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We develop and test an algorithm for the computation of a fixed number of the lowest eigenstates
of a Hermitian operator. The algorithm is iterative and converges exponentially. We test the algo-
rithm on the strong-coupled Hubbard model, which has a finite number of basis states, and we
reproduce known results. We also compute with a partial basis, a subset of a complete basis. We
show how to extrapolate the eigenvalues to the full basis result. This opens the possibility of apply-
ing the algorithm to problems having an infinite number of basis states.

I. INTRODUCTION

In this paper we present algorithms for the construc-
tion of the low-lying wave functions and eigenvalues of
an Hermitian operator. The algorithm can be applied to
systems having many degrees of freedom, such as lattice
field theory or condensed-matter theories involving in-
teracting electrons.

Our algorithms for wave functions are iterative, and we
may describe the simplest or primary algorithm as fol-
lows. Imagine we are equipped with a set of basis states,
and a linear combination of them which approximates
the ground state of the Hamiltonian. One iterative step
consists of taking one basis state and combining it with
the current approximate ground state to make an "op-
timal" improvement. A desirable feature of the algo-
rithm, which it shares with Monte Carlo procedures, is
that it has fixed complexity. The algorithm converges ex-
ponentially with n, the number of iterations. This is
much faster than Monte Carlo convergence, which goes
like n ', where now n is the number of uncorrelated
configurations that have been generated. An important
feature of our algorithms is that fermions pose no special
problems.

The main unfavorable characteristic of the wave-
function algorithms is that they converge to exact eigen-
vectors and eigenvalues only if the complete set of basis
states is small enough to allow vectors expressed as linear
combinations of them to be stored in the computer. This
requirement is not usually met in the case of systems hav-
ing bosonic degrees of freedom; then the number of basis
states often is infinite. Even in purely fermionic or boson-
ic spin systems, the number of states in a small system
can overwhelm computer storage capacity. If a system
has I' degrees of freedom, each of which can occupy K
states, there are K states in the basis. Thus, for the
spin- —,

' Heisenberg model on a 6 X 6 square lattice,
E =2 =7X10' .

In light of this problem, a conservative way to view the
algorithms is as a variational method incorporating enor-
mous numbers of states. However, we wish to do better
than that, so a major part of our eAort has been devoted
to the problem of obtaining good results with a finite
number of basis states. The practical utility of our algo-
rithms is greatly increased if we succeed. Our strategy
begins with the observation that it may be possible to

choose a finite basis whose states nearly saturate the
norms of the low-lying exact eigenstates. This will be the
case when we have physical or mathematical reasons to
believe that states in a certain class are dominant. Let us
suppose we have chosen a basis set following such a
motivation, or, failing that, because the set simplifies the
computation of matrix elements. The next task is to
identify the subset of the basis that is optimal for the rep-
resentation of low-lying states (and will fit into memory).
In doing this we should proceed in an automatic and
bias-free way, abandoning the physical or mathematical
prejudices that led to the choice of basis.

These ideas are implemented as follows. Starting with
a finite, or partial basis, we use the primary algorithms
described above to obtain the best approximations to the
low-lying state vectors that can be formed from the
current partial basis. Then we use secondary algorithms
to "weed" out some of the least important states in our
basis, which we replace by randomly chosen new states
from the complete basis. We then use the primary algo-
rithms to obtain the best approximations possible with
the modified partial basis. The process is repeated until
the partial basis shows no further secular change. If our
original prejudice about which states are dominant was
correct, the partial basis we arrive at will include those
putatively dominant states.

At this point, we have done as well as we can using a
subset of No basis states. Let E(NO) be the resulting en-
ergy of some low-lying state. In general, E(N )woill de-
pend on Xo, and we will need to extrapolate to Xo=N,
where X is the number of states in the complete basis.
(N = Oo for some problems with bosonic degrees of free-
dom. ) In making the extrapolation we must know how
E (No) varies with No, and in this we are aided by a re-
markable coincidence. As we stated above, the conver-
gence of the primary algorithm is exponential. If we let
N(n) be the deviation of the state energy from its final
value after n iterations,

as we will show in Sec. IV. Here C is a constant that de-
pends upon the global properties of the Hamiltonian. C
can be measured by observing the convergence of the pri-
mary algorithm using the subset of Xo optimal states.

Now consider the extrapolation in Xo. In Sec. V we
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wi11 show that the state energy has the asymptotic depen-
dence

E(XO)= A +8(XO) (1.2)

where C is the same constant that appears in Eq. (1.1).
This means that the exponent controlling the extrapola-
tion can be measured within the subset calculation.

