thus, care must be exercised for
T, HWO in determining which quantities are universal.

Energy, length, and time scales are set by Y, y, and A',

and, if measured in these units, many quantities will just
be universal constants.

For definiteness, we consider a hypercube of linear size
I. with periodic boundary conditions, at temperature T.
The free energy can be obtained from the partition func-
tion

Z=Tre via I'= —TlnZ .

In the limit T~0, H ~0, and L ~~, the free energy per
unit volume is just the (nonuniversal) ground-state energy
density, co. The corrections to this due to the Auctua-
tions described by Eq. (1.1) (with the cutoff —+ oo) have
the form

2

S= Jdx f dr Y(Vn) +y — inXH-
2fi o a7.

soL

T —
T T+2 =X L Tgo Hgo

A'c ' c
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where the length scale

)
1/2(d —2)

0= (1.3)

the velocity scale c is the zero-temperature spin-wave ve-
locity

c =&Y/X, (1.4)

'=Sag e'~" (1.5)

with K a universal constant. The absence of a nontrivial
power of T in Eq. (1.5) is due to the cancellation of the
two-loop term in the thermal P function with the factor
of 1/T arising from the quantum-to-thermal crossover
(see detailed discussion in Ref. 9).

In principle, Eq. (1.2) is valid for all ranges of the pa-
rameters provided all lengths are much larger than the
microscopic scale a, whose inverse gives a momentum
cutoff. However, in practice, there will always be other
irrelevant operators whose strength is characterized by
other length scales g„g2, etc., and the fiuctuations will

only be described by the nonlinear o. model, for L, T
and H ' much larger than these other scales. Since go
will typically be of order a (except near critical points),
these scales can all be of the same order. We will thus re-
strict ourselves to the behavior for asymptotically long
scales for which Eq. (1.1) will always be valid provided
the system is ordered. This yields

and we have subtracted in (1.2) the magnetic free energy
associated with the linear susceptibility.

The length go sets the scale of the nonlinearities: on
scales &go the fiuctuations will be strongly nonlinear
while on scales )go they will be approximately linear.

When T R go in d )2, the system will presumably dis-
order, although this may be accompanied by the break-
down of the nonlinear o -model representation. ' In
d =2, it will be disordered for all T with

II. INFINITE SYSTEMS

I

We first consider the thermodynamic behavior in the
limit L~ ~, where the effects of the nonlinear Auctua-
tions do not occur. In this limit the first fluctuation
correction to the free energy can be evaluated straightfor-
wardly. We expand Eq. (1.1) in spin-wave modes about
n=z with a magnetic field in the x direction. At this or-
der, the Jacobian can be ignored and we have in terms of

(n„,n~ )—, the linearized action

SL--—d"x f dr yH +yH vr—„
T

+y +Y(Vm )
at

(2.1)

the function X is obtained almost entirely from linear
fluctuations.

We will find that in the small-volume limit with
TL/Ac «1, a difFerent scaling form is needed which in-
cludes some nonlinear fluctuations. The nonlinear Auc-
tuations actually give rise to a contribution to AF/T for
TL —1, which does not scale as simply as Eq. (1.6). How-
ever the nonscaling part of this term drops out of physi-
cal observables like the energy and magnetization. In ad-
dition, logarithmic dependence on the cutoff will appear
in d =3.

The remainder of this paper is organized as follows. In
Sec. II the thermodynamic properties at low tempera-
tures and small magnetic fields are analyzed, and in Sec.
III the scaling of the transition temperature in a magnetic
field in two dimensions is discussed. Finite-size effects,
useful for the analysis of numerical calculations in two di-
mensions, are investigated in Sec. IV. In Sec. V, correc-
tions to scaling are discussed briefly and implications
drawn for analysis of numerical calculations. In Sec. VI,
the present results are related to other problems. Finally,
in Sec. VII, applications to solid He and dynamic mea-
surements are mentioned.

5F TL HL
T Ac' c

(1.6)
(dropping A"s) yielding, on integrating out the m's,

=Vf g —Iln(geo„+Yq )+1 [yn( c+oH )+Yq ]]
con

1 —,'ya'
ln ym +Yq

+co +Yq
(2.2)

where the sum over co„runs over co„=2mn /P and Vis the volume. This yields

b,f:AF/V=T f ln(l ——e ~'~)+In[1 —e ~' +' ~ ']'
q

I H(H'+ c'q')'~' cq ———
2 cq

(2.3)
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H
0

T
TL HL

lim X
I~co C

(2.4)

where

where the second term is just the change in the zero-point
energy density of the m. modes due to the field, less the
Auctuation contribution to —1/2yH . In the limit of
large L, we thus obtain the scaling function

