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The spin-bag approach to the high-temperature superconductivity is presented in detail. The
general argument that the local supression of the electronic pseudogap leads to an attractive in-
teraction of the quasiparticles is substantiated by the detailed calculation of the pairing potential

mediated by the collective modes of the spin-density-wave background.

In particular, the spin-

wave spectrum, the sublattice magnetization, and the spectral distribution of the collective modes
are studied within the random-phase approximation. In the low-doping limit, different shapes of
the Fermi surface give rise to a superconducting gap which formally has d-wave- or p-wave-like
symmetry, however the gap has no nodes on the Fermi surface. Therefore, the superconducting
properties of our model are analogous to those of a conventional s-wave (i.e., nodeless) BCS su-
perconductor. We also discuss possible bag effects in the large-U Hubbard model and in charge-
density-wave systems. Finally, the relation of our work with other approaches and with experi-

ment are discussed briefly.

I. INTRODUCTION

There is considerable experimental evidence that the
properties of the newly discovered high-temperature oxide
superconductors,’ such as conventional superconductors,
can be accounted for in terms of the pairing theory.? This
evidence includes the factor of 2e occurring in the flux
quantum and in the Josephson effect,® as well as the elec-
trodynamic and thermodynamic properties* of these ma-
terials. While there remain experimental uncertainties,
largely due to materials preparation problems, the central
features of the data support the pairing approach. How-
ever, because of the short coherence length ésc~12-20 A
in the planes of the oxide superconductors, fluctuation
effects are expected to be considerably larger than in con-
ventional superconductors and a complete theory must in-
clude such effects.

The ingredients of the pairing theory are (1) the ex-
istence of spin-+ fermion quasiparticles in the normal
phase of the material and (2) an attractive effective poten-
tial ¥ between these quasiparticles. This attraction causes
a cooperative phase transition to the superconducting
state at a temperature 7. which is large compared to the
temperature at which a single pair binds.

For conventional superconductors, V arises from the ex-
change of phonons between quasiparticles and is opposed
by the screened Coulomb repulsion. Because of the re-
tarded nature of the phonon interaction, the quasiparticles
largely avoid the short-range Coulomb interaction yet
benefit from the time-delayed phonon attraction. The
phonon mechanism leads to condensation into a state hav-
ing both orbital and spin angular momentum zero. In
view of the reduced or negligible isotope effect in the lay-
ered oxide superconductors and the fact that the phonon
mechanism is likely unable to account for transition tem-
peratures in excess of 40-50 K, a new mechanism must be
operating.

Other pairing interactions are observed, e.g., in
superfluidity *He, where the attraction is due to the ex-
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change of spin fluctuations. Because of the smallness of
the Fermi energy and the weakness of the pairing interac-
tion, T, is extremely small (~2%10 "3 K) for *He. The
condensation in this case consists of pairs having orbital
and spin angular momentum one. It appears that spin
fluctuations also lead to superconducting in the actinides
such as UBe;; and UPt;, etc. Pairing in atomic nuclei
arises from the attractive nucleon potential, with T, ~10°
K. Thus, the pairing theory has provided a framework
which has successfully explained superconductivity in sys-
tems with widely different interactions involving energy
scales spanning 13 orders of magnitude.

In oxide superconductors, the central theoretical ques-
tions are (1) what is the nature of the quasiparticle excita-
tions in the normal phase and (2) what is the origin of the
pairin§ interaction between these excitations? In a recent
paper” we have proposed that the normal-phase excita-
tions are spin-§ fermions, corresponding to a hole sur-
rounded by a region of reduced spin or charge-density-
wave order. These “bag” excitations attract each other,
as in the case of bipolarons. In the presence of the Fermi
sea, the cooperative pairing condensation occurs at a tem-
perature higher than that at which bipolaron formation
occurs, leading to high-temperature superconductivity.

An important clue as to the nature of the normal and
superconducting states of these oxides was recently pro-
vided by neutron® and Raman’ scattering experiments.
These data show that strong finite-range antiferromagnet-
ic correlations exist in the superconducting phase and that
long-range antiferromagnetic order occurs in the phase di-
agram near the superconducting phase. Thus it appears
that antiferromagnetism and superconductivity are inti-
mately related in these materials, in contrast to magne-
tism opposing superconductivity in conventional supercon-
ductors.

In La;CuQ,, antiferromagnetic order occurs with a
commensurate wave vector Q =(x/a,n/b,0), where Q is
observed to remain commensurate for a finite level of dop-
ing. The sublattice magnetization is found to be large, of
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order 3 of a spin-3 per Cu site. This spin density ap-
pears to be largely on the copper atoms. These observa-
tions can be interpreted® in terms of a Mott-Hubbard lo-
calized electron picture based on the electron-electron in-
teraction U being assumed to be larger than the valence
bandwidth W. Alternatively, a commensurate spin-
density-wave interpretation based on an itinerant electron
approach is also possible. Which picture is closer to reali-
ty is yet to be decided by experiment, although U~W/2
may be realized in nature.

Returning to the bag excitations, the internal structure
of the quasiparticles as well as the pairing attraction arise
from a common source— the local suppression of antifer-
romagnetic order in the vicinity of the quasiparticle. As
discussed below for U < W, a hole injected into a spin-
density-wave (SDW) system depresses the staggered
magnetization S surrounding the hole, in a region whose
size L and shape depend on the nature of the Fermi sur-
face as well as the mean SDW amplitude. (A numerical
study of the spin bag is performed in Ref. 9.) This region
of depressed S provides a bag inside of which the hole is
self-consistently trapped. The bag containing the hole
moves as an entity and acts as a quasiparticle of spin-
and charge e. It was shown? that by temporarily sharing
a common bag, two such quasiparticles interact via an at-
tractive pairing potential, when proper account is taken of
short-range correlations induced by the screened Coulomb
potential.

In the opposite limit U > W,!% it has been recently
shown by several authors that a similar result occurs if
finite-range antiferromagnetic order exists. In essence, an
added hole leads to a reduction of the local staggered or-
der parameter by disordering the spins in the vicinity of
the hole. Therefore, frustration disorders the spins inside
the bag for U > W while for U < W the hole reduces the
local Fermi-surface nesting and reduces the amplitude of
the SDW inside the bag. The bag is formed by longitudi-
nal (S;) spin waves for U << W and transverse spin waves
for U>W. Presumably for U=W, both spin-disorder
and spin-amplitude reduction play a role in dressing the
quasiparticle and in producing the pairing attraction.

If local antiferromagnetic order were not to exist, it has
been proposed that a local coupling of pairs of spins to to-
tal spin zero might occur, leading to a resonating-
valence-bond-type (RVB) picture.'! In this approach, the
excitations are presumed to be spinless charge e bosons
and chargeless spin-3 fermions, as in the quasi-one-
dimensional conductor polyacetylene.!? This scheme is
distinct from the pairing theory since spinless charged
particles rather than spin-3 charged particles are the
building blocks of superconductivity, a crucial difference.

Finally, we note that the spin-bag approach discussed
above may be extended to systems like Ba(Pb,Bi)O; (Ref.
13) which exhibit charge-density-wave-type (CDW) or-
dering. As in the SDW case, an added hole depresses the
CDW order parameter in a region surrounding the hole
whose size and shape depend on the Fermi surface and the
CDW amplitude. Two such quasiparticles can interact
via an attractive pairing potential as stated above. These
charge-bag effects may also account for superconductivity
in (Ba,K)BiO,.!?
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In this paper we present a formalism which enables us
to calculate the dynamical pairing potential between spin
bags. The bag idea suggests that holes sharing a local
depression of the SDW amplitude experience an attractive
potential. It is therefore natural to consider the pairing
interaction of the quasiparticles in the presence of the
SDW background through the exchange of the collective
amplitude fluctuation of the SDW condensate. Strictly
speaking, such a calculation is only valid if there is
infinitely long-ranged antiferromagnetic order present.
While this does not happen at high doping concentrations
in the superconducting regime, neutron scattering experi-
ments give evidence for an antiferromagnetic correlation
length of order 10-20 A and fluctuations of energy
w0 =<0.02 eV. This local slowly fluctuating antiferromag-
netic order still causes a SDW pseudogap to persist since
woK2A~1—2eV. In general, if the frequency scale as-
sociated with the fluctuation of the antiferromagnetically
ordered domain is small compared with the pseudogap
and if the length scale of the local antiferromagnetic order
is large compared with the SDW coherence length,
Espw = hvr/A, where vr is the Fermi velocity in the ab-
sence of the SDW, the above starting point is qualitatively
correct.

