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Energetics and structure of He droplets at a finite temperature
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Bound quantum-liquid ( He)„droplets (n =57, 120, and 270) at 3 K coexisting with saturated va-

por are studied with use of quantum path-integral molecular dynamics. The diffuse nature of the
droplets and their pachydermatous behavior extends to larger sizes in comparison to the corre-
sponding clusters at zero temperature. For the largest droplet a core liquid region develops, exhib-
iting properties in agreement with bulk data.

I. INTRODUCTION

The stability and structure of rare-gas clusters have
been the subject of several recent experimental and
theoretical investigations. ' Among these systems, clusters
of helium atoms are unique due to their dominant
quantum character. Furthermore, these clusters possess
several properties which motivate their study. (1) He
clusters are the only ones that are definitely liquid, since
even at 0 K He solidifies only at a pressure larger than
25 atm. (2) Their electronic structure is the simplest of
all the rare gases which makes them amenable to accu-
rate calculations. (3) Accurate interatomic interaction
potentials are available. (4) Quantum-liquid drops can
serve as prototype systems for studies of inhomogeneous
quantum systems. (5) The similarity between their in-
teraction potentials and the nucleon-nucleon potential
(spin-isospin averaged), coupled with their inherent quan-
tum nature, suggests that studies of these clusters will
enhance our understanding of the structure, energetics,
and dynamics of nuclear matter.

The ground states (at zero temperature) of He and 'He
clusters have been studied recently using the Green's-
function Monte Carlo (GFMC), variational Monte Carlo
(VMC), ' and density-functional (DF)''' methods. We
present results of quantum path-integral molecular-
dynamics (QUPID) simulations' of liquid ( He)„droplets
(n =57, 120, and 270) which provide information about
the efFect of finite temperature (3 K) on the energetics and
structure of these clusters in equilibrium under
saturated-vapor-pressure (SVP) conditions.

II. METHOD

The method which we used rests on the Feynman
path-integral formulation of statistical mechanics, '

which allows the derivation of an expression for the par-
tition function Z, for a system of N quantum particles
(mass m), Z =limp Zp, which neglecting exchange,
can be written as

Prn
V,n=

2 2 g g (r,t,
—r,t, +i)2' P

(lb)

where V is the interparticle interaction potential and
P= 1/k&T. Equation (1) establishes an isomorphism be-
tween the quantum problem and a classical one where
each quantum particle is represented by a harmonic cy-
clic chain (r, p+, =r;, ) of P pseudoparticles. ' The equi-
librium average energy of the system is given by

E= +K;„,+(U), (2a)

where U is the second term in Eq. (lb), the angular
brackets denote averages over the statistical distribution
defined by Eq. (1), and the interaction kinetic energy is
given by'3b' '~

(2b)

III. RESULTS

Thus the kinetic energy (K ) is given by the sum of the
first two terms in Eq. (2a).

The equilibrium averages may be obtained via classical
molecular dynamics' (MD) by noting the equivalence be-
tween the canonical statistical averages defined by Eq. (1)
and averaging, using constant temperature MD, ' over
the classical phase-space trajectories generated by a
Hamiltonian with V,tt [Eq. 1(b)] as the potential term
augmented with a kinetic energy of the pseudoparticles.
The number of pseudoparticles P which is required to
achieve convergence is temperature dependent. In our
calculations, at 3 K, P=64 yields convergent results.
The interparticle potential which we used is the
HFDHE2 potential of Aziz et al. and the equations of
motion were integrated using the velocity form of the
Verlet algorithm, with a time step At=2. 06X10 ' sec.

mP
2rtfi P

3NP /2

J II II«, ~

(la)

Since at finite temperatures and zero pressure the equi-
librium state of helium is a gas, in order to investigate a
condensed state we confine the system in a spherical cavi-
ty' of radius R, (defined as the distance from the center
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at which the repulsive confining potential vanishes).
Consequently, an equilibrium coexistence between a con-
densed phase and a surrounding vapor can be established.
At the temperature of our study (3 K) eff'ects due to ex-
change on structural and energetic properties of liquid
He are very small. ' '' However, the quantum nature

of the system is manifest ~ In fact pure classical simula-
tions yield a solid under these conditions. Moreover,
simulations using the Feynman-Hibbs smoothed effective
potential' yield unstable clusters (since the width of the
Gaussian-smearing function used in this method corre-
sponds to the thermal wavelength of a free particle, while
particles in the quantum liquid are more localized, see
below).

