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Superconductivity in a narrow-band system with intersite electron pairing in two dimensions.
II. Effects of nearest-neighbor exchange and correlated hopping
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Our previous mean-field study concerning superconducting pairings in the extended Hubbard
model with on-site repulsive and intersite attractive interaction and arbitrary electron density is
extended to include the eÃects of nearest-neighbor exchange (J) and correlated hopping (EC) in-
teraction. Detailed numerical analysis of s-, p-, and d-wave pairing solutions is performed for the
two-dimensional square lattice with nearest- (t) and next-nearest- (ti) neighbor hopping, and the
resulting mutual stability phase diagrams are given as a function of band filling and the interac-
tion parameters. Antiferromagnetic exchange can enhance both the d-wave and the extended s-
wave pairing. If it prevails over the repulsive intersite density-density interaction, such a term can
be a leading mechanism for superconductivity. However, its effects strongly depend on the band
filling and the ti/t ratio, giving in particular for t2 0 s-wave (d-wave) pairing as most favorable
in the low (high) density limit, but iricreasing t2 can even reverse this tendency. The correlated
hopping term which breaks the electron-hole symmetry affects s-wave pairing mostly. A conden-
sation transition (phase separation), possible in the presence of the attractive density-density in-

teraction, is also analyzed within the random-phase approximation, and stability conditions of
such an electron droplet phase with respect to other types of ordering are determined as a func-
tion of the band filling for the two-dimensional square lattice.

I. INTRODUCTION

In a recent paper' we studied a simple model of
narrow-band materials with local attractive interaction of
the following form:

H g (ttj jtbtj)c vcj +Ugn; ln; 1 + —, g Wjn;~nJ~
l,J,Cr i,j,a, a'

(1.1)
where t;J denotes the transfer integral, jt the chemical po-
tential, U is the on-site Coulomb interaction, 8;j is the in-
tersite interaction and n; c;~~; . The number of elec-
trons per lattice site is given by

n — n;
1 (1.2)

l, O'

This simple extended Hubbard model can be taken as a
prototype to study the real-space pairing, either on-site
(U & 0) or intersite (W & 0). The parameters of (1.1)
are renormalized from their bare values, and the Hamil-
tonian (1.1) can be considered as rather general, resulting
from the coupling of narrow-band electrons to the bosonic
field, such as phonons, excitons, or plasmons. The induced
attractive potential competes with the Coulomb repulsion
and can give rise to a local attractive interaction. Such a
nonretarded static, short-range attraction can also be of
purely electronic origin due to, for example, strong polar-
izability of anions.

In Ref. 1 we considered the case U) 0 and W&0,
which is the simplest model to account for magnetism and

intersite superconducting pairing. The term mainly re-
sponsible for the intersite pairing was the effective-
nearest-neighbor (density-density) attraction W~j & 0.

In general, there are two other intersite interaction
terms which are not included in (1.1) and which can be of
importance in real narrow-band systems. They are given
by

QJpjot' tsj + 2 'Q'Ktjnt (ct —~j— +H.c.),

where crt cttlc;1, tr,' —,
'

(n; 1
—n;1).

The main purpose of this work is to study the eA'ects of
just these terms on the superconductivity of a system with
intersite pairing and to point out new features which can
be introduced into the model (1.1) by these couplings.
We shall also report further results for the model (1.1)
concerning the problem of the electron droplet formation
(phase separation) and of the mutual stability of super-
conducting and droplet phases.

Formally, J;J and K~J are the off-diagonal terms of the
Coulomb interaction V(r —r'):

J~j (ii ) V(r) (jj ), K,j (ii ) V(r) ) ij) .

These terms, involving bond charge density result from
the fact that due to translational invariance, the electron
density operator is not diagonal in a Wannier representa-
tion. The estimations of Hubbard, Kivelson et al. , Baer-
iswyl et al. , and Gammel and co-workers show that
such terms can be of importance in narrow-band materi-
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als. J;~ is the effective direct superexchange (potential ex-
change). Both J~~ and K;J can. be renormalized by several
factors, e.g., they can contain contributions from the
electron-phonon coupling.

As in Ref. 1, our study is concerned mainly with a two-
dimensional (2D) square lattice employing the broken-
symmetry Hartree-Fock scheme and considering the case
of arbitrary electron density. Recently, some authors con-
sidered the exchange interaction terms as a possible mech-
anism for high- T, superconductivity. ' ' We think that
the results of the present paper will provide deeper under-
standing of this problem also.

II. MEAN-FIELD THEORY

Our mean-field approach for the Hamiltonian 0+0~
follows exactly that presented in Ref. 1; therefore, here we
shall only give the final basic equations for the particular
types of pairings, restricting ourselves to the case of
nearest-neighbor interactions.