'd
TL

where primes on o denote diC'erentiation. For T «H,
m(H, T)=m(H, T=O)+O(e ~ ), (2.9)

Td —1 o"(0),
C

(2.10)

while the zero-field susceptibility y( T)=Bm /BH
~ H =0

has a correction

o(h)= —,'o(0)+ I in[1 —e '" +~ ']'

hd+I
2 1/2+ 1+p' '"—p ———

2 p 2 p

with

(2.5a)

where

d /22o"(0)= „g(d —1)1 (d —1)
I (d /2)(2n )"

ln 8=31

12
(2.11)

—4$(d + 1)~ ~ I (d)o(0)=
I'(d /2)(2~)"

(2.5b)

For d ~ 3 the last term is divergent at large p. However,
in this regime, the dominant nonlinear magnetic energy
will be the analytic H term which has been neglected
and which involves (0 and the other irrelevant length
scales. We will not consider d ) 3 further.

For d=3, the integral in Eq. (2.5) is logarithmically
divergent yielding T=0 the energy density

4

ED(H) =
ED

—
—,y — n

1 H
1

c
32& c

(2.6)

since the cutoF will be of order $0. In 1 & d & 3, the func-
tion cr(h) is well defined and we have in d =2 the
ground-state energy density

ED(H) =
EQ

—
—,'yH—

12m.c
(2.7)

Bf T, —H
m(H, T)= = — — cr' —+yH,

BH c T (2.8)

yielding a divergent nonlinear susceptibility for d 3.
At fixed field and low temperature, we recover the usu-

al T" specific heat with two modes contributing for
H =0, but only one for HAO, the other obtaining a gap
due to the field. %'e may also evaluate the temperature-
dependent magnetization:

For d =2, cr"(h) diverges logarithmically as h —+0, this
divergence is associated with the instability of the or-
dered phase to thermal Auctuations for d ~2. If the in-
tegral over q in Eq. (2.3) is cut off by the correlation
length

g(T)-gae " ~ for d=2, (2.12)

g( T)- Y
T

' 1/2 —4

for d &2, (2.13)

then we would obtain a correction to y( T) which is of the
same order as y. This is clearly not a sensible procedure.
A reasonable guess is, however, that for 1 & d & 2, the ab-
sence of order for T &0 implies that as T~O the linear
susceptibility will be an angular average of the longitudi-
nal and transverse susceptibilities at T =0. Since
p~~(

T= )0= ,0(defined from the to, q —+0 limit of the
response function), this yields

X(T~O) =
—,'X (2.14)

for d ~2. It is not obvious how to obtain corrections to
this result, since both the "longitudinal" and "trans-
verse" parts will enter.

Returning to d &2, it is useful to note that the linear
susceptibility could also formally be obtained from the
q ~0, cu —+0 limit of the correlation function of
n XBn/B~ via

=T)im )im J d x I de nX (0, 0) n)e (x, e)e "e 'e*) .
co„~Oq~0, 0 O'T Bi

(2.15)

Td —1

Y(T)=Y z2 o "(0), —
c

(2.16)

In this way, the T" ' renormalization of g due to
thermal fluctuations [discussed above Eq. (2.10)] appears
to be a nonlinear e6'ect which has been calculated to one-
loop order, rather than a linear e6'ect. Similarly, one can
calculate the temperature dependence of the stiFness at
H =0 yielding

which, at this order, has the same relative correction as
g( T). This is due to the absence of dependence on exter-
nal momentum of the simple one-loop diagram which
determines Y( T) and y( T) and is not to be expected gen-
erally since the finite inverse temperature breaks the
I.orentz in variance which existed asymptotically at
T =0. The hydrodynamic spin-wave velocity for T &0 is
given by
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m ( T,H) m(O, H)—
T~O Td —1

(2.18)

Y( T)
(2.17)h (T)

and is thus independent of T at order T" ', but should
deviate from c ( T =0) at higher order.

Note that the temperature dependence of Y, Eq. (2.16),
is larger than that for the superAuid density in an X-Y
system, whose leading dependence is T"+'. This is a
consequence of the curvature of the order-parameter
manifold in the Heisenberg case. In the presence of a
nonzero applied field, however, the symmetry is reduced
to X-Y, and the number of low-frequency spin-wave
modes reduced from two to one. In this case, the non-
linearities of the o model vanish (as readily seen by trans-
forming to angular variables) and thus we expect that the
leading singular corrections to Y( T) and m ( T) should
also vanish.