The layout of the rest of the paper is as follows. In
Sec. II we present the primary algorithm for wave func-
tions. This algorithm is a generalization of the algorithm
described above in that it permits us to compute a Axed
number of the lowest eigenvectors and eigenvalues itera-
tively.

In Sec. III we introduce the Hubbard model, which we
use as a test of our algorithm. The Hubbard model has
the desirable features of a finite but large basis and par-
tially known energy levels. We can therefore test our al-
gorithms against known results. Since we know the ei-
genvalues to high accuracy, we can test the extrapolation
of results obtained with a partial basis. In Sec. III we
also discuss the problems posed to our algorithm by de-
generate states. We argue that the use of a basis belong-
ing to a row of an irreducible representation of the sym-
metry group of the Hamiltonian will eliminate degenerate
states. We compare our results with previous work.

Section IV is devoted to the convergence of the algo-
rithm. Simple theoretical considerations suggest the con-
vergence is given by Eq. (1.1), and we verify that the
Hubbard model computations follow this law over seven
decades of variation.

In Sec. V we discuss the choice and use of a finite sub-
set of basis states. We give a derivation of the criterion
used in the weeding process, where we change the states
in the subset retained in storage. We apply these ideas to
the Hubbard model, where we recompute the lowest four
eigenvectors and eigenvalues for several values of 1Vo.
We then derive Eq. (1.2) and test the extrapolation to the
exact energies.

A summary and conclusion are presented in Sec. VI.

II. PRIMARY ALGORITHM

Cl
(2.1)

be an eigenvector of H, b. The corresponding approxi-
mate eigenvector of H is

g= gc, P, .
a=1

(2.2)

We start the computation by using the variational prin-

Our algorithms are based on an extension of the
Rayleigh-Ritz variationa1 principle. Let H be an Hermi-
tian operator, and let [P, J be a set of K orthonormal
states. Order the eigenvalues of the KXK Hermitian
matrix H, b

= (P, ~H~P& ) in increasing order:
Then each of these eigenvalues is an

upper bound to the corresponding ordered eigenvalue of
H. In addition, let

ciple for %=1 with one of the basis states discussed in
Sec. I. This gives an upper bound to the ground-state en-
ergy. We then add a diferent basis state and proceed
with %=2. We continue adding states and diagonalizing
H, b until we reach K =r, where r is the preassigned
number of eigenstates we wish to construct. In the subse-
quent iterations we retain the r lowest eigenvalues and
eigenvectors, and discard the (r +1)st entities.

As we range through the basis in some fashion (to be
discussed below), we will eventually choose a basis state P
encountered earlier. P is not orthogonal to the current
approximate eigenvectors P' (a = 1, . . . , IC), as required
by the variational principle. We therefore replace P by
its orthonormal projection

1 /2

a =1 b=l

(2;3)

and use this state to continue the process.
An important feature of our algorithm is that as we

add states it is easy to diagonalize H, b because it is the
sum of diagonal and rank one matrices. H, b has the
form

H, b=
0 E

Hl K+1

H2, K-+1
(2.4)

HK + 1, 1 HK + 1,2 HK + 1,K + 1

Here we denote the added state by P +', and H, x+,= ( P'~ H
~ g

+ ') . It follows that

Ca = Ha, K+1
cx+& (0 =I&. . . qK)

a
(2.5)

The (If+1)st row of H, b leads to the characteristic
equation

~Ha, x+ ] ~

+Ex+~ A =0
a=1 a

(2.6)

where EK+, =HK+1 K+, . This can be converted into a
polynomial of degree %+1, and so has K+1 solutions.
However, Eq. (2.6) is illuminating, for inspection shows
that one of the E's lies between successive solutions,

~1 —E
1

—~2 — —EK —~K + 1 (2.7)

The fact that roots are bracketed in this way makes it
easy to devise root-finding routines for them.