~Z@yqF, ,
1

N q
(2.6)

n —1 — gP F—2
N q

(2.7)

The pairing potential Vg q takes on the separable form for
the square lattice and the nearest-neighbor interactions,
and Eq. (2.1) can be solved by an ansatz

ho+ A„yg+ hqrlt„ (2.8)

Eq is the quasiparticle energy, sq is the band energy of
noninteracting electrons, Jq, 8'q, and Kq are the Fourier
transforms of J~j, 8;J, and KJ, respectively. For nearest-
neighbor hopping sq

—tyq, yq gsexp( i—q h) with b
being the vectors linking nearest neighbors. The Fock pa-
rameter p (I/N)+qyq(cqt~q ) and the chemical poten-
tial p satisfy the following equations:

A. Singlet superconducting phases

The gap equation for the singlet pairing is given by

1 1
bz —Qv( q(c q&cqi) —Qvf, qhqFq,Nq ' Nq

(2.i)

where the particular terms refer to on-site s-wave, extend-
ed s-wave, and d-wave pairings, respectively,

yk 2(cosk, +cosk~), rli, =2(cosk„cosk—~) .

The self-consistent equations for the s-wave pairing are
where

Vf, q
—U —Jvk q+ —,

' Ji —q
—(Ki,+Kq),

Fq (2Eq) ' tanh(PEq/2),

E,-4'g+
I ~, l

'

p~yq/'—yo+Kyqri/2 2pJyq—/yo p, —

(2.2)

(2.3)

(2.4)

ho =—g( —U+Kyq)hqFq,
1

N q

—g[ ~ ( —', J —W) yq
—KlhqFq,

and for the d-wave pairing

(2.9)

sq gt;J exp[iq (R;——RJ)],
j

p p —n —+ 8"p —pK,U
2

P (ks T)

(2.5)

~„-—g-, (-, J W)~,~,F—,
q

(2.io)

The transition temperature for the onset of pure s-wave
pairing is given by

1+U@&+K@2 U~2+EC~y

4 (8'—2 J)4&2+K@( 1+ 4 (W —
2 J)@„+K@2 ~y

(2. ii)

with p and p given as Eqs. (2.6)-(2.7) for d,q~ 0. In Eq.
(2. i i)

B. Equal-spin (triplet) pairing

e, -—gF„(T,),1

~2=—g y,F,(T,),1

% q

@y=—g yqFq(T, ),1

and

F,(T,) -(2a, ) ' tanh(p, g,/2) .

T„ for the d-wave pairing is

-—gg,'F, (T,) .
2J—8' Nq

(2. i2)

(2. i 3)

(2. i4)

The gap equation is given by

~, (k) -—gV,',,(c,tc, t) =—QV&,,~, (q)F, ,
q q

(2.i 5)
with F„given by (2.3) and

E,=j'@+ l a, (q) l
',

Vf, ,q 2 (IVi+q+ 2 Jk+q IVi -q 2 Ji —q). (2.i6)

The equations for p and p are given by (2.6) and (2.7)
with dq replaced by b, , (k). For the d=2 square lattice
and the nearest-neighbor interaction, after substituting

d&(q) =hq =h~sinq„+iLgsinq~,
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one obtains

2&+JgP me- Pslnp~h(F&, rr ~x,y . (2.17)

0.15

kamic
D

Thus T, for the onset of p-wave pairing is determined by

1 1-—gsin zq„Fq(T, ), (2.IS)

together with Eqs. (2.6) and (2.7) in Aqi' 0 limit, and
Fq(T, ) is given by Eq. (2.13).

As far as the spin-density-wave (SDW) ordering is con-
cerned the mean-field equations have been given in Ref. l.
The main effect of antiferromagnetic exchange is to
enhance U by adding factor Jz, z being the coordination
number.

III. RESULTS

0.10—

0.05-

0 0.2 0.4 0.6 0.8 1.0

FIG. 1. T,' and Td for the square lattice vs electron density
for J/D 1/3 (solid lines) and for J/D 1/6 (dotted lines).
The values U/D for T,' are next to corresponding curves.

The coupled equations for the superconducting transi-
tion temperatures and for the chemical potential have
been solved by direct numerical integration for the square
lattice (under the assumption that p 0). The calcula-
tions were performed for the extended range of the in-
teraction parameters and arbitrary electron density n

(0~ n~ 2), including the case of nearest- and next-
nearest-neighbor hopping.

