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Critical behavior of an array of Josephson junctions with variable couplings
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We consider a.generalization of the fully frustrated XF model in two dimensions, introduced by
Berge et a/. We derive the Coulomb gas representation of the partition function. From the form of
the interaction between half-integer charges we infer that, away from full frustration, dipoles are
formed-out of neighboring charges and that the low-temperature phase transition is an Ising transi-
tion in this system of dipoles. The charges which are not bound in dipoles fuse in pairs to form a di-
lute gas of integer charges. The transition in this gas is a normal Kosterlitz-Thouless transition and
is not triggered by the Ising transition. In fact, we make it plausible that the transitions only coin-
cide at full frustration. Our picture is supported by Monte Carlo simulations.

I. INTRODUCTION

In recent years experimental interest in arrays of super-
conducting islands coupled by Josephson junctions has
greatly stimulated theoretical work on frustrated classical
two-dimensional (2D) XY models in an effort to under-
stand the critical behavior of such arrays. ' One of the
most interesting features of these models is the simultane-
ous occurrence of domain walls and vortex excitations.
The former are due to discrete symmetry (introduced by
degeneracy of the ground state as a result of frustration),
the latter to the continuous symmetry of spin (i.e., phase
of the superconducting order parameter) rotation.
Despite much theoretical progress (see e.g., Ref. 1), our
insight into the critical behavior of such systems is far
from complete; in particular, the role played by domain
walls in the dissociation of vortex-antivortex pairs is not
well understood.

Very recently two different experimental techniques,
dynamic response to small oscillating fields and voltage
noise measurements, have yielded what appears to be the
first direct evidence of domain-wall excitations in Joseph-
son junction arrays. Since this opens prospects for more
definitive comparison between theory and experiment, we
have taken a new look at a frustrated XP model intro-
duced some time ago by Berge et al. The attractive
feature of this model is that it describes an array with
variable degree of frustration that can actually be built by
varying the surface area of selected junctions in the ar-
ray.

The model is described by the Hamiltonian

~
J„~cos[8(r)—0(r') —2mA (r, r')]

with nearest-neighbor coupling between classical spins
8(r) on a square lattice. Each square has three ferromag-
netic bonds J and one bond of variable strength —gJ as
depicted in Fig. 1. If g&0 we will take the bond
strength to be +gJ and absorb the sign in the argument

of the cosine by taking

—,
' on q bonds,

A rr'=
0 otherwise . (1.2)

Of course, A (r, r')=0 for all bonds if g(0. For ri= 1,
this model is a realization of the fully frustrated XI'mod-
el with a doubly degenerate ground state (see, e.g. , Ref.
6). For all g) g, =—,', a doubly degenerate ground state
of canted spins exists, and, hence, domain walls. As g
changes one expects domain-wall energies to vary with
respect to the strength of the vortex-pair potential. For
q & g, the ground state is ferromagnetic; for g= —1 the
model corresponds to an isotropic ferromagnet. In the
following we will use the terms strong and weak horizon-
tal bonds to indicate the bonds with the largest and
smallest value of

~J„.~, respectively.
In contrast with the fully frustrated case g= 1 (Ref.

6—8), few results exist for this model at g%1. Monte
Carlo (MC) simulations support a phase-transition
scenario in which an Ising-like transition (due to the pro-
liferation of domain walls) takes place at a lower temper-
ature than the Kosterlitz-Thouless (KT) transition (asso-
ciated with vortex-antivortex pair dissociation). A simi-
lar scenario is observed for coupled XYmodels. The fact
that the KT transition, jn these models, occurs after the
Ising transition, i.e., in the Ising disordered phase, is in
sharp contrast with the observed behavior for homogene-
ous (frustrated) models. ' ' It was argued "' that
the presence of fractional charges, which become free by
the melting of domain walls at the Ising transition,
directly triggers the KT transition. In this paper we want
to show how this picture is altered for the g&1 systems
so that the Ising and KT transition can occur in the re-
verse order. A theoretical analysis of the g%1 systems
has also recently be given by Granato and Kosterlitz. '

However, these authors start from a I.andau-oinzburg
approximation for the frustrated XY model. In this ap-
proximation the fractional charges are no longer present,

39 11 759 1989 The American Physical Society



11 760 EIKMANS, VAN HIMBERGEN, KNOPS, AND THIJSSEN 39

so that no insight can be gained why the homogeneous
models behave so differently from the inhomogeneous
ones. In fact, the Landau-Ginzburg picture always favors
the scenario where the Ising transition precedes the KT
transition at increasing temperature.