Indeed from Eqs. (2.4)-(2.5) this is readily seen to be
the case for m (T), since the field-dependent spin-wave
contributions to bf vanish exponentially as T +0 for—
H & 0. In a field, the dominant low-temperature behavior
of m ( T) will thus not be in the scaling function Eq. (2.4)
but will be controlled by the irrelevant operators left out
of Eq. (1.1). We will then have, for HAO,

with Ci some constant. From Eq. (1.5) for g( T)
=Kgoe ~ (Ref. 9) we have,

T.=Y
C„Y

ln
H

(3.3)

IV. FINITE-SIZE EFFECTS

A detailed renormalization group calculation yields ex-
actly Eq. (3.3) with C„=C,/K a uniuersal, although
hard to calculate, constant which depends both on the
quantum-to-classical Heisenberg crossover calculated by
Chakravarty et al. (which yields K= —,') and on the
crossover from classical Heisenberg to X-F. A naive esti-
mate, using the universal value of p, (T, )/T, =2/m for
the Kosterlitz-Thouless transition, suggests that C& in
Eq. (3.2) is likely to be quite large so that a larger field
than might have been expected is needed to yield a given
T, . However, this estimate is definitely not reliable and a
detailed numerical calculation would be needed to yield
the correct constant, C . It is plausible that if C is not
too large, the antiferromagnetic transition temperature in
LaCu20~ could be raised significantly by the application
of a large field. This possibility certainly merits further
investigation.

Y( T,H ) —Y( T, O)
hm
T- 0 Td —1

(2.19)

All of the results of this and later sections can be
justified by more detailed renormalization group calcula-
tions whereby the last stage of the Aow at long-length
scales yields the long-length, low-T, low-H behavior in
terms of the fully renormalized physical values of Y and
g. The corrections which arise from irrelevant operators
are discussed in Sec. V.

We now turn to the calculation of finite-size correc-
tions to the free energy in a system of volume V. We first
consider zero temperature for which there are fewer
subtleties. A naive calculation of the zero-temperature
finite-size correction to the free energy simply includes
the change in zero-point energy of the two linear spin-
wave modes:

bE()=2f g —Vf —In(geo +Yq )
1

CO 2

III. TWO DIMENSIONS IN A MAGNETIC FIELD
1=2 g —V —cq,

q 2
(4.1)

A uniform magnetic field on a Heisenberg antifer-
romagnet acts to break the symmetry down to X-Y; i.e.,
just the rotation of the order parameter about the field.
Thus in two dimensions, we expect a Kosterlitz-Thouless
phase transition in any nonzero field, even though there
will be no transition at the symmetric Heisenberg point at
zero field. Because thermal fluctuations are marginal in
2D, the crossover from Heisenberg to X-F will be very
rapid. A simple estimate is that the transition in a field
will occur when the length scale associated with the field
is of the order of the correlation length g( T) in zero field.
The length scale associated with the field,

(4.2)

with n an integer vector.
From the d-dimensional Poisson summation formula

we have, for any well-behaved function g(q),

g —Vf g(q)= Vg g(mL),
q m&0

(4.3)

where the factor of 2 is for the two modes and the g~ is
over allowed wave vectors, i.e., for a hypercubic system
with periodic boundary conditions,

c
H ' (3.1)

where m is an integer vector, and

([T,(H)] =C, g'H, (3.2)

is just the wavelength above which the linearized spin-
wave modes will have a gap due to the field. Thus, we ex-
pect that T, (H) will be given implicitly by

g(R) = f g(q)e'~ (4.4)

is the Fourier transform of g. In d dimensions the
Fourier transform of ~q~ is
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(4.5)

where Ad=re"~ 2/I (d/2) is the surface area of a d-
dirnensional unit sphere. We thus find that for a hyper-
cubic system at T=0,

—Pic (d —1)! 1
AEO =

2d —1 d/ I (d/2)
~

~d+1
(4.6)

We can evaluate the sum numerically to yield for a
square system in d =2,

bE() = (1.438) . (4.7)

(4.8)

We will see below, that these naive, linear spin-wave
calculations do, in fact, yield the correct results for zero
temperature, although the effects of the uniform mode
(i.e., q =0) have not properly been taken into account.

A. Nonzero temperature

For a system with skewed periodic boundary condi-
tions on a hyperparallelogram with basis vectors a, ,
az, . . . , ad, Eq. (4.6) is replaced by

—Rc (d —1)! 1

2 n I (d/2) ~0 ~gm a

the scaling form for the free energy Eq. (1.6) due to the
fluctuations in regime (i).