We note that the spin-bag approach is to be contrasted
with conventional paramagnon theory.'* There one con-
siders the pairing interaction between the electrons arising
from the exchange of spin fluctuation above the normal
state in the absence of the SDW. The interaction is pure-
ly repulsive in momentum space, peaked at the nesting
wave vector Q and leads to a weak d-wave pairing with
four nodes on Fermi surface. What is neglected in this
approach is the effect of the local antiferromagnetic order
on the self-energy of the quasiparticles and, consequently,
on their interaction.

In our approach, however, the effect of the antiferro-
magnetic background is built into the hole wave function
so that the attractive interaction mediated by the collec-
tive amplitude fluctuation of the SDW leads to a nodeless
pairing gap over the Fermi surface, although the formal
symmetry can be of the p-wave or d-wave type, depending
on the shape of the hole Fermi surface. In the case of the
normal-state perturbation theory, nodes of the pairing gap
are unavoidable since the Fermi surface is a continuous
loop around k=0 where in the present case, with the
SDW background present, the hole Fermi surface forms
pockets at the magnetic zone boundary so that the nodes
of the pairing gap can be avoided at the hole Fermi sur-
face. The nodes of the pairing gap appear at the region of
momentum space where there is a SDW gap, and has no
effect on the superconducting properties. In building a
theory for high-T. superconductivity based on magnetic
interaction, the main challenge is to find a consistent solu-
tion of the gap equation so that the pairing gap is nodeless
over the Fermi surface, as most experiments indicate.?
The fact that our magnetic mechanism can indeed give
rise to a nodeless pairing gap is quite remarkable.

The pairing interaction in the presence of the SDW has
been studied extensively by Fenton in Ref. 15, in a some-
what different context. The relation between his approach
and ours will be discussed at the end of Sec. III.
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This paper is organized as follows: In Sec. II we review
the basic formalism of the spin-density-wave approach to
the Hubbard model and calculate the collective charge
and spin-density fluctuation modes above the SDW con-
densate within the random-phase approximation. The
sublattice magnetization is also obtained within the
mean-field theory and with the first-order fluctuation
effects included. In Sec. III, we present the detailed cal-
culation of the pairing potential. The solution of the su-
perconducting gap equation and the effect of fluctuations
on the quasiparticle self-energy are presented in Sec. IV.
Finally, we discuss our results and comment on charge
bags in charge-density-wave systems in Sec. V.

II. COLLECTIVE MODES

Let us start by considering the two-dimensional Hub-
bard model '® on a square lattice

H= —t(Z) (ci‘,‘acj,,,+H.c.)+UZn,-1n,-1 s
_ i 7

a

@n

where (i, ) denotes nearest neighbors. By transforming to
momentum space, H can be expressed as

‘Eskckacka+_—.— Z Zaaaaﬂﬂck' 'cf k'+q,p
2 N (kqaqd
XC—k+q.6Ck,as (2.2)
where
&, = — 2t (coskya +cosk,a) , 2.3)

a,f3 are the indices for spin quantization along the z direc-
tion, a is the lattice constant, and N is the total number of
sites. All the momentum summations extend over the first
Brillouin zone (Fig. 1).

The zeroth-order (U=0) ground state of H is defined
by

cka|0>=0, 8K>EF,
2.4)
cla|0)=0, & <Ep,

2°0g,0) =

nk+q(l —ni)

11 665

ky

FIG. 1. The large square represents the first Brillouin zone;
the small square represents the reduced Brillouin zone for the
Bloch state in the SDW background, which is also the Fermi
surface for free electrons at half-filling. Q is the nesting vector.

where Er is the Fermi energy. At half-filling, the Fermi
surface is a perfect square [the zero-energy contour of
(2.3); see Fig. 1]. In this case, the ground state is unstable
against spin-density fluctuations. To see this, let us look
at the charge- and spin-density correlation functions de-
fined by

2%(g,0) =+ ﬁ«)l Tp,(p-,0)]0),
2.5
where
Pq _kz Cl;t+q,ack,a (2.6)
is the charge-density operator and
Si= 3 cl+q.a055ck 5 2.7

2 @
is the spin-density operator, with ¢ the Pauli matrices. In

the absence of the interaction, these correlation functions
are given by

3 |- ne (1 —ng+q)
k w+ek—sk+q—i6

with x§#(q,0) =67x3%(q,w) where ny is the electron occu-
pation number. In the presence of the interaction, these
correlation functions can be calculated by the random-
phase approximation (RPA), which, in graphical repre-
sentation, sums over an infinite series of bubble graphs
and ladder graphs (Fig. 2). This summation can be easily
performed by using Dyson’s equation. In the charge
channel, one finds

28°(q,0)

, 2.9)
1+Ux8%(q,0) (

X%A(qym) =

o+, — &g +i6

] , (2.3)

OO OO

sX_ s

FIG. 2. The Feynman diagrams used in RPA to calculate
284 and y#pa. The single line represents the electron propaga-
tor in the normal state (no SDW). The dotted line represents
the interaction U.
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and in the spin channel, the result is

$g,0) y
— K040, (2.10)
1 —Uxi’(q,0)

At half-filling, the Fermi surface has the nesting prop-
erty. Namely, there exists a vector Q which connects op-
posite sides of the Fermi surface. This property leads to
vanishing energy denominator & —e&r+¢ in 2°(q=0,
® =0), and, consequently, one obtains a purely imaginary
pole in y¢pa(Q,w) as a function of w. In this case,
2Rpra(Q,1) ~exp(Qot) for large and positive ¢ where Qg
is real and positive. This means that since the normal Fer-
mi surface |0) defined by (4) is unstable and the true
ground state | Q) is the one with a static spin-density
wave present (for a review of the SDW formulism see Ref.
17). Without loss of generality, let us assume a SDW
mean field to be polarized in the z direction

XlileA(q,Cl)) =

(a|S§la)=X1(0|cf+g,e02cka| @) =SN, .11)
k

where the variational parameter S will be determined

later by a self-consistency condition. In the presence of

this mean field, the Hartree-Fock factorized form of (2.2)

is .

Uus

_2—N Z Cl:+Q,ao'3a'Ck,a'-

k,a,a'
This one-body Hamiltonian can be diagonalized by the
transformation

H=Y echaCha— (2.12)
k,a

Yha=urck,atvi 2 (63 apck +0.5 5 (2.13a)
B

y;‘("a=vkck'a—uk2(0'3),,,301(4-@;;. (2.13b)
B

To avoid double counting, k is restricted to the magnetic
zone, i.e., one-half of the first Brillouin zone (see Fig. 1).
The superscripts ¢ and v refer to the conduction and the
valence bands split by the exchange Bragg scattering from
the SDW. The transformation amplitudes are

1 c 1/2
k
=|—|1+—= ,

Uk [2 Ey
1/2
o= | L1 =2
k 5 Ex ’
(2.14)
E,=(gf+Aa%)"2,
Us
A=——-_
2 9

where A is the SDW energy gap parameter. The diago-
nalized Hamiltonian is given by

H=k):'Ek(yzzyﬁ,,—yzzyza), (2.15)

where X i means that the sum extends over the magnetic
zone. The single-particle energy spectrum is given by

10°(q,950) =8(g—¢"78(q,0), 70 (g, 0) =5(g—q"Vz ~(q,0)+8(q—q'+ Q)13 “(q,0),
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T Ey.
The SDW ground state | @) for a half-filled band is
defined by

i Q) =vfq] @)=0. (2.16)

Using this definition of the ground state | @) in Eq.
(2.11), one obtains a self-consistency condition determin-
ing the gap parameter A,

2A

Z E I 'L=——_
(a]S3|a) 42}(3 5E, N (2.17)

U
or

ly'_ 1 _1
N>k:(e,%+A2) U (2.18)

Due to the singularity in the density of states at the Fermi
surface, the solution of this gap equation for small U is
given by

A~te "2V (2.19)

while for t KU, 2A =U, the Mott-Hubbard gap.