Three systems were studied: I, N =70, R, =34.6ap II,
N =150, R,. =44.6a„; and III, N =294, R, =44. 6ap. Pro-
longed equilibration and averaging periods [typically
(2 —4) X 10 b. t] were necessary since the process of ex-

ploration of the accessible phase space in these systems is
rather slow. For the large system (III), simulations on an
ETA-10G computer, using a fully optimized code re-
quired 1.75 CPUh per 10 At. In Fig. 1 we exhibit plots
versus distance from the center of the cavity of the num-
ber density, p(r), n(r) = f~(r')dr', the per-particle total

energy E and its potential and interaction-kinetic-energy
components, ( U) and (K;„I), respectively, and of the
rms radius of the He atoms,

In constructing the radial plots the desired property is
averaged over the trajectories of atoms whose pseudopar-
ticles' barycenters lie in spherical shells (r, r+Ar) of
equal volumes.

The values of characteristic quantities obtained in this
as well as other studies are given in Table I. These quan-
tities include the average energy per particle, E; the cen-
tral density p„calculated for the central region of the
cluster, i.e., for atoms whose barycenters are within a dis-
tance r from the center where r=10ap for system I and
12.5ap for systems II and III; the relative compression
5p/pp=(p, —pp)/pp where pp is the experimental bulk
density at the corresponding temperature on the vapori-
zation curve; the width of the interface of the liquid clus-
ter t, defined as the distance between the radii where the
density p(r) has decreased from the central value p, by
90% and 10% of the difference between p, and the densi-
ty p, in the surrounding vapor (see below); the unit radius
rp=( —', (r ))' X '~, where (r ) = f drp(r)r /N, and

r, &2 defined as the distance for which p(r, &z)=(p,—p, )/2.
As seen from Fig. 1(a) the density of the clusters de-

creases monotonically from the center outwards cul-
minating in a shell of constant density corresponding to
the coexisting vapor. Thus for a given radius of the cavi-
ty and number of particles N the system achieves an equi-
librium coexistence between a critical liquid droplet and
its saturated vapor. ' The spatial extent of the liquid
droplet is the distance R I at which the transition to vapor
occurs which is determined to be, for the I-III systems,

28ap (n = 57), 35ap (n = 120), and 39ap (n =270), re-
spectively, where n is the number of atoms comprising
the liquid droplet [see Fig. 1(b)]. The liquid-droplet
quantities in Table I are calculated for these ( He)„clus-
ters, i.e., excluding the vapor. As evident, the central
density increases with cluster size (see Table I) and for
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FIG. I, Results obtained via QUPID calculations at 3 K for
equilibrium liquid He clusters at SVP conditions. The solid,
dashed, and dotted lines correspond to system sizes N of 70(57),
150 (120), and 294 (270) atoms, respectively (the numbers of par-
ticles in parenthesis correspond to the sizes of the liquid drop-
lets in coexistence with a surrounding vapor). Plots vs distance
(in Bohr radii) from the center of the droplets are shown for (a)
the number density p(r). The arrows indicate the radii of the
liquid droplets (28ao, 35ao, and 39ao). The vanishing of the
density for r~R, is due to the confining potential; (b) the num-
ber of atoms n (r); (c)—(e) the per-particle total energy E and its
potential U and interaction kinetic energy K,„t components; (fl
the rms spatial spread R„of the atoms.
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the smaller clusters (I and II) is significantly lower than
that obtained in the 0 K calculations. ' '" For the larger
clusters (III) p, is in agreement with those calcula-
tions' '" and is close to the experimental bulk value at
3 K along the vaporization curve ( 3. 14 X 10 a o ), as
are also the SVP vapor density (p, ) and pressure (P„).
Experimentally at 3 K p, =9.55 X 10 ao and P,
=0.25 atm. The calculated values for systems I-III are

p, =3.17X10 ao, 2.21X10 ao, 2X10 ao, and

P, =0.52, 0.45, and 0.35 atm, respectively. We should
caution that for all our systems corrections due to finite
size (surface energy and curvature) are significant and
thus the comparisons to experimental thermodynamic
data should be regarded as qualitative and suggestive (in
particular for interfacial quantities which are most sensi-
tive to these effects).