II. THE COULOMB GAS

Zcr = X exp( HcG/—T) ~

IMj
(2.1a)

In this section we will write the partition function of
the model as a grand canonical partition function Zz& of
a 2D Coulomb gas (CG). The form of Zco is

Hco =2m J g M(R)G(R, R')M(R') . (2. lb)

The variables M(R), which represent the local vorticity,
are integer charges or half-integer charges depending on
q. R and R' denote sites on the dual lattice and the sum-
mation in (2.1a) is over all neutral charge configurations.
The function to be determined is the lattice Green's func-
tion G(R, R'). As a first step in our search for G we re-
place (1.1) by its periodic Gaussian (PG) form. We then
obtain the Hamiltonian

where the Coulomb gas Hamiltonian H~G can be written
as

HPG( Iq&(r} j, Im(r, r') j ) = g Iy(r) —q&(r') —2m[m (r, r')+ A (r, r'}]j2 (2.2)

with new degrees of freedom Iy(r)j and [m(r, r')j. The
y(r)'s are defined on ( —~, oo ). The m (r, r')'s are in-
tegers and defined only on horizontal bonds. ' As for the
original model one takes J„.to be either equal to J or to
gJ. The value of J can be used to tune the spin-wave
stiffness of the PG model to that of the original model
(e.g. , for g= 1 this would give J=—,'&2J, notice that the
spin-wave excitations are to be taken with respect to the
canted ground state). With the parameters i) and A one
can match the ground states of the two models. The PG
model has a doubly degenerate ground state if we choose
A as in (1.2). Cxiven (2.2) and (1.2) it is easy to see that
the ground state will have either all m (r, r') =0 or
m(r, r')= —1 for g bonds and 0 otherwise (modulo an
overall additive constant). The magnitudes of the phase
differences are in both cases 3m'/(I+3g) for g bonds
and mg/( I+3i)) otherwise. Therefore, we conclude that
g, =

—,
' corresponds to g=O, while, of course, the analog

of g= 1 is obtained by taking ~g~ =1 and A as in (1.2).
The precise relationship J(J,g) and i)(g) does not con-
cern us here as we are mainly interested in explaining the
topology of the phase diagram (the inverted order of the
Ising and KT transitions and their critical behavior).
Henceforth, we will simply denote g and Jby g and J, re-
spectively, and we will only deal with choice (1.2) for A.

Next, application of a few well-known steps' gives us
the inverse-lattice Green's function

g G '(R, R")G(R",R') =5R R, . (2.4)

One readily recognizes that for ~g ~

= 1 the usual discrete
Poisson equation is recovered. The resulting Green's
function in this case is the (discrete) Coulomb potential
acting between charges located at the dual lattice sites.
We now want to see how this picture alters for g&1.

We can solve (2.4) for G by performing a Fourier trans-
form. In this way we obtain an exact expression for the
(Fourier transform of) G. This method is discussed in the
Appendix. The derivation presented here is not exact but
it is transparent and directly gives a clear intuitive pic-
ture of the resulting Coulomb gas. We start with the fol-
lowing observation: if g=O the Coulomb gas consists of
integer charges. The asymptotic form of G will be loga-
rithmic when the charges are positioned at the centers of
the double cells (indicated by the dot in Fig. 2). If i) =1
we know that G is asymptotically logarithmic when the
charges are situated at the centers of the single cells (indi-
cated by open circles). Therefore, we conjecture that at
arbitrary q, G can be made logarithmic if the charges are
shifted to positions, somewhere on the dashed line (see
Fig. 2). Hence, we try to find a solution of (2.4) of the
form

G '(R, R")=(25R- ~—5 „R- —5R„R - )