It is useful to divide the fluctuations into uniform
(q =0) and nonuniform (q&0) components. In all of the
regimes the contribution to the fluctuations of n(x, r)
from the nonuniform thermal fluctuations will be small as
can readily be seen by calculating the linear spin-wave
contribution to

[ (0, )
—(, )~ ~ =~2(

Yyq e~'& —1
'

(4.12)

where the subscript T denotes the thermal contribution
to the Auctuations only. Since the sum in Eq. (4.12) has
no contribution from q=O, it will be small, even for

x~-L/2, provided that the contribution from other
wavelengths is not too large: this is just the condition for
not being in regime (iii). In regimes (i) and (ii) the non-
linearities in the nonuniform modes, which are controlled
by the size of the Auctuations in n, will therefore be
small. At q=O, on the other hand, the absence of
stiffness makes the linearized fluctuations divergent and
we need to treat the overall rotation of the order parame-
ter as a collective coordinate. Indeed, in regime (i) the
contribution from all the nonuniform excitations to the
thermal free energy is small because of the exponential
suppression factors.

At nonzero temperature, the behavior is rather more
subtle due to the effects of spatially uniform rotations of
the order parameter as a function of imaginary time.
There are three regimes of temperature:

(i) very low temperature,

1 cT-
~x

(ii) low temperature,

C

L

(4.9)

(4.10)

and
(iii) intermediate temperature,

T-Ygo for d )2,

T~ Y for d =2,
ln(L /go)

T& "fLd 2 for 1&d &2 .

(4.11)

Note that in one dimension, there is no regime (i) since
V ~ L. This is related to the source of the subtleties in
one dimension which cause the system to be disordered
or quasiordered and the correct long-wavelength descrip-
tion needs to include an extra topological term. ' '" For
the scaling behavior discussed in the Introduction, we are
interested in regime (ii), nevertheless, it is necessary to
analyze the behavior in regime (i) in order to obtain the
small TL/c limit of the scaling functions in regime (ii).
Indeed, we will find that there is a slight modification of

B. Regime (i): Very low temperatures

In this regime,

CT (&—,
L

and we need thus only consider the uniform notations of
the order parameter in imaginary time. The controlling
action for this is simply

'2

SU= — d~y —iNXHV e aN
0 Bw

(4.13)

&„=—,'(yV) 'S —H S, (4.14)

where we have dropped a constant term arising from the
choice of the normalization of the functional integral
which defines the partition function. The contribution of
the uniform modes to the free energy, EE„can now be
written simply by using the quantization condition that
the total spm S, and S, are both integers. This arises sim-

ply from the general structure of the eigenvalues of the
differential imaginary time transfer operator described by
Eq. (4.14), and no reference to the underlying microscop-
ic spins is needed here. ' (Note, however, that with non-
frustrating periodic boundary conditions, the total spin is

where N is a unit vector which describes the orientation
of the spatial average of the order parameter. It should
be apparent that Eq. (4.13) is just the action for a quan-
tum rotor with Harniltonian
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in any case expected to be an integer for any value of the
microscopic elementary spin. ) We thus have

AF„=—TlnZ„,

where the partition function

oo sinh[(S+ —,
' )H /T]

Z —y —s(s+ 1)I2z vT
sinh( ,'H/—T)

(4.15)

(4.16)

In zero magnetic field, the characteristic temperature
scale is simply I/gV [as claimed for regime (iii)]; this is
just the energy scale for excitation from a singlet to a
triplet state. For T))1/gV, (but still (&1/L) the sum
over S can be replaced by an integral yielding

hF„= —Tl n(2g VT) . (4.17)

(4.18)

which, if H is now formally taken to be ((T, yields the
zero-temperature transverse magnetic energy term plus a
field independent part which differs from Eq. (4.17). This
is due to the freezing of the direction of 8 perpendicular
to H in this range of fields.

Conversely, for H «( TlyV)' but still T) &I/y ,V

For T &(1/yV on the other hand, hF„= 3Te-
reflecting the correction due to the S=1 state. It is intri-
guing to note that the expression, Eq. (4.17), is a real
physical manifestation of the logarithmic size dependence
of the free energy of a classica/ Heisenberg model.