While the three different size droplets are found to be
bound in our calculations at 3 K (indeed studies at 0 K
predict " that He clusters are always bound and that
the Bose nature does not suggest any kind of magic-
number stabilities due to filling of single particle levels,
unlike the case of He clusters' ' ), the nature and
structure of the droplets vary significantly depending on
their size and on temperature. This can be seen best by
examining the calculated relative compressions 5p/po for
the three clusters (Table I). We observe that the He
droplets exhibit a pachydermatous behavior (i.e., less
compressed than the bulk material) even at relatively
large sizes [5p/po(0 for I (n =57) and II (n =120) in
Table I], and comparison to the 0 K calculations reveals
that the magnitude of the effect is larger at finite temper-
ature and extends to larger clusters (at 0 K 5p/po) 0 al-
ready for n =64, see Fig. 3, in Ref. 11). This indicates
that the effect of temperature is to increase the size range
for which the diffuseness of the clusters (i.e., the lack of
clear distinction between surface and volume regions)
dominates the compressive contribution due to the sur-
face energy, '' resulting in an increase of the critical clus-
ter size for which the transition from pachydermatous to
leptodermous (5p/po)0) behavior occurs. In addition
we note (see Table I) that the calculated unit radii ro
which is a measure of the average volume per atom in the
cluster, are larger at finite temperature in comparison to
the 0 K results' '" and the experimental value ' for bulk
liquid He at 3 K (ro=4. 236ao).

To analyze the energetics of the clusters we exhibit in
Fig. 1(c)—1(e) radial plots of the total energy per atom E
and of the potential and interaction-kinetic-energy con-
tributions ( U) and (K;„,), respectively [see Eq. (2)). It
is seen that the binding energies decrease going outwards
from the center of the droplets. Consistent with our pre-
vious discussion, we observe that only for the largest clus-
ter [( He)$7O solid line in Fig. 1] the binding energy at
the central (core) region is close (

—4.945 K) to the bulk
liquid value at 3 K (

—4. 78 K from experiment and
—4.92 K from path-integral Monte Carlo' ). In addition
we note that the energy per particle in the vapor region
for all three clusters is close to the experimentally es-
timated value (3.97 K).

The variations of the potential and kinetic energy con-
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tributions with distance from the center of the droplet
refiect the variations in density [Fig. 1(a)] and degree of
particle quantum localization [see radial R results in

Fig. 1(f)]. For an equilibrium system of noninteracting
quantum He particles at 3 K the energy per particle is
K&=4.5 K (i.e., 3k' T/2) and the rms spread of each
particle [R =A'(3P/8m )' ] is 2. 33ao. The interatomic
interactions serve to decrease the quantum spatial spread
of the He atoms (i.e. , R (R/). The degree of quantum
localization, which increases with cluster size, is evident
from Fig. 1(f). Furthermore, the degree of localization is
largest in the core regions of the droplets, decreasing as a
function of distance from the center (most pronounced
for the largest cluster, solid line). Note however that
even particles in the vapor region exhibit a significant de-
gree of quantum localization. The interactions make also
a contribution to K;„, [Fig. 1(e)] which combined with K&
and the potential energy [Fig. 1(d)] yield the total energy
E [Fig. 1(c)]. We remark that for the smallest cluster
[( He)~7, dotted line] the kinetic energy is larger than the
potential contribution resulting in a positive value for E
throughout the droplet.

Pair distribution functions for the three clusters are
shown in Fig. 2. In the Appendix, we define a pair distri-
bution function for clusters g (r, , rz, r, z ), where r, and r~

are the radial distances from the center of the cluster of
two particles and r, z is their interparticle separation.
The method of calculating g (r, , r~, r, z) which we use is

also described in the Appendix.
Once the g(r, , r~, r, z) have been so calculated, they

may be averaged together in various ways to improve
statistics and make them more readily presentable. As
pointed out by Pieper et al. , if we consider g(r, , r&, r&z)
to be a function of r]z, taking r, and rz as parameters,
the function depends on R = ~ir, +rz

~
/2 much more

strongly than on 'r, —r~ ~, so that we may average all the

g (r, , rz, r, z ) for which R lies within some specified
range and consider the result g (R, r, z ) to be a function
of R and r&z. It is these g(R„, , r, z) which are shown in

Fig. 2.
The results for g (R, r &z ) in Fig. 2 are given for

R ~ 15ao for system I (dotted) and R ~ 10ao for sys-
tems II and III (dashed and solid lines, respectively). We
note that while the heights of the first peaks are similar
for the three systems, the peak broadens and its rnax-
imum shifts to larger values of r, z with decrease in the
number of particles in the droplet, consistent with the
variation in density in the central regions of these systems
[see Fig. 1(a) and Table I]. Furthermore, upon increasing
the size of the droplet the second coordination shell de-
velops.