Having discussed the single-particle spectrum in the
SDW background, let us now turn our attention to the
collective density fluctuation. To do that, we study the
charge- and spin-density-correlation function as defined in
Eq. (2.5) but the expectation value is taken with respect
to the SDW ground state | Q) as defined in Eq. (2.16).
Since there is a mean field which breaks the original crys-
tal symmetry and doubles the unit-cell area, the correla-
tion functions have off-diagonal terms in momentum
space representation. These off-diagonal terms arise from
the umklapp processes with respect to Q. We therefore
define the correlation functions in the presence of the
SDW background by

7%°(q.q'1) =3;7<a | T, ()p—o(0) | @),
_ (2.20)

77(q.,q'1) =§<a | TSE()SL,(0) ]| @),
where p, and S} are given in Egs. (2.6) and (2.7) and
| @) is defined by (2.16). To calculate these correlation
functions in this mean-field approximation is straightfor-
ward. One transforms p, and Sy into the y representation

by inverting Eq. (2.13). The time dependence of the y
operators is given simply by
5.o(8) =e "Fryf L(0)
and
7h.a(t) =e" %yt 4 (0) . .21)

In evaluating the average, the only nonvanishing terms
arise from the combinations such as

havssr i via =6k —k")6(p—p')Suu'Spp

and one obtains

(2.22)

(2.23)
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where
' +A? 1 1
13(g,0) =75 (q.0) = — == 3 |1 — i + 2.24
40 24,07 =40 14,0 2N§ EvEx+q 0 —Ei+qg—Er+ié —w—Eg+q—Ei+ié ’ (2.24)
— [ _A2 l

0 (g =— =3 |1 - 2.25

0 7@ 2N % EkEk+q (x)—Ek+q_Ek+i5 —w—Ek+q—Ek+i5 ' ( ’ )
The umklapp transverse susceptibility is given by

—+—( )=L ’4_A__ 1 —_ 1 2.26

e @e)=55 % ®—Egrq—Ex+i6  —w—Eg+q—Ex+i6 |’ (2.26)

ZJ_(q,w) =ZO_+(q,w), Z§+ = —ZQ—+(q’w) *

Equations (2.23)-(2.26) give the response functions in absence of the interact-ion. The RPA response functions can
be obtained by solving the Dyson’s equation (Fig. 3) and one finds

—00 '
00 , 70 (q,9"0)
zrealg,qh0) =",
14 1+ U7 (q, 0)
_ . 75°(q,9"0)
I8eag,q0) =—"—"""——,
1.4 1 —-Uz§(q,w)

and

TRralg,q50) =X 7 " (g,91,0)1 —Uzd " (g1,450)1 7"
q

[1 —Uz" ~(g1,4;0)]1 ~' is a matrix inverse in momentum space and is given by

(1 —Uyx ~(q1,¢0)]1 "' =

From Egs. (2.27)-(2.29) we observe a general feature
of the spontaneous symmetry breaking: If the ground
state is spin rotationally invariant, symmetry guarantees
2% =2x"". In our case, however, the ground state | Q)
breaks the continuous spin rotational invariance of H and
this relation no longer holds. As a result, y ¥~ contains a
gapless pole, as predicted by the Goldstone theorem. In
fact, from (2.29) and (2.30) one can study the pole near
g =0, and find that the spin-wave spectrum is indeed gap-

1 /U —=A%x)6(g—q")

(2.27)
(2.28)
(2.29)
[1-Uz ~(q:1+Q,0)18(q1 —¢")+Uz5 ~(q1,0)8(q1—q'+Q)
—= —= — = > (2.30)
(1-Uxs " (q1,0)I1 =Uxs (q1+Q,0)1—[Uxg " (g1,0)]
|
less if
Ay 1 1
N4+ E U (2.31)

But (2.31) is identical to the gap Eq. (2.18) and this pro-
vides a nontrivial check of the self-consistency of the RPA
calculation.

In order to find the spin-wave velocity v, we expand
(2.29) and (2.30) for small q—Q and small ® to locate
the pole. Using the gap Eq. (2.18) we find

realg,q 0) =+

' sinz(kxa)

=, (2.33)
E;

and 6q=(q—Q)a.
Equation (2.32) determines the spin-wave velocity for
all values of ¢/U given by
1/2
t2y (/U — A%x)
A%x 2+ (x/4)(1/U — A%x)

(2.34)

In the large limit, x— 1/2A3, y— 1/4A3, 2A— U, and
1/U — A%x— 2t?/A? as one can see directly by taking the
large U solution of the gap Eq. (2.18). From (2.34) we

U? (0bx)2=[1/U —A2) (129892 — (0¥/4)x]

(2.32)

|
conclude that the spin-wave velocity in the large U limit is

v =—1—J, (2.35)

V2
where J =4t2/U. This agrees exactly with Anderson’s'
calculation of the spin-wave velocity of the s=+ Heisen-
berg model. In fact, with little more effort, one can work
out the entire spin-wave spectrum in the large U limit for
general g by expanding only to small ® <KU. We obtain
wg =J(1—¥2)'7? with y, = % (cosqra+cosg,a), again in
exact agreement with the spin-wave spectrum of the
Heisenberg model. In the small U limit, the solution of
the gap equation is given by (2.19), and one sees explicitly
that in this case, the spin-wave velocity v is of order za.

8
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“0-0-0-0s

s s
FIG 3. The Feynman diagrams used to calculate 7% and

}(RPA in the SDW background. The double line represents the
electron propagator in presence of the SDW background.

By numerically solving the gap Eq. (2.18), we have deter-
mined the spin-wave velocity for all ranges of ¢/U from
Eq. (2.32). The results are plotted in the Fig. 4.

Besides the spin-wave spectrum, the sublattice magneti-
zation in the antiferromagnetic state is an important and
experimentally accessible quantity. At large U, the
effective Hamiltonian for the half-filled Hubbard model is
known to be the Heisenberg antiferromagnetic Hamiltoni-
an. The quantum-spin-wave fluctuations are known to
reduce the mean-field sublattice magnetization of one ug
per lattice site to about 0.6uz.'® 20 It is very important
to study the spin-wave-reduced sublattice magnetization
in the present itinerant spin-density-wave approach as
well. The mean-field approximation to the sublattice
magnetization can be easily obtained by solving the gap
Eq. (2.18) and using the definition (2.14), |S | =2A/U.
The sublattice magnetization given by the numerical solu-
tion of the gap equation is plotted in Fig. 5. For small U
the solution follows the behavior of Eq. (2.19), while for
large U,A>> g, so that the left-hand side of Eq. (16) can
be approximated by 1/2A, therefore, A— U/2 and
| S| — 1 just as in the localized limit.

To study the effect of fluctuations on the sublattice
magnetization, we first derive a trivial identity

(S1(x)) =2 (el (x,0)0ipcp(x,0))
a,p

=—iTro'G(x,0 ~;x,0), (2.36)
00 10 2.0 3.0 40 50 6.0 70 R0 9.0
o
\
\
\
0 \ ©
3 N 3
N
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T AN
T~ AN
- o \\ N 3
« ~__ N
~ ~
R ~_ .
3 - T~ 3
\\; i Il
o o
g 3
= . S ©
g 3
00 1.0 20 30 40 50 6.C 70 8.0 90
U/t

FIG. 4. The solid line represents the spin-wave velocity calcu-
lated using RPA. The dashed line plots vs/a =(1+/2)J the spin-
wave velocity expected for Heisenberg model.
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FIG. 5. The sublattice magnetization S =2A/U obtained in
mean-field theory.

where Ggp(x1215x282) = —iTc,(x 11, )ed (xt5)). There-
fore the sublattice magnetization is given by
S=—-—(SZ) = ——Zf Tro’G(k,Q —k;w) . (2.37)

For the mean-field SDW vacuum | Q) as defined by Eq.
(2.14), the one-particle Green’s function is given by

(w+s,,)6.,p6(p 14 )+Aa,,,;5(p )4 +Q)

G%(p,piw) =

(0] —E2+16
(2.38)
In this case,
dw
S=——- ——Tr( 3 3)——
Zf w?—EZ+is

N T Ex U’

just as given by Eq. (2.14).