+a(5R",R 5R",R+t:, )

+b(5R, R
—5R-, R -., ) . (2.3)

The coordinate axes are shown in Fig. 1. R and R" are
sites on lattice 1 or 2 as defined in Fig. 1. The origin is
taken to lie on lattice 1. a =1, b =

~g~
' if R is on 1, and

a =
~g~ ', b =1 if R is on 2. The lattice Green's function

G is defined through

FIG. 1. A square lattice with alternating rows of bonds with
variable strength as indicated. The dual lattice is divided into a
lattice labeled 1 (crosses) and 2 (circles).
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6(R R')=Go[R R'+25(R R )ey]

where

(2.5a)

—6 if R is on 1 and R' on 2,
5(R, R')= 5 if R is on 2 and R' on 1, (2.5b)

0 if R and R' are on the same lattice,

with l5l ~
—,'. (The lattice constant a = 1.)

Now we seek a 5 that makes Go asymptotically loga-
rithmic. Strictly speaking, the lattice Green s function is
defined only on the points of the dual lattice. Hence, we
must specify what we mean by (2.5). A natural definition
is in terms of a Taylor expansion

60(R+ eey ) = g e"by"'Go(R) . (2.6)
n=0

Here 6'"'Go is the discrete nth derivative of Go in the y
direction:

b. ' "Go(R)—=by Go(R)

=
—,'[Go(R+e ) —Go(R —ey)],

6' 'Go(R) —= b, Gc(R)
(2.7)

=Go(R+e )+Go(R —e ) —260&R), etc.
We insert (2.5) in (2.4) and ignore all terms containing

'Go and 6„' 'Go with m ~3. Then we obtain four
equations:

FIG. 2. A double ce11 with charge positions indicated for
q=0 (the dot) and lgl =1 (open circles). For all other values of
lgl there are two charge positions which are situated on the
dashed line, symmetrically around the q bond.

(2.8)

6 (R)—— (1—25)~+(1+25)~ Q 6 (R)+ (1—25) (1+25) ~ Go(R)=5R, o if R is on 1,1 1
Jr/ 0 y 0

r

1 —lgl 1+ q6 (R) lgl+ [I (25)z]~ Go(~)+ l )l gl25 g Go(R)=0 if R. is on 2.
lnl

These equations beautifully merge into

+
l

b, Go(R)= —5Ro for all R2
7/ +1

when one takes

(2.9a)

I

and

g2 g2+O2g2
X

The Coulomb gas Hamiltonian now reads

5=— (2.9b)I+ lql

Go obeys an anisotropic version of the discrete Poisson
equation. We can calculate the asymptotic form of Go in
the usual manner' and find that

Gc(R) =Go(0) —Go(R)
r

CX InR, +y(Euler)+ —,'ln] 32
2%. 9+3

for lRl »1, (2.10)
where

Hco= —2m. J Q M(R)
RWR'

X 6o [R—R'+ 25(R, R')ey ]M(R') .

(2.11)

With (2.11) an intuitive picture arises: If lg —ll in-
creases, then the charges approach each other more and
more on either side of the weak horizontal bonds. In this
way dipoles are formed. Now it is convenient to
represent the charge distribution by variables located at
the centers of the weak bonds; one defines a net charge by

lql+I
2

e
m(r)=M r+

2
ey+M r—
2

(2.12a)
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and a dipole moment by