We see from Eq. (2.7) that the lowest r roots decrease
monotonically as we proceed. As we iterate, the r roots
must approach eigenvalues of H. The argument is that
the roots are monotonically decreasing and bounded from
below, so they must approach limits. At the limits,
H, x + &

=0 for any state we try to add, so P' is an eigen-
vector of H. In principle, the roots need not approach
the r lowest eigenvalues, but we have never encountered
anything other than the r lowest states. In many distinct
runs with the Hubbard-Heisenberg model we always
found the same roots, and comparison with previous
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work shows that A,
&

is indeed the ground-state energy.
The new mth eigenstate is

' —I /2

1+ g i(A, E, )—

b ) A. —E~

This formula can lead to computational round-off' errors
in later iterations, where the approximate eigenvectors
are close to true eigenvectors. Then ~!H, x +, ~

((min(E&+, E&),—and by Eq. (2.6), A, =E +O(~H~ ).
q takes on values m, K + 1, or m —1 depending on the re-
lation between Ez+, and the other E, 's. If q =K+1,
Eq. (2.8) has no small denominators, and is suitable for
computation. For the other m's, denominators in the qth
terms in Eq. (2.8) are dangerously small, and must be
recovered. This can be done by using Eq. (2.6) to elimi-
nate (A, E~ ) '.—The improved formula is

t2
H. , = —(a—!K'ib) . (3.2)

Equation (3.2) is convenient for programming, but in
order to compare our results with previous work, we note
that it is equivalent to the spin- —,

' Heisenberg model.
The terms in E contributing to H, b are

2
la~JcT Ja(a 'i, OCJ a'~joia'

(ij ),o

+CJac;ac(aCJa CJ aC; ac(acia)

Introduce spin operators for each site

(3.3)

complete or truncated bases.
Application of K to ~a ) produces a state having two

electrons on one site and, therefore, energy U. This
means that K lifts the degeneracy of the perturbative
ground state in the second order of perturbation theory,
not the first. To leading order in t IU, the effective Ham-
iltonian is the 12 870X 12 870 matrix

It:

P =~m Ex+i X
a=1
aWq

T

~H~, a+ i~

P2

(2.9)

a, X+1

, =i (A, E,)—
aWq

—1/2

~x+ i+ + Y' a, K+1

E, —
aWq

~Ha, x+ i ~

—E,

+six —siy =ci+cl+ ~

s,, =(—,')(c,t+c, + —c,t c; ) .
(3.4)

(3.5)

These operators satisfy angular momentum commutation
rules. On our degenerate ground-state subspace, where
there is one electron per site, si~ =s; =s;, =—„', and matrix
elements of K may be replaced by matrix elements of
spin operators. In this way we obtain the Hamiltonian of
the antiferromagnetic Heisenberg model

III. APPLICATION TO THE HUBBARD MODEL

The Hamiltonian of the Hubbard model is

H =tK+ U g c;+c;+c; c,

(3 1)

where (ij ) denotes a sum over nearest-neighbor elec-
trons. Apart from an additive constant, the hopping
term K is the kinetic energy, and the term U is a repul-
sive Coulomb interaction between electrons on the same
site.

We will study this model on a 4X4 square lattice with
periodic boundary conditions. On the lattice we place
eight spin-up and eight spin-down electrons (half-filling).
The number of spin-up (or -down) electrons is conserved
by H, and each group can be distributed in
16!/(8!) =12870 ways. Therefore, this subspace of Hil-
bert space is spanned by 165 636900 states. However, we
will study the Hubbard model in the limit t (& U, where
E can be treated as a perturbation. To zeroth order in E,
the ground state is degenerate, with every degenerate
state having exactly one electron per site. There are
12 870 of these degenerate states, which have zero energy,
and which we denote by ~a ). The basis set is of a con-
venient size to test our algorithms when we use either

The strong-coupling Hubbard model, which we call the
Hubbard-Heisenberg model, describes an antiferromag-
netic insulator. It is interesting in its own right because it
is believed that materials exhibiting high-T, supercon-
ductivity may possess an antiferromagnetic insulator
phase.

The simplest application of our algorithm is to obtain
the ground state of the Hubbard-Heisenberg model using
the full basis of 12870 states. Some features of the pro-
gram are worthy of comment. First, we compute matrix
elements of H as required, and they are simple:
H, &

=2t IU if
~
a ) and

~
b ) differ by the exchange of one

pair of neighboring spin-up and spin-down electrons;
H, , = —2t2n/U, where n is the number of states permit-
ted by the Pauli principle that arise from

~
a ) when one of

the spin-up electrons is displaced by one site; otherwise
H, ~=0.

Second, when we add a basis state, we choose it as fol-
lows. We randomly select a basis state already contribut-
ing to og.r approximate eigenvectors. Within this state
we randomly select one of the eight spin-up electrons,
and examine the nearest-neighbor site in a random direc-
tion. If we find a spin-down electron there, we inter-
change the pair; this is the state we add. If we find a
spin-up electron there, we start the selection process
over. This protocol has the advantage that
( P'!H

~ f + ' )%0 (except accidentally). As a result, each
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iteration advances the computation even though H, b is a
sparse matrix.