In order to calculate the fluctuation effects on the sub-
lattice magnetization, one simply has to calculate the
self-energy correction to the one-particle Green’s func-
tion. The self-energy matrix X, 5(p,p’,®) is approximat-
ed by the one-loop Feynman diagram (Fig. 6), where
780 a, &5, and Frpa are given by Egs. (2.27), (2.28), and
(2.29), respectively. The full one-particle Green’s func-
tion G,(p,p’,®) is then obtained by the Dyson’s equation

Ga'(p,p,0) =G% '(p,p',0) =, 5(p,p", @) . (2.40)

We find that in the large U limit the charge fluctuations

=2ZZ

Z%A and the amplitude spin fluctuations Zgpa contribute

O _Q

FIG. 6. The one-loop paramagnon correction to the self-
energy of electron in the SDW state.
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0.0 10 2.0 3.0 4.0 5.0 60 70 8.0 9.0

0.8
\
0.8

0.4

02

0.0 10 20 30 40 50 60 70 80 900
U/t
FIG. 7. The solid line represents the sublattice magnetization

including the fluctuation effects. The dashed line is the mean-
field result.

little to the reduction of the sublattice magnetization. In
fact, their contribution to (5S%)/N is of order tYU?
whereas the contribution from transverse spin fluctuations
is of order 1. The numerical results for the transverse spin
waves are summarized in Fig. 7. In the small U limit, the
charge and the spin amplitude fluctuations are as impor-
tant as the transverse one. However, in this case the
effects of all fluctuations are small and (S§)/N is close to
the mean-field value 2A/U. Therefore we expect the nu-
merical result in Fig. 7 to be close to the true sublattice
magnetization in both small and large U limit. It should
also be good approximation for intermediate range of U.
Actually, we can compare our RPA result with the recent
computer simulations of Hirsch and Tang?® and find fairly
good agreements.

Neutron experiments seem to exclude the possibility of
S <0.4. This suggests that A/t 0.8 or U/t=2.9 from
our calculation. Within the range 0.8 SA/rS2.5 (or
2.9SU/t<5.8) the width of conduction band is larger
than A and the itinerant electron picture describes the sys-
tem more accurately than the localized electron picture.

In conclusion we find that the RPA calculations above
the SDW background not only gives correct results in the
small U limit, but also extrapolates sensibly to the large U
limit, as reflected in the calculation of the spin-wave spec-
trum and the sublattice magnetization. In particular,
these calculations clearly demonstrate the consistency of
the itinerant picture with the neutron experiments.

III. PAIRING POTENTIAL

Having discussed both the single particle and the collec-
tive modes in the presence of the SDW background, we
are now in the position to study the interactions of two
holes doped into the half-filled band. The unperturbed
states available to these holes are the eigenstates mean-
field SDW Hamiltonian, the “y states” as given by Eq.
(2.13). However, the interaction is easier to calculate as
matrix elements between the original Bloch states, the “c
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states,” so that we calculate these interaction matrix ele-
ments first and then perform the transformation (2.13) to
obtain the interaction matrix elements between the y
states.

Within the RPA, the interaction results from the ex-
change of the charge and spin collective modes given by
(2.27)-(2.29) (Fig. 8). It is convenient to approximate
the frequency dependence of each term in the interaction
(0,z, =) by the static limit and a cutoff frequency, cast-
ing the results into an effective Hamiltonian. We find in
the charge-fluctuation channel

H. = L Y, Y RU—V.(k—k")18,4058
4N k.,k'.q a,a’
8.8
xCl:’a'CLk’+q,ﬁ'C—k+q,pck,a s 3.1)
in the amplitude spin-fluctuation channel
H=—-L 3 SvV.(k—k)oluois
4N k,k'.q a,a’
BB
XC/I',,'C I—k'+q,ﬂ'C—k+q,pck,a . (3.2)
and in the orientational spin-fluctuation channel
He-=—-L 3 TV, (k—kVotoss
4N k,k'.q a,a’'
B.p
Xc/f'a'ctkwq,pc —k+q.pCk.a>  (3.3)
where
U2°(q)
Vel =—2
1+Uxo (gq)
Uz (q)
V()= (3.4)
1 —=Uz§°(q)
U4 " (q)
| (q) ___Z% R
1—Uyxo (q)
The total effective Hamiltonian is given by
Hg=H.+H,+H+_+H} _. (3.5)

Notice that we have explicitly included the original Hub-
bard interaction U in the charge channel. In Egs.
(3.1)-(3.3) #P(q), 75°(q), and Zo ~(g) are the w=0
components of the dynamical susceptibilities defined in
Egs. (2.24) and (2.25). Since 7g ~(g,®) is odd in » and

FIG. 8. The Feynman diagrams used in RPA to calculate the
pairing potential in the SDW background.
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vanishes for @ =0, the momentum nonconserving term
does not appear in H + —.

We are now in the position to determine the matrix ele-
ments of the effective Hamiltonian in the y-state basis and
use them as the pairing potential. Transforming H.g to
the y-state basis, one obtains the matrix elements for both
intraband and interband transitions. At half-filling, the
valence band is full and the conduction band is empty.
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Weak doping removes electrons from the top of the
valence band and it is these mobile holes which are re-
sponsible for the metallic behavior and superconductivity.
Since the SDW gap 2A is large compared to the cutoff fre-
quencies for the attractive parts of the pairing potential,
one needs only retain the intra-valence-band matrix ele-
ments between hole pairs of opposite momentum, and we
find

H, 21—2,; 2 AU =V (k= k)12 (k, k") Sadppt+ [2U — V. (k —k'+Q@)Im?*(k k') 02aoig vitdy ¥4 g7 k.87 e »

a,a

BB
(3.6)
H,— — ZIIV kz;’" Z WV, (k—k")12(k k") 02 u0ps+ V. (k—k'+ QIm 2k k') 8 2uBppl vil ey £ 00 5V k p¥Eoa (3.7)

" ops
Hy_— —sz;, az Wi k—kIn*(k,k')=V4+_(k—K'+Q)p*(k, k) oteomyitey I g vk pthas (3.8)
o
T

where tion. The states we are pairing are the eigenstates in the
" - presence of the SDW, i.e., the y states of Eq. (2.13). At
m(k k") =uive+veui, B9 the top of the valence band (or at thc bottom of the con-
1(k k") =ugup+vevg (3.10) duction band) for which u? = v@ = %, these states are su-
, perpositions of equal weight with states having momen-
Pk, k') =ugvp —viup, (3.11)  tum k and k +Q. In real space, if the wave function of an
n(k k") =upug — vevk: (3.12)  up-spin hole vanishes on the even sublattice due to de-

are the so-called coherence factors.

Equations (3.6)~(3.8) summarize the effective interac-
tions in all channels between holes in the valence band, as
calculated in the self-consistent random-phase approxima-
tion in the presence of the SDW background. We see Hegr
has a fairly complicated structure. However, if we restrict
ourselves to the weak doping limit, qualitative conclusions
can be easily drawn. In this limit, the holes are concen-
trated at the top of the valence band, where uf =~ v¢= 5.
One can therefore approximate the four coherence factors
by m(k,k')=I1(k,k')=1, p(k,k') =n(k,k')=0. An
immediate consequence of this approximation is that these
hole states are decoupled to the spin orientation fluctua-
tions and the spin-flip scattering vanishes, i.e., H+ - =0.
Later we will see that only two states near the top of the
valence band have a dominant contribution to the super-
conducting gap equation. The spin-orientation fluctua-
tions are not important to the superconductivity in our
model.

In the charge channel the pairing interaction between
holes of opposite spin is given by

RU-V.(k—K)1—-RU—V.(k—k'+0)]

=—V.(k—kD+V.(k—K'+0Q). (3.13)

However, V.(q) is nothing but the original Coulomb in-
teraction dressed by charge fluctuations. In contrast with
the spin channel, the charge channel does not exhibit an
instability and the renormalization effects are weak, with
V.(g) having a weak momentum dependence. If we
neglect the momentum dependence all together, (3.13)
vanishes. This important result has a physical interpreta-

structive interference, between k and k+Q, the wave
function of a down-spin hole vanishes on the odd sublat-
tice. Therefore the matrix element of the on-site Coulomb
repulsion vanishes due to the vanishingly small overlap of
the up- and down-spin y wave functions on the same site.