In nonzero magnetic field there are several regimes: for
H ))(T/yV)'~, the large S, and S states will dominate
for T )) I /y V yielding

hF„=— —T Inv 2nyVT + T ln(1 —e ~T),HyV

For simplicity we will restrict consideration to zero
magnetic field. As argued above, in this regime the Auc-
tuations are predominantly linear in character with the
exception of the q =0, uniform modes. It is thus
straightfoward to calculate the finite-size correction to
the free energy by combining the contributions from the

q =0 and q&0 modes, and from zero and positive tem-
peratures. The total free-energy correction is

AF =AEO+ AF„+AF~T, (4.20)

where AE0 is the finite-size correction at zero tempera-
ture calculated above, AF„ is the finite-temperature con-
tribution of the uniform modes given by Eq. (4.17), and
EF&T is the finite-temperature correction due to the non-
uniform modes. The nonuniform thermal correction to
the free energy can formally be written as

bFtvT= g Tg —I In(co +c q ),
q&0 co

(4.21)

[where we have changed from In(yen +Yq ) to
In(co +c q ) which yields two cancelling terms]. (Note
that in all expressions such as Eq. (4.21), care must be
taken with the ultraviolet cutofFs in co and q. However,
since the singular terms of interest all come from long
wavelengths and low frequencies, the detailed form of the
cutofF should not matter. A simple lattice discretization
of Eq. (1.1) with spatial lattice constant a and temporal
lattice constant 5 with a factor of ga "/2m. 6 in the func-
tional integral for each space-time lattice point yields
simple limits independent of a and 5. All lnco are then
really lnu5 etc., with the 6-dependent parts cancelling in
final results). The frequency sum and integration in Eq.
(4.21) yield

hF„=—— —T In(2yVT),2 HyV
3 2

(4.19) b,F» =Tg 2 ln( 1 e~'~),—
q&0

(4.22)

with the field-independent term from Eq. (4.17) and a
magnetic free energy which rejects the mean-square pro-
jection of —, of NlH, since in this regime, N will fluctuate
in all directions. This is a trivial version of the efFect in
an infinite system in d 2 discussed in Sec. II. Note that
here we have not subtracted the —1/AH V function as
was done in Secs. I and II.

We now turn to an analysis of regime (ii) after observ-
ing that with T-c/L, the uniform modes yield a contri-
bution to bF, Eq. (4.17), which is of the scaling form of
Eq. (1.6) except for the logarithmic factor. If we calcu-
late the energy, however, Eq. (4.17) yields a term without
the logarithm, and hence of the appropriate scaling form
expected for regime (ii).

C. Regime (ii): Low temperature

which is convenient for evaluating the limit T)&c/L of
the scaling function. In this limit, the dominant term is
just the L "T +' bulk thermal free energy given by the
H =0 limit of Eq. (2.4). The leading finite-size correction
arises from the lnq singularity of the summand in Eq.
(4.22); this yields a correction of relative order (c/TL )"
implying

d

AFOOT =o(0)T +' — +O(T) .d+]
C

(4.23)

for T)&c/L, with o(0) given by Eq. (2.5b). The contri-
bution from the uniform modes, AF„, is of order T ln T
in this regime and hence dominates over EF~T and AEo
since the latter is of order 1/L. Therefore, we have,

d

bF =o'(0)T"+' — —T InT+O(T),
C

(4.24)

This is the main regime we are concerned with. It is
defined by

T-c/L .

for T»c/L. Because of the Tln T term, the energy at
positive temperatures has a positive size-independent
finite-size correction,
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'd

F( T) e—DL"= d—cr(0) T ' — +T+ O(c /L ),
c

where

erfc(x) = —f e ' dt
VT

(4.35)

(4.25)

hF =T4 —hF, +hF„, (4.26)

which dominates Over the zero-temperature finite-size
correction in this limit.

In order to obtain useful expressions valid for general
T-c!L, some care is needed in treating both the small
and large q and co limits of the sums in Eq. (4.21), because
of the logarithmic behavior.

We first rewrite the various contributions to bF in a
form more symmetric in q and co, separating out just the

q =0 components both at positive and zero temperatures:

gg(Q) =II+g(R),
Q R

(4.36)

with the sum on R running over the space-time reciprocal
lattice of (QI. Care is needed to properly subtract the

Q =0 and R =0 terms from Eq. (4.36). The latter can be
done by including a factor e'Q' and taking e to zero at the
end. We generally have, for singular sums such as the
one needed,

is the complementary error function; g & (R) hence de-

cays as e '" ' for large R. We may now make use of
the Poisson summation formula

where

@=g lnQ —0f lnQ2,
QWO Q

with

(4.27)
g —fI f g(Q) = g g, (Q) —g, (0)

Q~o Q Q~O

+0 g g&(R)+Qg '&(0), (4.37)
RWO

Q
—= (co,cq), (4 28) wl ere

0= V
Tc"

(4.29) g '&(0) = lim g & (e)—f g(Q)e'&'
e~o Q

(4.38)

the space-time volume; and with

AF, = Tg —f inca = 2TlnT, —
Q)WO

(4.30)
1

3)212m a
(4.39)