The third point is that we periodically update our work
by renormalizing the approximate eigenvector and
recomputing the energy as (g~H~f&. Updating inter-
rupts the round-o6 errors that accumulate in an iterative
computation. It is expensive in computer time: In the
course of an iteration we compute a column of H, but up-
dating requires the whole matrix. If we update every
10000 iterations, we spend about half the CPU time up-
dating. We have done this in our work, but the correc-
tions we find indicate that we could update considerably
less frequently except near the beginning of a run.

Using the setup discussed above, we ran for 290000
iterations, at which point the approximate ground-state
energy was —76.80 in units of t /U. The energy was still
changing, and we will see later that the true ground-state
energy is —76.9139328337. For reference, the approxi-
mate energIes after 10000, 66000, and 183 000 iterations
were —71.25, —75.31, and —76.47, respectively. The
computation took about 37 h of CPU time on our Sun
4/280 computer.

If one tries to repeat the calculation for several states,
one encounters degenerate states which cause the pro-
gram to crash. We have not attempted to develop a for-
malism to cope with this directly; rather, we adopt the
view that degeneracy arises because of symmetries of the
Hamiltonian. When we take these symmetries into ac-
count, we can reduce the Hamiltonian to block diagonal
form. Within the blocks, the states are nondegenerate.
This approach has the additional advantage that each
block is spanned by a basis of reduced size.

We construct the linear combinations of basis states
~a & that span the blocks using group theory. Let 6 be
the symmetry group of the Hamiltonian, in this case the
space group of a square lattice with periodic boundary
conditions. Let DJ~~'(6) be an irreducible representation,
and ~a & one of the basis states. Then the linear combina-
tion

~
I, t;a) =Xg D,',"(G)*C~a &

G

(3.6)

3 3

~p, q;a)=N g g exp
j=ok =0

(jp+kq)

belongs to the ith row of representation l. When we let
~a & range through the basis, we generate a complete basis
of states for the block labeled by (l,i) Blocks havi. ng the
same l but di8'erent i have the same spectra; therein lies
the degeneracy. Qn the other hand, within a block there
can be only accidental degeneracy.

It is not difficult to implement Eq. (3.6), but for our
purposes it suffices to remove most of the degeneracy by
replacing G by the translation subgroup of G. In this
case, we use the linear combinations

TABLE I. Energies of the lowest four states of the Hubbard-
Heisenberg model in momentum channel (p, q) after 10000
iterations. Energies are given through the significant figure that
will not change in the next 100 iterations.

Momentum E E3

other by these operations. As a result, these states are de-
generate in energy, and it suf5ces to consider only one
member of each coset. The independent momentum
channels can be taken to be those labeled by (p, q) =(0,0),
(0,1), (0,2), (1,1), (1,2), and (2,2). The numbers of states in
these channels are 822, 800, 816, 800, 800, and 816, re-
spectively. The ground state is in the (0,0) channel.

The point subgroup of the space group is eight dimen-
sional, and has four one-dimensional irreducible repre-
sentations and one two-dimensional representation. This
opens the possibility of a residual twofold degeneracy
within the independent momentum channel blocks. Ac-
tually, this can occur only within the (0,0) and (2,2)

'

blocks. The reason is that it is a subgroup of the point
group —the group of operations that leave the momen-
tum vector invariant up to a multiple of the reciprocal
lattice vector —that appears in the irreducible representa-
tions of G. This subgroup has a two-dimensional repre-
sentation only for the (0,0) and (2,2) blocks; in those
blocks the "subgroup" is the entire point group.

We have used our algorithm to recompute the ground-
state energy in the (0,0) block, which has a basis of 822
states. This leads to the 12 significant figure energies cit-
ed above. We ran the program for 100000 iterations, but
the energy did not change after 78 000 iterations. At that
point, every state had been visited 95 times on the aver-
age. The energy was accurate to three significant figures
after 18000 iterations, and to five significant figures after
30000 iterations. In Sec. IV we discuss the convergence
of the algorithm more thoroughly.

The energy we find for the Hubbard model implies that
the energy per spin of the Heisenberg model is
1.403560401 in units of 2t IU. Th—is agrees with the
value computed by Oitmaa and Betts, and we also repro-
duce the ground-state pair correlations listed in Table 2
of Ref. 7.