In Fig. 3 we reproduce the experimentally measured
bulk pair distribution function, at 3 K (dashed line), as
well as the calculated g (R, r&z) functions for the largest
droplet ( n =270) for R ~ 10ao (solid line) and for
20ao ~R ~25ao (dotted line). In comparing the calcu-
lated and experimental results we note that the
g (R, r, z) function for the central region of the droplet
exhibits similar features to the experimental curve. This
agreement indicates that the core region of the large
droplet develops bulklike characteristics. The deviations
from the bulk properties are enhanced in the pair distri-
bution function corresponding to a lower density region
of the droplet (dotted line). In fact a comparison of this
g(R, r, ~) function with the one for the core region of
the medium size droplet (n = 120) shown in Fig. 2
(dashed line), i.e. , for two regions of comparable density
in two difterent systems, shows that they are extremely
similar, supporting the suggestion that these pair distri-
bution functions are largely governed by the density at
Rm.

The first minima in the g(R, r, z) in Fig. 2 occur at
11.S5ao, 10.65ao, and 9.90ao for systems I, II, and III, in
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FIG. 2. Results for the pair distribution function g(R„, , r»)
for the three ( He) „droplets at 3 K: n = 57 (R «15ao, dotted),
n =120 (R «10ao, dashed), and n =270 (R, «10ao, solid).
Note the broadening and shift of the first peak to larger values
of r» with decrease in the droplet size, and the development of
the second coordination shell for the larger droplets.

FIG. 3. Calculated pair distribution functions g(R, r») for
the ( He)gjo droplet at 3 K for two values of R; R,„«10ao
(solid) and 20ao «R «25ao (dotted). The experimental bulk
pair distribution function measured (Ref. 25) at 3 K is given for
comparison (dashed line).
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order of increasing system size. For the experimental
bulk curve it occurs at 9.88ao. If we take all the atoms
closer than the first minimum to be nearest neighbors,
then the experimental bulk system has 11.96 nearest
neighbors. If we count the number of barycenters within
the first minimum in the g (R, r iz ) from our simulations,
we find 6.83, 11.62, and 11.61 for systems I, II, and III,
respectively. Note that although the nearest-neighbor
shell for the medium-size droplet (system II) is more
diffuse than that of the large droplet (system III), the
number of nearest neighbors in these two shells is essen-
tially the same, and near the experimental result for bulk
He at the same temperature.

ter, which varies across the system [see the quantum
spread R in Fig. 1(f)], thus suggesting them as prototype
systems for investigations of inhomogeneous quantum
matter.
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IV. SUMMARY

From these studies we conclude that bound quantum-
liquid ( He)„droplets can form at finite temperature (3
K) under SVP conditions, thus extending the predictions
of 0 K calculations ' to the finite-temperature domain.
Our results reveal significant temperature effects on the
energetics and structure of the clusters. Although
characteristics of the radial-density profiles (surface
width, t, and r iz, see Table I) in our calculations are com-
parable to the values obtained in previous studies, ' '" we
find that He droplets at 3 K are more diff'use and less
bound in comparison to the corresponding clusters at
zero temperature (see per-particle energies, p, and ro in
Table I for n =57 and 120). Thus, at 3 K, even in the
core region of the droplets bulk values are approached
only for rather large clusters, and the pachydermatous
behavior (core density deficiency compared to bulk) ex-
tends to large clusters. Finally, we note that the systems
which we studied are of a pronounced quantum charac-

APPENDIX

We begin with the usual definition of a pair distribu-
tion function in an inhomogeneous system,

g, (s, , s, ) =pz(s, , sz) /[p(s, )p(sz) ], (Al)

where p(s) and p(s, , sz) are the one- and two-particle den-
sities, respectively. Unfortunately, this function depends
on too many coordinates to be conveniently displayed.
We can exploit the spherical symmetry of our clusters to
reduce somewhat the number of variables. The strategy
is to average the pair distribution function of Eq. (Al)
over values of si and sz such that (1) s, falls in a spherical
shell of mean radius r, and width 6, , (2) sz falls in a
spherical shell of mean radius rz and width hz, and (3)
the distance between the two particles s, z