With g(Q) =lnQ and the choice for g & and g given
above, Eq. (4.32), we have, in two dimensions,

giving the linearized approximation to the contribution
from the q =0, co&0 modes which are included in N, and
are hence overcounted since the q =0 contribution is in-

cluded in the uniform contribution AF„which was calcu-
lated earlier. We can now evaluate N by the standard
procedure of dividing ln Q into a part which decays rap-
idly for large Q and a part which is smooth near Q =0 so
that its Fourier transform will decay rapidly. We restrict
our speci6c considerations to two dimensions, but for a
general parallelogram shape. A convenient choice in 20
1S

whence

RWO

1
erfc(R /2a )

2mR

2 R —(R /2(x)ev'~ 2a

4= Q [—Ei(a Q )]+lna +y
QWO

lnQ =g (Q)+g (Q),
with

(4.31) 0
3/2 3

(4.40)

g, (Q) = —Ei(a'Q'),

in terms of the exponential integral function

(4.32) Since 4 is independent of a, we can choose u to make the
sums converge most rapidly. If 1/T and all L/c are of
the same order, the best choice is

Ei(x)—:f dt,
x I;

(4.33)
1

T&4~ ' (4.41)

which decays rapidly for large x. The function g & (Q) is
smooth for small Q with g & (0)= —lna —y with
y=0. 577, Euler's constant. The arbitrary parameter o.
will later be chosen in a convenient manner.

The Fourier transform of g & (Q) is R =(ni3, m, a, +mza~), (4.42)

and the sums in Eq. (4.40) both converge as Gaussians
and can be easily evaluated numerically. For a rectangu-
lar system with sides al and a2 with periodic boundary
conditions, the real-space sum in Eq. (4.40) is over

(R) = 1 f R + 2 R —(RI2a)'

2~R ' 2a v'rr 2a

(4.34)

and that over Q just the lattice reciprocal to I R I.
In regime (ii) we thus have, collecting terms from Eq.

(4.17), (4.30), and (4.40),
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hE= T[@(a)—lna ]—T ln
2x~
A T

(4.43)

where we have combined terms so that only dimension-
less numbers appear in arguments of logs, the incr term
just cancelling that in Eq. (4.40).

Note that the factor yV/T=Q(yc") is just the space-
time "volume" times the susceptibility in units in which
c =1. Thus, we see that the expression Eq. (4.43) is ex-
plicitly Lorentz invariant, as it should be, since 4 is a
function only of ratios of times. As mentioned earlier,
the logarithmic factor in Eq. (4.43) is analogous to that
appearing for a classical system; in the classical case it is
arbitrary. Here, however, because of the underlying
quantum nature of the problem, this term is not arbitrary,
the only arbitrariness being the overall constant ground-
state energy density.

It is straightforward, although somewhat tedious, to
check that the previous limits of T «c/L (i.e., the
finite-size corrections to the ground state) and T ))c/L
(i.e. , the bulk specific heat) can be extracted from Eqs.
(4.40) and (4.43); it is easiest to choose a difFerent value of
o.' to obtain these limits analytically.

A)= —d —1 . (5.2)

AEO ——1
0 L

(5.3)

In two dimensions, the nonlinear singular corrections,
Eq. (5.1) and the analytic corrections from (V'n), Eq.
(5.3), are thus both of order 1/L . %o 1/L terms exist,
nor, for that matter, do any terms in the free energy exist
with any combination of H, T, and 1/L of this order.

A. Analysis of Numerical Results

We conclude this section with some brief comments on
analysis of numerical calculations on 2D antiferromag-
nets. ' Firstly, it is clear that extracting y from finite-
size exact diagonalization should be straightforward via,
Bt T=O,

The corrections due to (Vn) are thus down by two
powers of length yielding, for example, T"+ contribu-
tions to the bulk free-energy density arising from analytic
corrections to the spin-wave dispersion: co =cq+ O(q ).
The correction to the ground-state energy will similarly
be

V. CORRECTIONS TO SCALING AND
ANALYSIS OF NUMERICAL RESULTS bE() (S)—AE0(S =0)=— (5.4)

1 1

L 2(d —i) (5.1)

In addition, there will be corrections due to more strong-

ly irrelevant operators. The leading such operators
which can appear in the action are (Vn) and magnitude
fluctuations of n away from unity. The latter can be in-

tegrated out to yield the former; the eigenvalue of both
leading corrections is simply

So far, we have primarily been concerned with the
leading corrections to the ordered fixed point which are
controlled by the linear spin-wave fluctuations with re-
normalization group eigenvalue A,0=1—d, i.e., the lead-

ing irrelevant operator. Other quantities will also have
leading corrections controlled by this operator. For ex-
ample, the finite-size susceptibility will have a correction
of order 1/L" ' at zero temperature as expected from
the scaling form for the free energy Eq. (1.6) as a function
ofH, T, andL.