We next calculated the energies of the four lowest
states in all blocks. None of the states in the (0,0) and
(2,2) channels are degenerate, which means that the
dangerous representations of the point group are not
found among these first few states. The results are given
in Table I, where the number of significant figures reAect
the accuracy attained after 10000 iterations. In these
calculations we have updated after every 1000 iterations
by rediagonalizing H in the subspace spanned by the four
approximate eigenvectors. It took a little more than 1 h

X ( T )'( f' )"
l
a & . (3.7)

Here 0 ~p, q ~ 3, and T; translates the electrons in
~
a & by

one site in direction i. The point group operations in the
space group have been ignored here, and many of the
momentum states of Eq. (3.7) are transformed into each

(0,0)
(0,1)
(0,2)
(1', 1)
(1,2)
(2 2)

—76.913
—67.174
—66.096
—66.0542
—67.536
—74.5995

—70.063
—63.49
—65.00
—63.23
—63.1
—63.329

—64.94
—63.060
—61.84
—61.83
—62.50
—63.222

—61.75
—61.549
—61.496
—61.70
—60.2
—52.45
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of CPU time on the Sun to perform the 10000 iterations
in each channel.

IV. CONVERGENCE

& y'IHI1t'& =n„,E. . (4.1)

From our basis we now choose a new state P
+' ortho-

normal to these states, following which the pew eigen-
values A, satisfy Eq. (2.6). We suppose that we have
iterated enough to assure that adding the new state
provides only a small shift in the energy levels. This
will be the case when (tp +'IHIP' +') =EK+, &E„,
and IH, K+, I ((min(E~+, E~ ), w—here p = 1,2, . . . , E.
Then we can solve Eq. (2.6) perturbatively for the shift in
the pth energy level,

IHp, K+ i IE=hD-=—
Erc+ i

(4.2)

6':—E —E is the deviation of tl"e current approximate
energy from the true eigenvalue E on the space spanned
by the X state basis.

The pth state wave function used in the matrix ele-
ments above may be written

Here we consider the convergence of the primary algo-
rithm introduced in Sec. II. We work with a basis of X
states, which can be either the complete basis for a block
of H, or a partial basis of the type discussed in Sec. U. At
any point in the iteration, we have E states which diago-
nalize the matrix H, & introduced in Sec. II,

d6 Cdn
(4.9)

where C=cic2/C3C~, and n is the number of itera-
tions. We have already noted that C] to C4 can vary
significantly from iteration to iteration, so that C will
fluctuate with n. We ignore these fluctuations, so Eq.
(4.9) gives the evolution of 6'(n) averaged over many
iterations. In principle, C can also depend on n in a secu-
lar fashion because as the iteration proceeds, the vectors
Xi' and Pi' become more closely aligned along the low-
lying excited states. Note that C is an entity that depends
on the structure of the Hamiltonian.

In practice, C has little or no significant variation while
6 is changing over many decades. (In Sec. V we discuss
one exception to this finding. ) Therefore, we are justified
in treating C as a constant when we solve Eq. (4.9),

means that, while C& would vary from iteration to itera-
tion, its average over many iterations would be one.
However, the operator H E—in Eq. (4.6) has the effect
of aligning P

+' along the highly excited eigenstates of
H, so that while X

+' varies randomly, P
' does not.

The behavior of y~ is quite different: When the iteration
process has been under way for some time, y~ should be
aligned along the low-lying eigenstates of H. Therefore,
we expect the scalar product to be less than the random
value, or C, (1. If H is ill conditioned, we might expect
C, to be especially small. The same considerations ap-
ply to C2. C3 and C4 are less than one also.

Equation (4.7) leads to the differential equation

g=(1 e)' p~+—ex~ (0 (e (1), (4.3) g e
—nC/N (4.10)

where 1t
~ is the true pth state wave function, and Xi' is

orthonormal to gi'. e is assumed to be small already, and
in the following we work to lowest order in e. When we
iterate, the added state may be decomposed similarly

+'=e'~(1 a)' it/P+aX—+' (0(a (1) (4 4)

Using these expressions, to lowest order in e,

, 1&x'l(H —E, )lx +'&I'
b, A'= —e

(xK+1 l(H E )lxK+1 )
(4.5)

Equation (4.10) fits the data well. In the long run of
100000 iterations (X=822) mentioned in Sec. III,
varied over more than seven decades. The comparison
with Eq. (4.10) is given in Table II. [The choice C=0.23
was made by a least-squares fit of a straight line to
In@'(n). ] The value of C increased to 0.63 when we ran
the algorithm to compute the four lowest states. The in-
crease can be understood in light of the fact that in this
case the ground state is required to be orthogonal to the
next three excited states. This constraint apparently
makes each iteration more eScient, but there is a cost in

Define

Pq=(H —E )x'

Then we may write

( yql yq ) 1/2 (4.6)
TABLE II. Comparison of measurements 6 (data), with Eq.