Now consider the interaction matrix element (3.7) in
the amplitude fluctuation channel,

V.(k—k')=V,(k—k'+Q). (3.14)
Unlike V,.(g),V:(q), the longitudinal (non-spin-flip) ex-
change interaction is strongly enhanced by the magnetic
fluctuations for ¢=0Q, leading to a sharp momentum
dependence. The reason for this is clear, V,(g) is propor-
tional to the RPA magnetic susceptibility, which in the
absence of SDW would diverge logarithmically at g =Q,
indicating the antiferromagnetic instability. However,
V.(g) is the RPA magnetic susceptibility in the presence
of the mean-field SDW, and the system exhibits stable
spin-wave excitations. For small A, a sharp peak of V,(q)
is present at ¢ =, with a width of the order of the inverse
SDW coherence length &spw~A/t. From this structure
of V,(q), one observes that the pairing interaction in the
amplitude fluctuation channel (3.14) is strongly attractive
for small momentum transfer and outweights the interac-
tions in all the other channels for holes near the gap edge.
Therefore at relatively low doping the superconductivity is
mainly due to the pairing potential in amplitude spin-
fluctuation channel.

Strictly speaking, one can always work within the mag-
netic zone inside of which the y states are originally
defined. However, for most discussions, it is useful to
work with the extended zone scheme. One can continu-
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ously extend the definition of y states outside of the mag-
netic zone using expression (2.13), since & +0 = "¢ SO
that by (2.14), ux +0=vr and vi+g=ui. Using this
definition, we find

Ykt =—vk+o,t and Y£,=vi+o|. (3.15)

The first consequence of this definition is the fact that the
pairing potential between holes with up and down spins
are all antiperiodic functions in the magnetic zone, i.e.,
Vik™=—Vi+o.k™=—Vii'+o as one sees directly from
Egs. (3.6)-(3.8). We note that the antiperiodicity of both
the pairing potential and the basis states ensures that the
total summands in the Hamiltonians are all periodic func-
tions, and all the physical properties are invariant under
the shifts of the origin of the magnetic zone. This unusual
antiperiodicity arises from the fact that for a given k, yk1
and 7%, describe different orbital wave functions. One can
avoid the antiperiodicity by working with a complex pair-
ing potential or a discontinuous wave function, but for the
purpose of solving the gap equation, our choice is the sim-
plest. Another consequence of this choice is the fact that
the superconducting order parameter

ARC =Tk Vi ybr vwry)

also turns out to be an antiperiodic function in the extend-
ed magnetic zone.

In the above discussion, we have limited ourself to the
static limit. However, the energy cutoff of the pairing po-
tential V4 is an important parameter in solving the super-
conducting gap equation. In order to understand the ener-
gy cutoff, we study the spectral distribution of 7&a(q,®)
for w=0. Taking ¢=1, A=0.5, and U=2.28,
Re7fpa(Q,w) and Im7&pa(Q,w) are plotted as functions
of w in Fig. 9. We find a large portion of the spectral
weight concentrated near w =2A. Although no physical
pole is found, the amplitude fluctuation of the SDW order
parameter behaves approximately like a physical mode

0.4 0.6

X700, o)

0.2

-0.2
-0.2

FIG. 9. The frequency dependence of the susceptibility
7&a(Q,w). The solid line is Imz&pa. The dashed line is
ReZﬁsz.
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FIG. 10. The momentum dependence of 7&pa(q,w) for w
near 2A. The five lines correspond to |g—Q| =0.1n|Q],
n=0,...,4, respectively.

with frequency w==2A. Away from the nesting vector
q=Q, the spectral weight Im7&pa(g,®) near o =2A de-
creases rapidly (Fig. 10). Therefore it is reasonable to ap-
proximate y&pa(g,w) near g=Q as

—20
TRealg,0)=——%
0’ —of

Ae —*g—0)?

(3.16)
wa=2A.

From the numerical calculations we find for 1 =1, A=0.5,
and U =2.28,

A=0.9a,

A=0.58,
and forr=1,A=1, and U =3.29,

A=0.7a,

A=045.

The dynamic pairing potential, between spin-up and spin-

Conduction
Band

T 2 Aspw
| k

Er Valence
Band

er §

FIG. 11. The energy band of electrons in the SDW state. At
finite doping & is the Fermi energy of the holes.
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down holes, is given by
—m2(k, kU oAk —k'+Q,0)]1,
+12(k kDU Zfoak — k', )] . (3.17)

Therefore, if we use the effective Hamiltonian (3.7) to ap-
proximate the dynamic interaction given by (3.16) and
(3.17), V. (k—k') in (3.7) may be taken to be

V.(k—k)=U5&patk— k', 0 =0)0(w, — | Ex —Ef¢|)
xO(w,— |Ex—EFr|), (3.18)

where o, is the cutoff energy, Er is the Fermi energy, Ey
J

Vi =[—m?(k, k"YU &oak — k'+ Q) +12(k k" VU 7&oa(k — k") 10 (0, —

to be our pairing potential. For larger doping, we should
include the scattering far away from the hole Fermi sur-
face due to the interactions in the charge channel. Since
there is no frequency cutoff for this interaction the charge
channel potential leads to an effective pseudopotential act-
ing in the region below @, which is much reduced in
strength.

Let us conclude this section with a discussion of the re-
lation between our work and that of Fenton.!> His main
result is that the interaction entering the superconducting
gap equation in the presence of the static SDW is the
same as the interaction in the absence of the SDW, in ap-
parent contradiction with our result. However, his con-
clusion is derived under the assumption that wu; =uf,
vy = —vf so that uzvy is purely imaginary. It is impor-
tant to note that the phase of uvx is determined by the
phase of the SDW relative to the underlying lattice.
Choosing uxvx to be purely imaginary corresponds to a
SDW with spin-density peaked on the bonds and vanish-
ing on the lattice sites. Therefore, it is quite conceivable
that such a SDW does not modify the site interactions.
However, in the presence case, the SDW results from a
self-consistent solution of the Hubbard model and the
spin-density necessarily has peaked on the sites. In this
case uy vy is real. As we showed in this section, the pres-
ence of such a SDW does in fact change the interaction in
a dramatic fashion, producing an attractive potential. As
one can see, we have fully included the interactions in all
possible channels. The extra terms found by Fenton van-
ish identically in our case since u; and v are both real.

IV. GAP EQUATION

Having completed our discussion of the pairing poten-
tial, we now proceed to solve the superconducting gap
equation. At half-filling, there are no free carriers and the
system is insulating due to the presence of the SDW band
gap. With finite doping, the holes form a Fermi surface.
Its shape in momentum space is most important for the
nature of the superconducting gap.

One may notice that in the Hartree-Fock approxima-
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is the energy spectrum of the electron (Fig. 11), and

o(x)= {1’ x>0,

0, x<0. (3.19)

Unlike 7&5a(g,), the spectral weight of z8ba(g,®) is
broadly distributed in the interval —4¢ < w <4t and has
only a weak momentum dependence. Furthermore, ac-
cording to our previous discussion, the pairing potential in
the charge channel V§; is ineffective for k and k' near the
hole Fermi surface, since the holes are concentrated at the
top of the valence band in the weak doping limit in which
case spin-flip hole and spin-down hole occupy different
sublattices. Therefore, in the following discussion, we
shall simply take

'E—k “Epl )e(wa_ IEk'—EF| ) (3.20)

tion, the single-electron energy spectrum =+ E(k) is very
special. For nearest-neighbor hopping the maximum of
the valence-band energy_—E(k) is_highly degenerate,
consisting of two lines, k, =0 and kx =0 in the shifted
magnetic Brillouin zone (Fig. 12). While this property is
very unusual, one should realize that the degeneracy of
the single-electron energies along the lines k=0 and
k =0 is totally accidental and not guaranteed by symme-
try In reality, the single-electron energy E (k) = — E (k)
+AE(k) for a valence-band electron has corrections
AE(k) arising from the higher-order corrections to the
Hartree-Fock approximation, next-nearest-neighbor hop-
ping and interactions between electrons on different sites,
etc. For small concentrations of holes, the Fermi surface
of Hartree-Fock spectrum — E (k) (Fig. 13) is highly sen-
sitive to these perturbations. For example, if we add the
energy correction AE (k) which lifts the degeneracy such
that the exact_single-electron energy E(k) has a single
maximum at k, =k, =0, then holes near k =0 have the
lowest energy and holes will concentrate in this vicinity.
The resulting Fermi surface is a small circle around k& =0
(Figs. 12 and 14). If we assume, instead, that the correct-
ed energy E(k) has maxima at (kx,ky) ©, + n/vV2a)
and (% /v2a,0) [E(0, *+ z/~2a) =E(=+ /~/2a,0) due

to the x —y symmetryl, holes tend to concentrate near

. :_1‘ ky

FIG. 12. The small square outlined by the bold line repre-
sents the shifted magnetic Brillouin zone. The circle is the Fer-
mi surface at low doping, assuming the quasiparticle energy
spectrum E (k) satisfies E (k =0) < E[k =(0,7/v/2a)]. The su-
perconducting gap is positive along the Fermi surface.
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FIG. 13. The small square with the rounded corners is the
Fermi surface for the mean-field energy spectrum Ex. The dot-
ted lines are the Fermi surfaces in the shifted magnetic Brillouin
zone.