p(r) =(1—25)—'s(r)e = s(r)e
~~~+1

where the "spin" s(r) is defined by

(2.12b)
CD

CD

cy cy
s(r) =M r+ —M r—

2 2
(2.12c)

T =—Je 2
KT 2 r (2.13)

where J, is the renormalized Coulomb coupling and e is
the elementary free charge, which is e =+1 in the Ising
ordered phase. However, as soon as the Ising transition
takes place the domain walls melt and large domains can
occur. This means that there are now free fractional
charges present. Since these charges screen the Coulomb
potential already at a much lower temperature [see
(2.13)], the Ising transition will directly trigger the KT
transition. The conclusion is that on raising the tempera-
ture one should have either a KT transition that precedes
an Ising transition, or a joint Ising-KT transition line.
This conclusion is confirmed by numerical simulations. '

Now we consider the case il& l. It is evident from our
picture of shifted charges that the energy of a wall on a
weak bond is larger than that on a strong bond. To make
this statement more quantitative we calculated the energy
per unit length of infinite straight domain walls. In the
Appendix we give the exact expressions for walls on the
two types of horizontal bonds and for vertical walls. The
resulting quantities are plotted in Fig. 3 as a function of

We see that when
~ il —1

~
is not too small then there is

a substantial difference in energy between the two types
of horizontal domain walls. (The energy of walls on i)
bonds is, of course, finite at g =0.)

In our representation of the charges (2.12) a wall on a
strong bond will induce a change in the polarization P(r)
and a corresponding average charge

e~„= —V P(r) . (2.14)

It is clear that with this definition the ground state has
m (r) =0 and alternating columns with all s (r) either + 1

or —1. In order to understand the topology of the phase
diagram one has to consider the excitations out of this
ground state. In the case g= 1 it turned out" to be useful
to picture these excitations as domain walls on the bonds
of the original lattice, separating the two possible
ground-state charge configurations. It was shown that all
charges effectively average out except for the corners of
the domain walls where fractional charges appear. When
the system is in the Ising ordered phase the domain walls
are short and form small islands with a net charge (due to
the fractional charges at all corners) that is integer. It is
these integer charges that can exhibit a KT transition to
a phase where the Coulomb potential is screened to a
Debye-Huckel form. The transition point is given by the
formula

0.0 0.5 1.0 2.0

FIG. 3. Energies per unit length of wall for walls in the x
direction not on g bonds (solid curve), on q bonds (short-dashed
curve), and for walls in the y direction (1ong-dashed curve).

In this section we will explore the consequences of the
newly introduced picture, for the dielectric constant e.
To this end we express e in terms of correlation functions
of Coulomb gas quantities in the usual way. For conveni-
ence we write the Hamiltonian (2.11) in variables m'(r)
and p'(r) defined by

m'(r) =2~rv'J m (r),

wall alters the charges m (r) in (2.12a). It is easy to see
that one has to add to (2.14) fractional charges e =+—,

'

every time a wall starts (or stops) running along weak
bonds. At the Ising transition the walls will again melt
and large domains will appear. However, since wall por-
tions along the weak bonds cost more energy per bond,
the domain wall will contain only short portions with all
horizontal parts running along weak bonds. This means
that the fractional charges are still confined and combine
to integer charges (unless of course g=l). Therefore,
one now has at the Ising transition the following picture
for the charges present: (i) There are free integer charges
that are still in the KT phase at the current temperature.
(ii) The charges due to the walls on the strong bonds are
given by (2.14) and have the nature of a polarization
charge. These charges also contribute, of course, to the
screening of the integer charges, resulting in a term in the
dielectric constant proportional to y, where g is the sus-
ceptibility of the Ising-like system of oriented dipoles. As
we shall see in the next section, g does not diverge at the