(4.10), 8 (formula). The data is for the ground state in the (0,0)
channel, using the algorithm that calculates only the ground
state. Parameters are Do =6.1, C=0.23, and ¹ 822.
x [y]=x X 10'.

(4.7)
n (thousands) 6 (data) 8 (formula) gd /gf

The inner products in Eq. (4.7) may be written

l&x'l0 "&I=C&/'&&, 1&x +'IP&l=c, ii &,
(4.8)

&x&ly&&=c, , &x +'ly +'&=c, .

Consider I (x~lg + ' ) I first. If P
+' were a random unit

vector, we would expect C& to be one. This statement

5
15
25
35
45
55
65

9.39[—1]
1.05[ —1]
6.24[ —3]
6.87[ —4]
2.04[ —5]
6.31[—7]
4.65[ —8]

1.51
9.17[—2]
5.59[—3]
3.41[—4]
2.08[—5]
1.26[ —6]
7.70[ —8]

0.62
1.1
1.1
2.0
0.98
0.50
0.60
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computer time and storage to deal with more states. It
should be mentioned that the values of C for the excited
states were smaller. For example, for the first excited
state, C was 0.44.

When we used the full basis of N=12870 states to
compute the ground state, 6" varied over about two de-
cades, and the fit was with C=0.21. Altogether, these ex-
periments verify that the convergence of the algorithm is
exponential. The number of iterations for e folding is
several times N.

V. PARTIAL BASES

X, X
K [(y~@a) [2 K (y~@b)@b

, (a E,)—b=) a —Eb
(5.1)

where o; is the mth ordered solution of the equation

The number of states in the Hubbard-Heisenberg mod-
el is small enough that we can store them all in our com-
puter. We mentioned in Sec. I that complete storage is
usually impossible, and in this section we discuss
modified algorithms that store only a partial basis. When
we deal with a subset of the basis states, we do no harm if
the states we retain dominate the eigenvector we wish to
compute. For example, if we sum the probability ampli-
tudes of the partial basis states in the normalized eigen-
vector and find a result that is very close to one, the par-
tial basis is adequate for many purposes. It is an art to
choose a basis that has the feature that a subset saturates
the norm. One must use all available information, such
as the presence of smallish parameters or topological ex-
citations to choose the basis.

After a "good*' basis has been chosen, we must decide
how to select the subset that constitutes the partial basis,
which consists, let us suppose, of No orthonormal states.
We want to make this selection on the basis of dynamics
rather than preconception, so we adopt the following
scheme. First we apply our iterative algorithm until
No +6 basis states have been included. We then contin-
ue the iteration using only these NO+9 basis states until
the eigenvectors and eigenvalues are stable. At this
point, the approximate eigenvectors are the optimal ones
that can be constructed using the basis at hand. Howev-
er, there is no guarantee that the No+6 states in our
basis are the most favorable ones. We therefore deter-
mine which 6 of the No+ 5 basis vectors are least impor-
tant, and we throw them away. Below we discuss how
these unimportant basis vectors are identified. The num-
ber 6 of discarded states is at our disposal, but in any
case we make room for 6 new basis vectors, which we
select from the full basis. In this way, we weed our basis
of unimportant states, replacing them, we hope, with
states that are important. We continue this process until
further weeding proves futile.

To see how to weed, suppose that we have determined
the K lowest eigenstates of H on the subspace spanned by
the partial basis of No+6 states. Let the K eigenstates
and eigenvalues be g' and E, . We now determine the
eff'ect of removing the basis state P. To do this, form the
K —1 linear combinations

a E—, (5.2)

This equation is equivalent to an order K —1 polynomial,
and so has K —1 solutions. Examination shows the solu-
tions to be bracketed by the previous eigenvalues,

E ~o. ~E (5.3)

The vectors P are orthonormal, as can be shown us-
ing Eq. (5.2). Therefore, these vectors span a K —1 di-
mensional subspace. Equation (5.2) also implies
(P~g ) =0, so this subspace is the orthogonal comple-
ment of P. Finally, these states diagonalize H on the
K —1 dimensional subspace,