(0, + n/v2a) and (% n/~/2a,0). For a small concentra-
tion of holes there are two separate Fermi surfaces as
shown in Fig. 15. Therefore, at low doping the shape of
the Fermi surface is not determined by — E (k) but by the
energy correction AE (k). In order to determine the shape
of the Fermi surface, we must first evaluate AE (k).

Since AE (k) is composed of many contributions, it is
very difficult to evaluate AE (k) reliably. For example,
the one-loop spin-fluctuation self-energy correction (Fig.
6) tends to make valence electrons near k =0 have higher
energy. At k=0, there is no quadratic term in the
momentum expansion of the mean-field energy E (k).
However, the self-energy correction contributes to
the quadratic term. Using the RPA susceptibility
xfpa (3.16), we find the effective mass of holes at
k=0 is approximately given by m*=11a "% !
=6m, | =1 ¢v.a2=12 A2 for both A/t =0.5 and A/t=1. In
the following we first discuss the case where the valence
electrons at k =0 have highest energy and the Fermi sur-
face for a small concentration of holes is a small circle
around k =0, as shown in Fig. 14. The superconducting
properties for the Fermi surface as shown in Fig. 15 will
be discussed later.

The relevant Fermi energy in the problem is the Fermi

ky

kx

o
N

FIG. 14. The same Fermi surface as in Fig. 12 is represented
in the (unshifted) magnetic Brillouin zone. The superconduct-
ing gap has alternating signs around the corners. The dotted
lines are the node lines of the superconducting gap.
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FIG. 15. The Fermi surface of electrons with spectrum E(k),
assuming E [k =(0,7/a)]1 > Elk =(n/2a,n/2a)l.

energy of holes ¢r which is measured from the top of the
valence band to the Fermi surface which has energy Er
(see Fig. 11). Thus er=E(k=0) —Efr. At low doping,
er is less than the frequency cutoff of the pairing poten-
tial. Actually, e==0.1 eV for m* =6m, and hole density
of 0.1 hole per site. Therefore, gr also serves as a frequen-
cy cutoff in the superconducting gap equation in addition
to the frequency cutoff provided by the pairing potential.
This leads to a superconducting gap and transition tem-
perature which is rather sensitive to the doping concentra-
tion.

Due to the small frequency cutoff the empty conduction
band can be ignored and the superconducting gap equa-
tion may be written as )

2= =3V 22 4.1
k' 2Ey
where
Ex=~/(Ex —Ep)*+(a7°)2. 4.2)

Strictly speaking the states very close to the bottom of the
conduction band may contribute to the superconducting
gap equation, since the frequency cutoff w,==2A is close
to the gap between the conduction and valence bands. But
such a contribution is small compared with that from the
states in the valence band. Therefore the contribution
from the conduction band can be safely ignored. Because
of the antiperiodicity of the pairing potential

Vik=—Vik+0="Vi+ox', 4.3)
one can easily check that the solution of the superconduct-
ing gap satisfies

AEC"‘ —AEgQ .

Therefore AFC must have lines of zeros in the magnetic
zone. However, this does not necessarily imply that the
total gap, antiferromagnetic-plus-superconducting, has
zeros on the Fermi surface. This depends on the shape of
the Fermi surface and the properties of the pairing poten-
tial. To see this, let us first look at the properties of the
gap equation in the shifted zone where k =0 is the center
of the Fermi surface (see Fig. 12). In the case when the
Fermi surface is a small circle around k =0, only small
momentum transfers are involved in scattering around the
Fermi surface. Since the pairing potential is negative for

4.4)
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all small momentum transfers, a uniform superconducting
gap near the Fermi surface is the solution. The lines of
zeros of AFC arising from (4.4) are on the magnetic zone
boundary where a large SDW gap exists. Thus, AFC is
nonzero over the entire free Fermi surface and no power-
law temperature dependence is expected.

One can also solve the gap equation directly in the orig-
inal magnetic Brillouin zone where the Fermi surface is
distributed at the corners (see Fig. 14). In this case, the
superconducting gap AFC has alternating signs as shown in
Fig. 14. This is because of the strong positive peak of the
pairing potential for momentum transfers near Q. The re-
sulting superconducting gaps for these two different
choices of the magnetic Brillouin zone center can be
mapped into each other by Eq. (4.4) (see Fig. 16). In
both cases, the superconducting gap is nodeless at the Fer-
mi surface since the SDW gap A preserves a gap when
ASC— 0. Thus, the zeros of superconducting gap are lo-
cated in the regions of the Brillouin zone where there is no
free Fermi surface.

To understand the symmetry of the superconducting or-
der in SDW state, we calculate the superconducting order
parameter in real space and find

(c”cjl)oc;'e”‘("_f)[vk + (= 1) up ok — (= 1)1 ]

xCykrytal), 4.5)

where the summation extends over the magnetic zone in
Fig. 1. {y%x17%%) =AFS/2E; is nonzero only near the
Fermi surfaces, i.e., near the four corners of the magnetic
zone (Fig. 14) in low-doping limit. (yf;y“)) has the
same alternating signs around the four corners of the
magnetic zone as ARC. Since we are only interested in the
symmetry properties of superconducting order parameter
we may assume the order parameter to be proportioned to
¢ functions at the four corners and write

o))+ o)
ofee 0] efeezo]] o

We find that in real space (4.6) gives

(eirejp e [14+(—1)1]
x[1=(=DA(-D*=(=1D> "],

which is illustrated in Fig. 17.

From (4.7) we find that pairing is only between holes on
different sublattices. This simply reflects the fact that at
low doping the spin-up holes and spin-down holes live on
different sublattices. Another property of the supercon-
ducting order parameter is that it changes sign under 90°
rotation. Thus the summetry of the order parameter
resembles a d-wave pairing. However, as we emphasized
earlier, there is no node on the Fermi surface in the low-
doping limit and most properties of the superconductors
are essentially the same as the conventional s-wave super-
conductor. But the sign change of the superconducting

gap from corner to corner does have experimental
significance. We expect that the superconducting state

<71‘£m'"—k1)°=5[k"

4.7)
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FIG. 16. The same Fermi surface and superconducting gap
as in Figs. 12 and 14 is now represented in the repeated zone
scheme.

can be suppressed by nonmagnetic impurities in the Cu-O
plane similar to ordinary d-wave superconductivity. 2!

In order to estimate the magnitude of the superconduct-
ing gap, it is convenient to work in the shifted magnetic
zone as shown in Fig. 12. In this case only the pairing po-
tential for small momentum transfer is important and one
can ignore the positive peak near k — k'~ Q.

Note that in addition to the frequency cutoff, the pair-
ing potential also has a momentum cutoff of order 1/£spw.
If the Fermi surface is small, i.e., the momentum transfer
across the Fermi surface is less than 1/£spw we may
rewrite the momentum cutoff as an effective frequency
cutoff of order 1/2m™* &spw where m* is the effective mass
of holes. Therefore the effective frequency cutoff wy is the
smaller one of the two energies w, and + m™*Espw. In this
case, we replace Vi by

ka’= “Voe(wo‘ IEk —EFI )e(a)o— lEk'—Epl ) .

(4.8)
where Vo= ¢ [V2(Q) —V,(0)1=+U?4/w, [A4 is given
in (3.16)].