Ising critical point, which implies that the Ising transi-
tion does not trigger the transition to a Debye-Huckel
phase (with e '=0). This explains the fact that for i)&1
the KT transition can occur within the Ising disordered
phase.

III. THE DIELECTRIC CONSTANT

In addition to these charges that can be attributed to the
polarization, one also has to consider the charges that re-
sult from a wall that runs along the weak bonds. Such a

p'(r) =2n&J p(r) . .

It follows that

(3.1)
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2

Hco =
—,
' g m'(r}m'(r') Go(r —r')+ Q Go(r —r')

r, r' g+1
—g m'(r)p~(r')h, Go(r —r') —

—,
' g p'(r}p'(r')b, Go(r —r') .

r, r' r, r'
(3.2)

In this calculation only the lowest-order term in the
gn'I' interaction is of interest. In order to find e we cal-
culate the screened (sc) potential G„.First we place an
infinitesimal charge a at the origin. We can now set up a
self-consistent calculation for G„bywriting

aG„(r)=aGo(r)+g G„(r—r')&m'(r'))

We insert (3.4) in (3.3) and perform a Fourier transforma-
tion with respect to sublattice 1 [the Fourier transformed
with respect to sublattice i (the entire lattice) has super-
script i (no superscript)]. It follows that

G sc(k)G o(k)
G sc(k) =Ci o(k)+ T

(3.3)

where & ) denotes a thermal average with respect to the
perturbed Hamiltonian. An expansion in terms of corre-
lation functions in the unperturbed system gives, to
lowest order in a,

& m'(r') ) = ——g Go(r")& m'(r")m'(r'))

X [—g
' (k)+2i sink g~ (k)

—sin k g
' (k)],

where g (r) = &p'(0)m'(r) ), etc. If we define

1/2

gbyGo(r )&py(r )m (r ))
rll

(3.4a) then we have

Go(k)=
2k,

(3.6)

(3.4b)
Using this we obtain from (3.5) for small ~k, ~

Go(k =1+
2 [g ' (k) —2ikyg~ (k)+k g

' (k)]
G,',(k) 2k2 T ™

k,g &m'(0)m'(r))(k r) + g &p'(0)m'(r))(k r)+ g &p'(0)p'(r)) .
4k, T k', T, 2k, T

(3.7)

and

e = lim e'(Ok ).
k —+0

(3.8)

The resulting formula expresses the well-known fact that
the change in the dielectric constant can be expressed in
the Auctuation of the polarization. In the present picture
this involves a sum of the polarization P'=(2/X)g, p'(r)
due to the dipoles of the shifted charges and the polariza-
tion

=2P&„,=—g m'(r)r
r

We can now find the dielectric constant e by taking the
limit ~k~ ~0. Here the dielectric constant will be aniso-
tropic and we must use the tensor e; (i,j =x,y). The di-

agonal elements can be found by

e „=lim e'(k„O)
k —~0

due to the free charges. Since the length of p' is fixed (to
2mVJ [~il~/( ~q~+ I)], the maximum length of the polar-
ization P' is also fixed. However, the length of P&„,can
increase and will in fact diverge at the KT transition of
the unit charges. Presently we are interested in a temper-
ature regime where the unit charges are still (logarithmic-
ally) bound and consequently ~Pr„,~ is finite. If we fur-

ther assume that the density of I' charges is small
(which means that i) is chosen such that there is an ap-
preciable energy difference between walls on weak and
strong bonds) than we can approximate (3.7) by only con-
sidering the contribution of the last term. From (3.7) we
then find with (3.8)

(3.9)

Relations (3.1) and (2.12b) have been used to retrieve the



11 764 EIKMANS, VAN HIMBERGEN, KNOPS, AND THIJSSEN 39

$(k)= g e'"'[e ' '(s(0)s(r) ) —(s(0) )'] (3.10)

since e ' "s(r) is the order parameter of the system
(compare the ground-state structure). Then (3.9) becomes

(3.1 1)

original s variables. From (3.9) we see that, if there is an
important activity in the dipoles s at a low density of m
charges, then this will afFect only Eyy and not 6~~ Note
that eyy contains a susceptibility of a system with an Ising
symmetry. We define the k-dependent susceptibility as

Since this equation involves the k&0 susceptibility of the
Ising mode1, there is no divergence of the dielectric con-
stant at the Ising critical point. In the pure nearest-
neighbor Ising model, y(ir, O) has a t ln~t~ (t = 1 —T/T, )

anomaly. ' Here, one expects e to have the same anom-
aly, although there might be a modification due to the
long-range dipolar interaction. It is remarkable that
Granato and Kosterlitz' were led to the same con-
clusion, along completely di6'erent lines of reasoning.