A. The ease of nearest-neighbor hopping

For the sake of clarity we will present first the results
concerning the limiting case 8' 0, K 0, i.e., the case for
which the intersite pairing is exclusively produced by an
effective magnetic interaction.

If n 1, p ~0 the equations determining T, for s,d,p
pairings and SDW ordering can be analyzed by low-

temperature (weak-coupling) and high-temperature ex-
pansions. There are two branches of s-type solutions for
T, which are decoupled if n 1 and EC 0: (i) extended
s-pairing (b,,40, ho 0) existing only for J/D~ n /12
(U arbitrary); (ii) on-site-s-pairing (ho40, 5„0)exist-
ing for any J and U & 0. The d-wave pairing solutions ex-
ist for arbitrary J & 0 and T, & T,' for any J & 0, U & 0.
In the case of a ferromagnetic exchange interaction the
only possible superconducting solutions are the p pairing,
existing for arbitrary U and J & 0, and the on-site s-wave
pairing.

The numerical solutions for T, of s- and d-wave pairing
for the case of J & 0 are simply given by Fig. 1 of Ref. 1

with
~ W~ —', J, and T, for SDW is the same as in Fig. 1

of Ref. 1 but with U/D (U+4J)/D. By comparison of
critical temperatures one obtains that as far as the mutual
stability of pure phases is concerned, the SDW is most
stable for any U & 0, J & 0 and the boundary between
on-site s pairing and the SD%' for J&0 is given by
—U 2J.

For nial the nature of the ordered state depends on
band filling and the values of parameters involved. In Fig.
1 we give T, for s- and d-wave pairing for diAerent values
of J/D and U/D. These plots are symmetric with respect
to n 2 —n due to the electron-hole symmetry. T," is the

highest one close to the half-filled band and enhanced due
to the Van Hove's singularity, while T; for extended s-
wave pairing shows strongly nonmonotonous behavior
with a sharp increase for small values of n, going through
the maximum upon increasing n and dropping to zero
asymptotically above some value of n. The increasing on-

site repulsion U reduces T; and the maximum of T; is
shifted towards higher values of ) n —1 ( .

Such a behavior of T; is obtained for any U & 0 as long
as J & J„;i~(x /12)D. For J & J,„;t, T; tends to finite
value for n 1. Moreover if U is negative, the s-wave

pairing can always be made the most stable one for
suIItciently large values of

~
U ( .

From comparison of T, of di8'erent pairings we give the
diagram of relative stability of s and d pairings in Fig. 2.
The boundary between the d and s pairing states is located

1.0-

J
D

O.5'-

I
I

0/D*-Q5 i

II0 i I

0 0.5 lp ql ).0
FIG. 2. Diagram for relative stability of s- and d-wave pair-

ings for the square lattice in J/D vs [ n —1
~

plane, for
8' K 0. The solid line is for U 0, the dashed line is for
U/D —0.5, and the dotted line is for U/D 0.5. The solid

and dotted lines are extrapolated down to J/D 0, which is

shown by the dashed parts.
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at 0.15 (n, & 0.46 for 0 (J/D ~ 4/3, U 0; and n, de-
creases with increasing J. Increasing U&0 shifts n, to-
wards lo~er values, whereas U & 0 can expand the stabili-
ty region of s pairing up to n l.

In Fig. 3, we present the diagram of relative stability of
s-, p-, and d-wave pairings obtained for the case J 0 and
W&0 (see also Ref. 1). Contrary to the case J&0,
W 0, where p-wave pairing cannot exist and one expects
only the d s-wave transition with decreasing n, in the
case of attractive W the p-wave pairing can be most stable
in the region of intermediate densities and the sequence of
transitions d p s is possible with lowering the elec-
tron density for U & 0 or small negative U. Increasing the
coupling constant expands the range of stability of d-wave
pairings towards higher values of ( n —1 ( in both cases
considered (compare Figs. 2 and 3).

Let us point out now the effects of repulsive intersite
Coulomb interaction W & 0. Increasing W & 0 reduces
T; and T, due to renormalization of the coupling constant
J J——', W and shifts the boundary between d and s
pairing towards lower values of

~
n —1 (.

For W & —, J both types of intersite pairing are
suppressed for arbitrary n and only the s-wave pairing sta-
bilized by U & 0 can be eventually developed in the sys-
tem. The other possibility for 8'&0 is stabilization of
the charge-density-waves (CDW) ordering. ' ' The
Hartree-Fock analysis indicates that CDW can be estab-
lished for d 2 if U+4J &4W close to the half-filled
band, whereas for U+4J &48' CDW is suppressed by
the SDW ordering. The coexistence of CDW and aniso-
tropic s- and d-wave pairing is an open problem. We
should mention, however, that for the U & 0 case the coex-
istence of CDW and on-site s-wave pairing has been al-
ready analyzed. ' lt has been found that such a mixed
phase (CDW with singlet on-site superconductivity) can
be stable in a quite extended range of electron densities
(except for low-density limit and n 1).