At low doping since the Fermi surface is a small circle
around k =0, only the energy states near k =0 are impor-

® + [ ] + ® + ®
+ (@] + o] + o

FIG. 17. The superconducting order parameter {ciic;;) plot-
ted as a function of j. X marks the position of i, O represents a
positive value, ® represents a negative value, and + represents
zero.
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tant in solving the gap equation. Thus we can approxi-
mate E; by

2m
near k =0. Now Ex becomes
i 2 1/2
Ek = [ + EF +A§C (4.10)
2m

The superconducting gap equation can be easily solved.
One finds

(w(%+Aszc)l/2+wo (8}+A§c)l/2+€F 4r
In +In o
Asc Asc Vom*a
4.11)
which reduces to
Asc =2~/erwoexp ——2-’5—2— (4.12)
Vom

in the limit Asc << &r and wg. Similarly, one finds the criti-
cal temperature

kpT.=1.14~/erwoexp ‘ - 2—’5‘2]

Vom™a

4.13)

The ratio 2Asc/T. =3.52 is not changed by the appear-
ance of the second frequency cutoff due to the small Fermi
energy.

It is clear that the critical temperature T is very sensi-
tive to the effective mass of the holes. Since
E(k)~(k}—k?)? near k =0 the quadratic term & 2/2m*
in E(k)= —E(k)+AE (k) is completely due to the ener-
gy correction AE(k). Therefore, the effective mass is
determined by AE (k) alone. Since we are not able to
evaluate the energy correction AE (k) reliably, we cannot
estimate the effective mass m™* reliably from the first prin-
ciple. Experiments suggest that m™* ~5-10m,.

We would like to remark that the above analysis is
correct only when Asc Ser. This is because the supercon-
ducting gap equation is derived using mean-field theory.
The mean-field theory is correct only when there are many
Cooper pairs in an area of the coherence length squared.
In our case this leads to

n&dcx1 (4.14)
where Esc=2nvr/Asc is the superconductmg coherence
length, vr is the Fermi veloc1ty, and n is the density of the

holes. Using vr=QeF/m*)'? and n=0Qm*/z)er, we
find
n§§ - 16zef - drer ex _ 4r
¢ §C wo P Vom*a 2

This justifies that Asc S &r is the correct condition for the
mean-field theory to be valid. One may also consider the
Cooper problem of two electrons binding above the rigid
Fermi surface. The two electrons may form a bound state
due to the attractive interaction between them. The bind-
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ing energy is given by

—__4r
Vom*a® |’

Such a bound state can appear only when the temperature
T <e&,. Comparing ¢, with the superconducting transition
temperature 7, we find

— =2+/wo/erexp

Therefore, when AscSer, hence g, ST., the collective
pairing of electrons (i.e., the superconducting transition)
happens at a temperature higher than that at which two
electrons can form a bound state in real space.

We would also like to remark that the spin-up and
spin-down holes being paired are admixtures of singlet
and triplet states. This is due to the fact that the spin-
rotation symmetry is broken by the SDW mean-field vac-
uum and electron spin is not a good quantum number.
This can be seen more clearly by considering the wave
function of two paired electrons w(k aj,k2a2), where
a; = %1 are the spin variables of electrons. The fact that
the spin is not a good quantum number is reflected in that
the wave function y(ka;,k2a;) cannot be rewritten in a
factorized form wo(k,k2)w,(ay,az), since the orbital
wave functions of spin-up electrons and spin-down elec-
trons are different, e.g., for the electrons near the top of
the valence band, the wave functions vanish on the even
lattice site for spin-up electrons while the wave functions
for the spin-down electrons vanish on the odd site. There-
fore, in our case the pairing wave function is the mixture
of singlet and triplet spin states.

Above discussion we have discussed the superconduct-
ing properties for the Fermi surface in Fig. 14. With a lit-
tle modification the above discussion also applies to the
Fermi surface in Fig. 15. In this case the superconducting
gaps have the sign indicated in Fig. 18. The supercon-
ducting gap still has no nodes on the Fermi surface. The
90° rotation is spontaneously broken in the superconduct-
ing state. The real-space superconducting order parame-
ter

g5 =2woexp (4.15)

2n

_ Asc
Vm* 2 *

EF

(4.16)

(= 1) 7]
4.17)

(erejy e D)X T Th[ 4 (= 1) 75111 —
x[1+ (=111 —-(—1)]

or

(ernepy e ) TYTRTH — (= 1D TRI+ (- DP T
x[1+ (=D —(—1)1

and is demonstrated in Fig. 19. The pairing wave function
is odd under the 180° rotation which resembles a p-wave
pairing.

We notice that in our d-wave-like superconducting state
(for the Fermi surface in Fig. 14) the superconducting or-
der parameter is a single complex scalar since the spacial
rotation symmetry is broken by the lattice. But for our p-
wave-like superconducting state for the Fermi surface in
Fig. 15 the situation is very different. One may notice
that there are two separated Fermi surfaces in Fig. 15 and
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FIG. 18. The two possible sign configurations of the super-
conducting gaps for the Fermi surface in Fig. 15. The dotted
lines are node lines of the superconducting gap.

the electrons on different Fermi surfaces have little in-
teraction between them, at least in the low-doping limit.
In this case the electrons near the two Fermi surfaces
behave like two independent superfluids coupled by a
weak Josephson-type coupling. Therefore, there are two
comJ)lcx superconducting order parameters ¢|e'9' and
¢2¢"* and the Ginzburg-Landau theory must be general-
ized to this case. The sum 0, + 0, of the two-phase-order

FIG. 19. The superconducting order parameters in real space
for the two sign configurations in Fig. 18.
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parameters is the Goldstone mode which is pushed to plas-
ma frequency when the long-ranged Coloumb interaction
is included, while the difference of the two-phase order pa-
rameter 6 — 6, remains to be a soft mode and is gapless in
the limit when the two Fermi liquids decouple completely.
The existence of this soft bosonic mode may have some
important consequences on specific heat in the supercon-
ducting regime and the critical properties of the supercon-
ducting phase transition.

The superconducting state with d-wave-like symmetry
is also obtained in Ref. 22. The pairing potential obtained
there agrees with the one in Ref. 5 and in Sec. III of this
paper. But as we have emphasized in Ref. 5 and in this
paper, the superconducting state should be a nodeless one
at least in the low-doping limit. A p-wave superconduct-
ing state in the presence of SDW is obtained in Ref. 23 in
a somewhat different approach. Higher angular-
momentum pairing with complex nodeless-pairing order
parameter has been considered in Ref. 24.

V. DISCUSSION

In developing a theory of high-temperature oxide super-
conductivity, several fundamental issues must be ad-
dressed which ultimately will be answered by experiment.
(1) Is the BCS formalism, involving the condensation of
pairs of fermions, qualitatively correct or is a totally
different approach necessary? (2) Are the observed
finite-range strong spin correlations in the superconduct-
ing state crucial to the occurrence of high 7., or is some
other mechanism operative in these materials? (3) Is the
itinerant electron or the Mott-Hubbard localized ap-
proach better suited to treating superconductivity in these
materials? (4) Does the problem fundamentally involve
one, two, or more bands or orbitals per unit cell?

There have been a number of Monte Carlo studies of
the single-band Hubbard model.?> The results of these
studies show a suppression of the bare-particle-pairing
susceptibility as the Hubbard interaction U is increased.
However, when the renormalized one-particle Green’s
function is included,?¢ a slight enhancement in the d-wave
pairing susceptibility is found. This d-wave symmetry of
the order parameter is consistent with our results, al-
though for a detailed comparison more information on the
nature of the hole Fermi surface must be extracted from
the Monte Carlo studies.

A limiting feature of quantum Monte Carlo calcula-
tions is that they are carried out on relatively small lat-
tices, e.g., 4X4 or 6%x6 sites. For a doping level of
x=0.1-0.15 at which T, is observed to peak, the system
contains only 2-4 holes. It is unclear whether this small
number can adequately describe the physics associated
with the destruction of long-range spin order in the plane
as well as the effects of pairing condensation. Further-
more, it is at present impossible to treat temperatures as
low as the observed T, in these materials. Another ques-
tion is the role of finite-level spacing in these clusters com-
pared to k7.