(y~~a~y~) =n„a, . (5.4)

We conclude that the exclusion of basis state P raises
the energy of state p from E to a . In order to decide
which state to throw out, we must see which choice of P
minimizes the shift; this is the least important state for
the computation of the eigenvalue p. This can be done by
evaluating Eq. (5.2) for each basis state successively, but
there is a much simpler scheme that is roughly
equivalent. When Xo))1, and p is small, the perturba-
tive solution of Eq. (5.2) is a reliable guide,

a=1, a P
asap

(5.5)

We see that o,'z is close to E when the probability ampli-
tude ~(P~P) ~

is small. We therefore choose P to be the
state that has the smallest probability amplitude in state
p. This is the criterion one would have chosen intuitive-
ly. Note that in weeding a basis, the states ultimately re-
tained will depend on the level p used during state selec-
tion.

In practice, we eliminate the 6 states having the small-
est probability amplitudes

~ (P P) ~
all at once, without

recomputing the probability amplitude
~ (P~g) ~

after
each state is removed. Then we add 6 more randomly
chosen states from the full basis, as described above. We
have used various criteria for ending the weeding process,
and various choices of No an A. Several general features
are apparent. First, when the primary algorithm is used
to find the eigenstates and eigenvalues, in@(n) shows
significant Auctuation with n when the partial basis is,
say, 150 out of 822 states. That is, the stochastic charac-
ter of the process, which was mentioned in Sec. IV, be-
comes quite prominent. 1n6(n) is globally linear, but its
rise is by sudden jumps, separated by plateaus on which
ln@(n) changes very slowly. The features are shown in
Fig. 1. Since in@(n) is approximately linear over many
iterations, it is still possible to determine an effective C
governing convergence.

The values of C we obtain from the convergence with
partial bases are close to those cited in Sec. IV. This
means that C is only weakly dependent on No, which is
important in extrapolating o'ur partial basis results to ob-
tain corrected eigenvalues. The specific values of C for
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FIG. 1. Behavior of —ln@ for No=1SO and 6=30. The
straight line corresponds to C=0.531. The number of iterations
n is in hundreds.

FIG. 2. Behavior of —ln for No=150 and 6=45. The two
lines correspond to C= 1.153 and C=0.126. n is in hundreds.

the convergence of the ground state are given for various
values of Np in Table III. Each entry in Table III re-
quired a few hours of CPU time to compute.

The second feature worth noting is that when 6 is as
large as, say, 0.3NQ, in@ sometimes shows a break in its
rise. An example is shown in Fig. 2. The break does not
occur when 6 is small, even though partial bases showing
a break and no break differ by only a few states. In Fig.
2, when n is small, the value of C is somewhat larger than
that stated in Sec. IV; for large n, C is tiny. The conver-
gence behaves as if it is a superposition of two exponen-
tials, with the slowly falling exponential exposed only
when the rapidly falling exponential has died away. Such
double exponential behavior shows that good agreement

No

150
200

200
250

250
300

300
350

350
400

Ei(NO)

—74.401 641
—74.674 341

—74.674 341
—74.937 475

—74.937 475
—75.214 085

—75.214 085
—75.512 496

—75.512 496
—75.754 590

0.51
0.64
0.575(av)
0.64
0.64
0.64(av)
0.64
0.59
0.615(av)
0.59
0.64
0.615(av)
0.64
0.45
0.545(av)

E& (extrapolated)

—75 ~ 52

—75.85

—76.29

—76.74

—76.80

TABLE III. Extrapolation of partial basis data on ground-
state energies in the (0,0) channel. Equation (5.7) is used to ex-
trapolate data from two choices of No to N=822. The ground-
state energy is actually —76.91, and at N=822, C=0.63 for the
four-state algorithm.

with Eq. (4.10) is not inevitable, and the question is how
to explain the double exponential.

Our hypothesis is that double exponential behavior is
associated with the sparse nature of H. Even with a full
basis, most matrix elements of H are zero. When we re-
move 6 states, it may be that there are subsets of the par-
tial basis that have very few (or even no) nonzero matrix
elements of H between them. Such a disconnection is
more likely when 6 is large. If there is a disconnection,
one can imagine that when we iterate we are working on
two nearly uncoupled problems, with convergence con-
trolled by separate exponentials. We have tested this hy-
pothesis by a simplified model. We take H to be block di-
agonal on two subspaces of N, and Nb states:
N +Nb =Np ~ For simplicity we consider the primary al-
gorithm for the ground state alone. An extension of the
argument in Sec. IV shows that the error 8 is a sum of
two exponentials, and if N, ))Nb, the ratio of the two ex-
ponents differs greatly from one, as seen in Fig. 2. Our
hypothesis therefore explains Fig. 2, and it suggests using
a suSciently small 6 to evade the double exponentials.