=
~sz

—s, ~
falls

between r, 2
—A, z/2 and r,2+6,2/2, for a chosen width

b, ,z. If we now define a function P (s„sz,.r, , rz, r, z ) to be
equal to one if these conditions are satisfied and zero oth-
erwise, we can write

g(r„rz, r,z)=uz ' Jd s, f d szP(s, , sz;r„rz, r,z)gz(s„sz), (A2)

where

uz = d si d sz P(si, sz,'r, , rz, riz) .3 3 (A3)

The spherical symmetry of the system allows us to take p(s) =p(s), so that using Eq. (Al) we may rewrite Eq. (A2) as

g(ri, rz, riz)=[uzp(r, )p(rz)] d s, d sz P(s„sz, r, , rz, riz)pz(s, , sz)3 3 (A4)

if b, , and bz are small enough so that p does not vary significantly across the radial bins. The integrals in Eq. (A4) may
be evaluated simply by counting how many pairs of atoms are found in the system satisfying the conditions which make
P equal to one, and of course p(r) may be simultaneously accumulated. The only remaining difficulty is to evaluate uz.
While this task is quite arduous for arbitrary choices of the 6 s, if they are small it is easy to show that v2 may be accu-
rately approximated by

U2 =8' r, r2r]26]626]2 .2 (A5)

Using Eq. (A5) allows us to finish the evaluation of g(r, , rz, r iz ).
In performing these calculations for our system, the "particles" gone over should be the pseudoparticles onto which

the atoms are mapped in the "classical isomorphism, "' ' since the pseudoparticle density anywhere is the probability
per unit volume of finding an atom there, with the understanding that two pseudoparticles corresponding to the same
atom do not contribute to the pair distribution function. However, because of their volume, records of all the pseu-
doparticle positions were not recorded for all the computer runs used for averaging; only properties of atoms as a
whole, such as the location of each atom's barycenter (center of number of the corresponding pseudoparticles) and ra-
dius of gyration of the pseudoparticle distributions, were always recorded. Thus in calculating the pair distribution
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function an approximate account of the distribution of pseudoparticles about each atom's barycenter is necessary.
We now describe our approach to this problem. First we calculate g(r, , rz, r, z) for the barycenters. For each value

of r, and rz we have in this pair distribution function a function of the magnitude r]z alone; for compactness of nota-
tion we shall abbreviate and denote it by g(r&z ). This also emphasizes that g(r, , rz, r|z ) is a much stronger function of
r, z than of r, or rz. However, a barycenter at, say, r, actually represents a distribution of pseudoparticles around that
location. As a correction, we would like to average over this distribution. Because of the nature of the recorded infor-
mation available to us from our simulation, we take the distribution to be a Gaussian whose standard deviation is
chosen to retrieve the average radius of gyration of the pseudoparticle distribution corresponding to an atom whose
barycenter is located a distance r from the center of the cluster [see Fig. 1(f)]. That is, we calculate a smoothed g (r ~z )

where

g ( r jz ) (2trtr ttrz )
' f d ",f d "z g (.„)«p( —1st

—
r~ I'/2tr t ) exp( —

I sz —rz I '/2trz ) (A6)

where cr, is the standard deviation a distance r, from the center, and similarly for o z. In evaluating Eq. (A6), we adopt
the approximation, g(stz)=g(sl sz slz)=g(rl rz slz)'

With cr =o.&+ o z, it is easy to show from Eq. (A6) that if r tz is nonzero,

g(rtz)=(&2trtTr») ' f dstz [exp[ (stz r, z) /2tT ] exp[ ($]z+r, z) /2o. ]Is,zg(s, z),
while if r &z is zero,

g(0) =2(&2trcr') ' f ds» eztp( —s» /2cr')s»g(s» ) . (A8)

Of course, this approach ignores correlations in the distributions of pseudoparticles about two neighboring
barycenters. The neglect of such correlations appears to be relatively unimportant, however, unless the two atoms are
so close (closer than about 5ao ) that the hard-core repulsion between them comes into play, causing the distributions to
become markedly asymmetric. Consequently, for interparticle distances closer than about Sao, a g(r, z) smoothed by
this prescription goes to zero much too slowly as r, z goes to zero. We have tried to roughly compensate for this defect
by imposing on the smoothing in Eqs. (A7) and (A8) the constraint that g (r tz ) be zero if g (r &z ) is, although this causes

g (r tz) to go to zero somewhat too rapidly as rtz goes to zero. In any case, the eA'ect of this compensation is negligible if
r &z exceeds Sao, and values for r, z less than 5ao should not be taken as quantitatively accurate.
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