The diagonal elements of the e tensor are related to the
helicity moduli y„and y of the cosine model. With the
usual definition' and (1.1) we easily find that for this
model

)'; =— Z (2, ,+-, l eer[8(r) —8(r+e; ) —2c.A (r, r+e; )])
r

Z)2, ,~-, (e(e[8(r)—8(r+e, ) —2rrA(r, r+S;)]
)r

(3.12)

IV. NUMERICAL RESULTS

In this section we study some important. features of the
low-temperature behavior of the cosine model at g=0. 5
by Monte Carlo (MC) simulations and show that we can
understand them with the ideas of Sec. II. The MC simu-
lations were performed using the standard Metropolis al-
gorithm. Typically three or four independent runs were
made, with 15000 to 20000 measurements each, after
5000 configurations were discarded for thermalization.
We determined for each spin configuration the corre-
sponding charge configuration with

M(R) =
—,'sign g (

~J„I /J)sin[0(r) —0(r')

—2~2 (r, r')] (4.1)

where i =x,y and X is the number of sites in the system.
Comparing (3.8) with its analog in Ref. 17, we see that

there is a qualitative correspondence
—1

'Vx —
~yy

(3.13)
—]

'Vy —~xx

The correspondence is, of course, not exact because the
two models (cosine and periodic Gaussian) are not the
same but only chosen such that they are expected to de-
scribe the same physics. On the basis of the present
analysis of the periodic Gaussian model one would expect
that a numerical analysis of the cosine model should ex-
hibit the following features: (i) A low-temperature Ising-
like transition characterized by a divergence of y(k=O).
The helicity modulus at this transition point should
remain finite, but its temperature derivative should show
a In~t~ divergence due to the t In~t~ term in
g(k =it, k =0). (ii) This transition is followed by a KT
transition at a higher temperature, where the integer
charges are no longer logarithmically bound.

The summation is over four bonds surrounding R. In
this way several quantities related to the charges can be
calculated.

It is interesting to study the proliferation of domain
walls at the low-temperature phase transition. Therefore,
we evaluated the number of wall segments per bond avail-
able for three different types of walls. (Note that vertical
wall segments have twice as many bonds available as the
horizontal types. ) These densities can be written as

DsH = —,
' +2( M(0)M(e ) ),

DwH =
—,[+2(M(0)M( —e ) ),

D v =
2] + 2( M(0)M—(e„)),

(4.2)

for wall segments on strong horizontal (SH), weak hor-
izontal (WH), and vertical (V) bonds, respectively. The
MC data are plotted in Fig. 4. There are two transition
points. It is clearly visible that there is a sudden prolifer-
ation of walls at the low-temperature transition and this
proliferation does not involve walls on the weak bonds.
This result thus supports the idea that the low-
temperature transition is an Ising transition in the system
of dipoles and that the m charges hardly take part in this
transition.

A clear manifestation of the role of the dipoles s (r) as
Ising variables is in the behavior of the ferromagnetic
susceptibility f(0,0). In the pure Ising model we have

g"'" (0,0)-~t~ as t 0, (4.3)

with t = 1 —( T/T, ). As discussed in Ref. 18, we have for
a system with linear size L,

g Ising(0 0) L 7/4f [L ( T T ) ] (4.4)

where f is some function which is finite at t =0 and in-
dependent of L (if L is not too small). We evaluated
ft (0,0) using the charge distribution obtained with (4.1).
Then we plotted gt (0,0)L ~ as a function of (T —T, )L
and varied T, (the transition temperature of the infinite
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TI
= 0.5

L =24

o0 o o o o o

3f

0

we used this method instead of a peak height analysis.
From Fig. 5 we conclude that the dipoles indeed behave
as Ising variables and that the long-range part of the in-
teraction does not modify the critical exponent drastical-
ly.

As mentioned in the previous section, we obtain insight
in e „and 6yy numerically by monitoring the helicity
moduli y~ and y~. We computed pz and py using rela-
tion (3.12). The MC data are shown in Fig. 6 (see also,
Ref. 19). The asymptotic values of y ( T) and y~( T) as
T~O should equal the "bare" spin-wave stiffness of the
cosine model for a spin wave in the x resp. y direction.