A natural expectation is that a second-order correction
to the free energy would appear whose magnitude relative
to the simple scaling corrections would be smaller by
(1/L) ', or some dimensionally similar combination of
T and L. This could just arise from higher-order terms in
an expansion in terms of the leading irrelevant operator.
However, an examination of possible corrections to the
free energy shows that all such 1/L" ' corrections will

be canceHed by terms arising from the Jaeobian of the
transformation from n to m. since no nontrivial two-loop
diagrams in the free energy exist. The first nontrivial
singular corrections will come from the three-loop
"watermelon" diagrams yielding a correction to, for ex-
ample, the ground-state energy of order

for small total spin S. For larger total spin, 5-sV with s
small but of order unity, the singular corrections to the
ground-state energy density in a field, Eq. (3.7), may be
useful for extracting the spin-wave velocity, c. However,
this intermediate region may be hard to extract useful in-

formation from numerically. Caution must be exercised
concerning the corrections to scaling, as discussed above.
In particular, the 1/L correction to y(L) will complicate
the analysis„although this correction is also universal and
could be useful.

From the finite-size corrections to the ground state en-

ergy, Eq. (4.7), one can extract c directly. In this case,
the corrections will only be at relative order 1/L so they
should be controllable.

In finite-temperature Monte Carlo simulations, it
should be apparent that it is best to work at temperatures
T—c/L since the most information is available in this re-

gime, i.e., both c, as well as the quantities measured
directly. Care must be taken to include the 0 (T) correc-
tion to the energy in Eq. (4.24), if extraction of c from the
specific heat with T) c/L is attempted.

A combination of numerical techniques combined with
careful analysis of the finite-size effects should yield real
consistency checks for the hypothesis that a given system
is an ordered antiferromagnet, unless the system is rather
close to a zero-temperature critical point.

VI. COMPARISON WITH SCALING AT A CRITICAL
POINT, DISCUSSION, AND FURTHER RESULTS

The finite-size sealing behavior found here is similar to
that expected in general at a (d +1) dimensional quan-
tum critical point with /3 playing the role of the finite size
in the time direction. The singular part of the action in
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the correlation volume thus plays the role of the singular
part of the free energy at a finite-temperature critical
point. Thus, from hyperscaling, we expect the singular
part of the action in a space-time volume to be of order
unity (i.e., ft) W.ith f3 scaled by the spin-wave velocity to
make the system isotropic we expect with H =0,

S„„s=136,F=X()
L,

pc
(6.1)

as from Eq. (1.6). In fact, however, the contribution from
the uniform modes yields a weakly nonscaling contribu-
tion to S„„,with a lnT dependence. This is analogous to
that which occurs at conventional critical points when
some exponents are integers, for example the logarithmic
specific heat in the 2D Ising model.

It is important to note, however, that at any zero-
temperature critical point at which hyperscaling holds
and the dynamic exponent z, which relates the scaling of
space and time, is equal to unity, with the system being
"Lorentz invariant" at the critical point, one expects the
singular part of the action to scale as in Eq. (6.1).' All
such critical points will thus have the same finite-size
scaling behavior but with diferent scaling functions
which will generally not include logarithmic pieces, ex-
cept when some exponents are integers.

A. Staggered susceptibility

One of the ways in which the trivial ordered fixed point
analyzed here differs from nontrivial critical points is in
the scaling of the order-parameter susceptibility: i.e., the
staggered susceptibility, g, . The staggered susceptibility
in a volume V is expected generally to scale as'

(m, v) p——m, ,
V T T

(6.2)

B. One dimension

In one dimension, all of the analysis presented here
breaks down since the long-wavelength behavior of quan-
tum antiferromagnets is not controlled by the simple non-
linear o-model fixed point which is unstable to nonlinear

where m, is the staggered magnetization density. In gen-
eral, at a critical point m, will decrease with size as L
In our case, on the other hand, it is size independent by
the assumption of long-range order so that g, —V/T- 0,
i.e., a trivial scaling with the space-time volume. (ME)
Fisher and Privman' have carried out a detailed analysis
of the finite-size scaling behavior of the susceptibility of
O(n) ferromagnets in their ordered phase. Their results
can be applied directly to the scaling of the staggered sus-
ceptibility in the n =3 quantum antiferromagnets of in-
terest here by taking one of the lengths to be c/T (they
evaluate the strongly anisotropic limit T «c/I. as well
as the isotropic limit T-c/L in a staggered field). We
will not reproduce Fisher and Privman's' results here.
Note only that for the staggered susceptibility, as for the
free energy, one must separate the uniform and the
nonuniform spin-wave contributions which each dom-
inate in different regimes.