Table III shows that the ground-state energies obtained
with partial bases are not close to the energy obtained
with the full basis, and we now show how to extrapolate
the results to obtain improved energies. To do this,
reconsider the argument used in Sec. IV to study conver-
gence, but this time let K =N =Np, so that, in principle,
we have completely diagonalized H on the partial basis.
Then E is the energy of the pth state that results from
applying the primary algorithm until stability results.
Now enlarge the basis by one state: Np —+Np+ 1. The ar-
gument leading to Eq. (4.7) still applied, except that now
D=E —E, with E the state energy using the complete
basis,

(S.6)

However, this time the resulting differential equation and
its solution are
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CdN
X

6(N) =B(N)

E (N)=A +B(N)

(5.7)

Using this extrapolation, we have used data from pairs
of partial bases to compute A and 8. For C we used the
average of the values of C for each partial basis. The ex-
trapolations are given in Table III. Clearly, if Np is as
1arge as 400, we can extrapolate fairly well to the
ground-state energy at %=822. Table III shows that the
extrapolants are themselves approaching a limit, so
within the context of calculations relying solely on partial
bases it is possible to estimate how well we do.

VI. CONCLUSION

The antiferromagnetic Heisenberg model we have stud-
ied poses strong demands on any computational scheme.
It has no adjustable parameters, and no systematic ap-
proximation scheme. Accordingly, we have not been able
to introduce the sort of good basis contemplated in Sec. I.
Instead, for our basis we have simply used plane-wave su-
perpositions of states having definite configurations of
spin-up and spin-down electrons. The dominant ampli-
tude in the ground state is the antiferromagnetic Neel
state, but the probability of this state in the ground state
is only 16.5%.

Most of the data we have presented have been eigen-
values in the (0,0) momentum channel. When we used
the full basis of 822 states in this channel, the accuracy of
the eigenvalues we obtained was limited only by the com-
puter. Our iterative algorithm converged exponentially,
as predicted by simple theoretical considerations. The

computation requirements are modest.
When we used partial bases, the accuracy was poorer,

and it is useful to understand how much so. The max-
imum expectation of H, b in one of our basis states is —8
(in units of t IU), and the minimum is —64. Of course,
the maximum and minimum eigenvalues are somewhat
larger and smaller than these limits, respectively. The
822 eigenvalues are presumably concentrated in the mid-
dle of this range, because the ground and first excited
states are at —77 and —70 (to the nearest integer). From
this perspective the approximate ground-state energy of—74 —,

' obtained with a partial basis of 150 or 200 states is
not ho bad: Many physics problems have been under-
stood on the basis of this sort of accuracy. With 300 to
350 states and extrapolation, the error in the ground-state
energy was reduced to 0.14. If we assume, for the sake of
argument, that the mean of the 822 eigenvalues is —42,
then the ground state lies 35 units below the mean, and
the error in our computation of this deviation is 0.4%%uo.

Extrapolation reduced the error greatly, and the success
of the extrapolation scheme is an encouraging finding.

The main point we have not touched in this paper is
how well the algorithm will do with a problem having a
much larger basis. One does not have to look far for a
problem: If we drop the condition t/U« 1, then the
(0,0) channel of the 4 X 4 half-filled Hubbard model has a
basis of 10353252 states. Our speculation is that as the
basis becomes larger, it becomes more important to find a
good basis.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under Grant No. PHY84-15534.

Monte Carlo Methods in Statistical Physics, edited by K. Binder
{Springer, New York, 1986).

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, ¹

merical Recipes (Cambridge University Press, Cambridge,
England, 1986), Chap. 9.

30n the computer, the eigenstates g' and g ' are expressed as
linear combinations of basis states. We omit further elabora-

tions this entails.
~J. Hubbard, Proc. R. Soc. London, Ser. A 281, 402 (1964).
5V. Emery, Phys. Rev. B 14, 2989 (1976).
G. F. Koster, Space Groups and Their Representations

{Academic, Nt:w York, 1957).
7J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).
This would slow down the algorithm for a critical system.