Given the ground state of the model and (3.12) it is easy
to calculate that for g & —,',

0
o% y„(T=0)=J &(ran+1)/il

CD

0.0 0.2 0.4 0.8 1.0

FIG. 4. Number of bonds-in-walls per bond available for
weak horizontal (WH), strong horizontal (SH), and vertical
bonds (v) [see {4.2)]. The arrow indicates the approximate loca-
tion of the high-temperature phase transition.

y (T =0)=J—,'&(g+ 1)/q

in accordance with the numerical findings for g= —,'. The
low-temperature transition is visible as a kink in y and
the effect on y is very small. Th&s is just the behavior
expected from (3.9) and (3.13). We have discussed that
dy /dT should show a ln~t~ divergence at this transition
point. In extension of the work of Granato and Koster-
litz, ' for larger lattices and with the inclusion of error

system) to optimize the data "collapse" (see Fig. 5). The
transition temperature found in this way is T, =0.175,
which is in agreement with specific-heat data (not
presented here). We see that, away from the transition
temperature T, L of the finite system, the peaks indeed
merge. The error bars indicate that it is difficult to deter-
mine gi (0,0) in the neighborhood of T, L. This is why

0
0

CO CQ~

x ~ L=)6
L=24

+ & L=48

tX)

CD

CD

T, = 0. 175

)E

I

ls(

L= 8

L=$2

o L=56

o L=24

X~x
0X

X0

CU

CD

CD

-0.7 -0.5 -0.3 -0. 1 0.3 0.5 0.7

0.0 0.2
I

0.4

T/J
0.6

X

O. S

FIG. 5. Rescaled ferromagnetic susceptibility as a function
of a rescaled temperature for lattices with difterent linear size L.
The scale factors are obtained from the pure 20 Ising model.

FIG. 6. Helicity modulus in x and y direction for g=0. 5 and
for different lattices. The size dependence is only appreciable
near the high-temperature phase transition.
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bars, we calculated —,'(0 ldP)(Py, ) using

1 d U, —U
(py„)= (4.5)

OL
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In fL)
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FIG. 7. Temperature dependence of (1/2J)(d/dp)(py„) for
dÃerent lattices. The size dependence of the peak height is
shown in the inset.

Here, U ( U, ) is the total internal energy calculated with
periodic (antiperiodic) boundary conditions along the x
direction. This equation is, strictly spe@king, only valid
for an infinite system because only in that case is the twist
per spin n. /L really infinitesimal. The right-hand side of
(4.5) was calculated for different lattice sizes. The result
is plotted in Fig. 7. In the inset we plotted the peak
height as a function of ln(L). In the critical region both
U and U, were determined using at least three indepen-
dent runs of 30000 to 40000 measurements each, after
discarding 10000 configurations for thermalization. In
spite of this, the results for larger lattices are not very ac-
curate. However, they are consistent with the expected
linear relation between the peak height and ln(L).

The high-temperature phase transition clearly exhibits
the KT-like behavior, assumed by Berge et aI., who con-
jectured this transition on the basis of specific-heat data
only. To determine the size of the "universal" jump at
the KT transition one must realize that the present
model is highly anisotropic. The bare couplings in x and

y direction are different to begin with (a factor —, in the

present case, see above) but also renormalize in a difFerent

way mainly due to the anisotropic system of bound di-
poles. For fioite temperatures one arrives at effectively
(renormalized) Gaussian couplings y ( T) and y ( T) with
a nonuniversal renormalized ratio a„(T)=[y„(T)/
y (T)]. The universal jump, in this case, is expected for
the geometric mean

y(T)=+y, y =u„(T)y~(T) .

[This can be seen by a rescaling of one of the axes of the
Gaussian model, compare Eq. (2.10).] Figure 8 shows a
plot of (y„y )' /J versus T/J. The drop in the helicity
modulus is seen to be consistent with the universal jump
(2T/m J). This supports the idea that the high-
temperature transition is a normal KT transition in the
Coulomb gas of integer charges.
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FIG. 8. Temperature and size dependence of (y„y~)
' /J for

temperatures around the high-temperature phase transition.
The solid line is the universal jump prediction.