spin-wave fluctuations. However as shown by Haldane
and ANeck, ' "for —,

' integer spins the system is still (at
least in some ranges of parameters) controlled by a mar-
ginally stable Lorentz-invariant fixed point of the non-
linear o. model with an additional topological term. This
yields nontrivial power-law decays of correlations as
found in the Bethe-Ansatz solution of the spin- —,

' Iiearest-
neighbor antiferromagnetic chain. AfBeck" has exam-
ined the finite-size corrections to the ground-state energy
and finds, in a system of size L, O(1/L) corrections to
the total energy. In addition, a linear specific heat at pos-
itive temperature is found which, when scaled by the
long-wavelength spin-wave velocity, is simply related to
the finite-size correction to the ground-state energy, as
expected by the asymptotic Lorentz invariance. Al-
though the form of the finite-size and finite-P corrections
are thus the same in 1D as found here for d ) 1, the
coe%cients in 1D are entirely nontrivial, since they are
related to the central charge of the corresponding confor-
mal field theory. "

VII. SOLID He AND DYNAMICS

We have seen that the thermodynamic behavior of
quantum antiferromagnets at low temperatures and small
magnetic fields should be universal. This also applies in
systems with tetragonal or orthorhombic symmetry, such
as the tetragonal ordered phase of solid He. The only
adjustment necessary is to rescale the lengths in each
direction by the anisotropy in the spin wave velocities.

In solid He, the transitions out of the low-field or-
dered phase, as either the temperature or magnetic field
are raised, are both strongly first order. ~ Thus it is likely
that the thermodynamics of the entire ordered phase is
determined solely by the universal nonlinear cr-model
fluctuations analyzed here. The susceptibility at low tem-
perature can be measured directly, and the appropriate
combination of spin-wave velocities determined from the
T specific heat. All the other universal properties can
then be derived from these two, particularly M(H, T)
from Eq. (2.8). (Note that the leading T correction to
the specific heat will have both a universal and
nonuniversal component). If the low-field thermodynam-
ic properties do not agree with the results presented here,
it suggests that the inference that the ordered phase
breaks only two of the spin symmetries should be reexam-
ined. A helicoidal phase with a more complicated order
parameter and thus different low-T thermodynamics, has
not yet been directly excluded by experiments.

In addition to the universality of the thermodynamic
properties, dynamic properties which depend on the
long-wavelength spin waves will also be universal. In
particular, in the presence of the weak nuclear dipolar
spin anisotropy, the temperature dependence of the
NMR mode Ineasured experimentally will be universal.
This has been independently pointed out by Grishchuk
and Marchenko and the result is in good agreement with
experiments of Osheroff. '

A. Spin-wave scattering

Properties which depend on the scattering of long-
wavelength spin waves can also be derived as universal
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functions of Y and g. The matrix elements for scattering
of, say, two-wavelength spin waves can be derived by
canonically quantizing the spin waves from the long-
wavelength Lagrangian, Eq. (1.1), after having integrated
out the short-wavelength quantum fluctuations. The
remaining nonlinearities will be weak for d & 1 and can
thus be treated perturbatively, The matrix elements from
the nonlinear o. model will just be universal constants
times powers of the macroscopic Y and g with wave-
vector and angular-dependent factors which have simple
forms. The angular dependence of the four spin-wave
matrix elements were shown, some time ago, to have sim-
ple forms to all orders in perturbation theory in powers
of 1/S by a complicated calculation of Kumar et al. ,

'

they did not, however, realize that the coefFicients were
universal. The angular dependence can, in fact, be de-
rived in general in a few lines directly from the nonlinear
o.-model representation. The universality of spin-wave-
scattering processes has various experimental conse-

quences for solid He, for example, in determining the
linewidths of the NMR modes in the presence of weak
anisotropy, and various hydrodynamic relaxation pro-
cesses. These will not be discussed in detail here. We
should note, however, that processes which depend on
nonlinearities in the dispersion of spin waves wi11 not be
universal, but rather controlled by corrections such as
those due to the (Vn) terms in the action.

Note added: After this work was complete, unpublished
work by Neuberger and Ziman' was received, which also
considers 6nite-size corrections to ground-state proper-
ties.
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