Finally, one knows that pairing occurs between the
proper quasiparticles of the normal phase. The dressing
of the bare particle to form such a quasiparticle, e.g., a
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spin bag, is likely to lead to a small overlap between the
bare particle states created by the operators used to define
the gap parameter in the Monte Carlo studies and the
quasiparticle states. If this overlap is indeed small, it is
unclear if the Monte Carlo analysis is sufficiently accurate
to properly recognize pairing were it to occur.

It would be helpful if the Monte Carlo studies were able
to study the quasiparticles in the normal state as a prelude
to studying superconductivity. In particular, it is impor-
tant to investigate the correlation functions giving the spin
distribution and the spin-spin correlations in the vicinity
of a dynamic (versus localized) hole. The exact diagonali-
zation performed by Dagotto et al., clearly demonstrates
the continuity of the spin-bag picture as a function of the
coupling.?’

In our approach, we started from the single-band Hub-
bard model with the antibonding Cu d,:_,: and O p, or-
bitals being the relevant energy band. While this is an ex-
tremely simplified model, considering the complexity of
these materials, we believe that this model incorporates
the basic physics responsible for the high-temperature su-
perconductivity. Within the weak to intermediate cou-
pling regime we are considering, only the states close to
the Fermi surface are important, while the details of the
localized nature of the corresponding Wannier functions
in the position space are less relevant. For a discussion be-
tween the relation of the one- and two-band model, see
Zhang and Rice.?®

A more realistic model for the Cu-O plane of the high-
T. superconductors should involve three bands, from the
bonding, nonbonding, and the antibonding combinations
of the Cu d,:_ > and O p, orbitals. In the undoped sam-
ples, the bonding and the nonbonding bands are filled,
while the antibonding band is half-filled. Due to the
strong antiferromagnetic fluctuations, a SDW (pseudo)
gap is opened at the Fermi surface. An important issue is
whether the top of another energy band (e.g., the bonding
or the nonbonding bands) happens to lie in the gap opened
by the SDW. If this is the case, the doped hole will be at
the top of this band rather than in the antibonding band
and a genuine two-band model is needed to study the in-
teraction of .the holes and the antiferromagnetic fluctua-
tions. 2’ However, electron rather than hole-doped high-7T',
materials have recently been synthesized, supporting the
particle-hole symmetry characteristic of a one-band mod-
el. In general, the Fermi surface of the doped holes and
the couplings to the spin fluctuations depend on which
band is populated by the holes. However, our one-band
spin-bag model and many other models involving two
bands share the same physical feature that a doped hole
destroys the antiferromagnetic order in its vicinity and
thereby leads to an attractive interaction when two holes
share the same region with the depressed antiferromag-
netic order. Whether this attractive interaction can lead
to a nodeless superconducting gap certainly depends on
the shape of the hole Fermi surface. Within the two-band
model, there are possibilities where the holes form pockets
at the magnetic zone boundary,° just as the case of the
one-band spin-bag model. In this case, it is likely that the
superconducting gap is nonzero everywhere at the hole
Fermi surface.
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In this work we have assumed that strong spin correla-
tions are intimately related to the large value of 7 in the
cuprates. An important question is whether the spin order
in the superconductor corresponds to local antiferromag-
netic order or a coupling of pairs of spins to angular
momentum zero as in the resonating-valence-bond-type
state. Excitations in these two schemes are very different,
the former leading to spin charge e fermions while the
latter appears to support two types of excitations, spin- %
neutral fermions and spin-0 charge e bosons. We have
taken the point of view that the spin correlations are local-
ly antiferromagnetic in character so that the excitations
are spin- 3 charged fermions, consistent with a BCS pair-
ing approach.

While the pairing theory is generally phrased in terms
of a Fermi-liquid scheme based on an itinerant electron
approach, the theory also applies to the holelike excita-
tions in the Mott Hubbard regime if these excitations car-
ry spin-5 and charge e, as in the weak-coupling regime.
Several authors have discussed this possibility.'? As in the
itinerant approach presented in this paper, the local anti-
ferromagnetic order is reduced by the presence of a hole
forming a bag or antiferromagnetic polaron type of exci-
tation. It is possible that the bag simply changes in size as
one goes from the weak-coupling (small U/t) to the
strong-coupling (large U/t) limit, maintaining its spin
and charge quantum numbers. In this case, one would ex-
pect that the correct physics of the materials could be
treated starting from either limit.

Beginning with the itinerant scheme, we have shown
that a hole in a commensurate spin-density-wave system
preserves its spin and charge but clothes itself with a re-
gion of reduced antiferromagnetic order, the size of this
region is given by the SDW coherence length &spw
=hvr/mA. For typical values of the SDW gap A~0.8 eV
and the Fermi velocity of the nonmagnetic phase
vr~5%107 cm/sec, Espw is of order 2a-3a. The hole and
its surrounding bag move as a quasiparticle whose mass
we estimate to be of order mp~6m,.

When a second quasiparticle is added, it is attracted to
the other excitation, as worked out above. While this re-
sult is intuitively clear since the two holes can share (at
least temporarily) a common bag thereby lowering their
energy, this is in contrast with the corresponding situation
in the absence of at least local antiferromagnetic order.
In the nonmagnetic phase, one finds a repulsive interac-
tion between quasiparticles in momentum space. There-
fore, the existence of the SDW gap gives an increase of
the hole energy which is reduced by the presence of a
second hole, producing an effective attraction.

Whether these excitations actually bind in pairs or not
in the weakly doped insulator is unclear, since the accep-
tor ions, e.g., the effective negatively charged Sr, ions in
the 2:1:4 material or the O ions in the 1:2:3 O¢+x materi-
al, may act as trapping centers for the positively charge
bags.

In Fig. 20 a schematic phase diagram of the cuprate su-
perconductors is shown as a function of the hole concen-
tration x. The antiferromagnetic insulator is separated
from the metallic region by an intermediate phase which
has been described as spin-glass-like. One possible
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FIG. 20. A schematic phase diagram of the cuprate super-
conductors. AF, antiferromagnetic; SG, spin glass; SC, super-
conducting. x is the hole concentration.

scenario for this behavior is that the excitations are pinned
by the charged acceptors in both the antiferromagnetical-
ly ordered phase as well as in the spin-glass phase. When
the bag density increases beyond a critical value x., the
exclusion principle increases the kinetic energy of the bags
sufficiently to melt the glass, leading to a Fermi liquid of
spin bags.

Regardless of the details of this intermediate phase, the
bags are assumed to form a degenerate Fermi liquid in the
metallic phase. While we have explicitly calculated the
bag-bag interaction only in the long-range spin-ordered
phase, it is plausible that a similar attraction occurs in the
metallic phase if the range of spin order is larger than the
bag size. It may be that this restriction is not essential for
an attractive interaction to occur, a question we are now
studying.

We have solved the BCS gap equation using the in-
teraction between spin bags derived above. We find, as re-
ported in our earlier publication, that AFC is nodeless over
the Fermi surface. However, the traditional characteriza-
tion of AFC as s, D, or d like is not an invariant concept in
the presence of strong-band-structure effects, since for ex-
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ample one can transform from d-like to s-like behavior by
shifting the origin of k space, as shown above (see Figs. 12
and 14). The essential point is that the magnitude of AFC
is found to be nonzero at all points of the Fermi surface
and no power-law temperature dependence is expected as
in conventional / > 0 superconductors. The nodeless prop-
erties of the superconducting state have been observed in
many experiments.

Analogous bag effects may be operating in CDW super-
conductors, like Ba(Pb,Bi)O3 and possibly (Ba,K)BiOs. '3
It is known that CDW correlations occur in the former
and lead to a pseudogap. We have found that charge-bags
form in this case as well and such bags are attractive,
however the charge fluctuations are coupled to phonons
leading to a partial isotope effect.

A number of questions remain to be resolved regarding
the bag approach. (1) Are the spin and charge of the ex-
citations correctly predicted in the antiferromagnetic in-
sulator and in the metallic phase? (2) What is the actual
shape of the Fermi surface in the metal and is the
pairing-order parameter free of nodes on the Fermi sur-
face? (3) What is the influence of quantum fluctuations
in the superconducting properties? (4) Can the bag ap-
proach account for the general experimental facts which
are not subject to materials difficulties? Hopefully, these
issues will be clarified in the forseeable future.
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