V. CONCI. USION

In this paper we have made a study of uniformly frus-
trated XY models with an inhomogeneous coupling distri-
bution. It was argued via a Coulomb gas picture that the
formation of dipoles with a fixed length, would alter the
phase-transition mechanism in such a way that the Ising
transition would not automatically liberate fractional
charges causing a KT transition to occur at the same
time. A further consequence of this picture is the predic-
tion that the dielectric constant (or inverse helicity
modulus) should not diverge at the Ising critical point.
Instead it will contain an "energy-like" anomaly. The
divergence of the dielectric constant is expected at a
higher temperature where the integer charges are no
longer confined by the Coulomb interaction. These pre-
dictions are confirmed by a Monte Carlo simulation of a
frustrated XY model with weak and strong bonds at a
strength ratio g= —,'. %'e would expect that the fractional
charges remain confined at the Ising transition for g ap-
proaching unity. The reason is that free fractional
charges require a domain wall to run along many energet-
ically unfavorable bonds. Thus, even a small energy
difference (as is the case for rl =1) will result in a vanish-
ing Boltzman weight. Therefore, the Ising transition will
not induce the KT transition by a fractional charge
mechanism for i)%1. However, it might happen that the
renormalization of the dielectric constant by the Ising
susceptibility y will precipitate the KT transition. The
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fact that y is a continuous function of the parameters (7)

and T) implies that this eff'ect can only result in a shift of
the point at which the KT transition and the Ising transi-
tion coincide. Since there is ample evidence that this
point is located at q = 1 (Refs. 6—8, 10, and 12) we expect
(using the symmetry rt~rt ') that T„;„s(q)& TKr(ri) for
all g+I; the transitions only coincide at g=1. Monte
Carlo data available seem to support this, but are, as yet,
not conclusive. One needs more and better Monte Carlo
data for larger lattices in order to separate the transitions
as q approaches unity.

dx 6» «1)—
dy 621«1)=&R, , o

d~ 612(R2)—dy 622(R2) =0,
d, 62, (R2) —d+6„(R2)=0,

622 Ri ) d 612(R1) ~Ro,

(A3)

where R, and R2 denote arbitrary sites on lattices 1 and
2, respectively. A Fourier transform with respect to the
relevant sublattice gives
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d (k)
G', ,(k) =G 22(k) =

d, (k) ' —dy(k) '

dy(k)
G,2(k)=G2, (k)=

d (k) —d (k)

where

q+1d„(k)= +2(1—cosk„)

and

(A4)

APPENDIX

G(R",R')=6; (R"—R') (i,j =1,2), (A 1)

when R" is on sublattice i and R' on sublattice j. Furth-
ermore, we define the operators

We derive the exact expression for (the Fourier trans-
form of) G as determined by (2.3) and (2.4). Without loss
of generality we can write

+ik —ik
d (k)= e '+e

The e denotes complex conjugation.
To obtain the 60 of Sec. II, we note that 6; will be

determined largely by the don1inant terms in the Taylor
expansion of Ci; in the neighborhood of the origin. Now

41~1

X[Go '(k)Go '(k) —r(k)j,

dxf(R)= lgl+ ~ f(R)

d f(R)= f(R e)+f(R+e ), —
v 2

d+f(R)= f(R+e )+f(R—e ) .2 2

Substituting (Al) in (2.3) we find

(A2)

where
'2

r(k) =4 (1 —cosk„)2=0(lkl~)( 1k
1
~0)Ill+1

and

k=(k, k —m) .

If we neglect r (k) we find that

6„(R1)=—g 2 d, (k)Go(k)Go(k)e
+1~21 ( rt +1)' &„,( q+1)2

dx(k) ~ —ti .R,
X 1, Go(k)e '=Go(R, ),

Go '(k)+Go '(k)

where B and B refer to the Brillouin zone corresponding to the entire lattice and one sublattice, respectively. The oth-

er cases follow in a similar manner.

With the use of a Fourier transform it is straightforward to calculate the energy per unit length of an infinite straight
domain wall. The result for vertical walls is

E,= 2' JJ—,k
i [G', ,(k„,O) —ReG, 2(k„O)j.

~ +e

For the two types of horizontal walls we find
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2 & 1 ', y 2 'y 2E z
= 2—vr If 2.& i Cx I, (m, k~) —e ' Reo, z(n, k~)+e 'ImG, 2(m. , k )

where the +( —
) sign applies for walls on g bonds (not on g bonds). The expressions have been evaluated numerically

and the result is given in Fig. 3.
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