0.15,

kBTc
D

0.10-
d-wave

(a)

0.05-

8. Effects of next-nearest-neighbor hopping

For the square lattice and next-nearest-neighbor hop-
ping ~ —2t (cosk„+cosk» ) —4t 2 cosk„cosk». The t 2

term breaks the electron-hole symmetry and consequently
Van Hove's singularity moves to n~l, shifting the max-
'imum of T, for d- and p-wave pairing.

The results of numerical analysis of T, vs n for s- and
d-wave pairings are shown in Figs. 4(a) and 4(b) for a
fixed value J/D 1/3 and several values of t2/t. The
cases of t2&0 and t2 (0 are linked by the relation
T, (n, t2/t) T, (2 n—, t2/t)—and it is sufficient to consid-
er only the case t2 & 0. It is clear from Figs. 4(a) and
4(b) that for a definite range of n, T, can be essentially al-
tered even for small t2. Upon increasing t2/t the max-
imum of T, [Fig. 4(a)] decreases and moves from n= 1

towards higher densities and the strong nonmonotonous
variation of T, vs n is observed for larger t 2/t ratio.

Concerning the s-wave pairing [Fig. 4(b)] we observe
that this type of pairing is enhanced in the regime
1 (n & 2 and is spread over a wider range of densities.
The maximum of T; moves towards the half-filled band.
For 0 & n & 1, T,' is strongly suppressed upon increasing
t2 but s-wave pairing can still be stable for small n.

In Fig. 5 we compare T," and T,' vs n for t2/t -0.5 with
that for t2 0. In this figure we also show the effect of
U & 0 on the s-wave pairing, which results in a reduction

IWI
D

0.5-

4

~r

0

~yl ~

)
'. s

0

0.15

0.10-

0.5 1.0 1.5

(b)

2.0

0 0.2 Q4 0.6
In-1I .

0.8 1.0
0.05-

FIG. 3. Diagram of relative stability of s-, p-, and d-wpve
pairings for the square lattice in W/D vs ~n —I ) plane for
J=O, E 0. The p-s boundary is plotted for U 0 (solid line)
and U/D 0.5 (dotted line). The dashed-dotted and the dashed
lines denote the phase boundary between the superconducting
and condensed phases for U WLR 0 and

~
W

~ /D U/4D
+ WLR/2D, respectively, with the condensed phase being stable
above these border lines (see Sec. IV).

'0 0.5 1.0 2.0

FIG. 4. T, vs electron density for (a) d-wave pairing and for
(b) s-wave pairing for diferent ratios of t2/t and J/D I/3
(U 0 for the s-wave pairing. ) d 2 square lattice.
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0.15

kaTc
D &,yt. a.s.
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0.5 ).0 1.5 p 2.0

FIG. 5. Comparison of critical temperatures for d- and s-
wave pairing vs n for J/D 1/3. The solid lines and dashed
lines are for t2/t 0.5 and t2 0, respectively, and U 0 for s-
wave pairing. The dashed-dotted line denotes T,'for U/D 0.5,
t2/t 0.5. d 2 square lattice.

of T; and moving the maximum of T; towards lower den-
sities.

The diagram of relative stability of s- and d-wave pair-
ings as a function of t2/t is given in Fig. 6. To stress the
reflection symmetry both cases tt &0 and t2&0 are
presented. We notice that with increasing t2/t &0 the
range of stability of d-wave pairing extends up to n 2,
while the d-s phase boundary for small n is only weakly
dependent on the t 2/t ratio. Also, for large t2/t the s-wave
pairing with strongly enhanced T, can be stabilized close
to the half-filled band. Thus, with increasing t2/t ratio the
sequence of transitions as a function of n can be changed
froms d stos dand then tossed s d
(compare with Fig. 10 in Ref. 1).

C. ENects of the correlated hopping term

Let us now consider the effects of the correlated hop-
ping term K on the superconducting transition tempera-
tures. As it follows from the self-consistent equations for
the d-wave and p-wave pairing the K coupling enters them
only in the form of normal Hartree-Fock terms [compare
Eqs. (2.6) and (2.7), Eq. (2.14), and Eq. (2.18)].

Thus its effect reduces to some (unessential) renormal-
ization of the bandwidth and the chemical potential,
which can be neglected in the first approximation.

In the case of s-wave pairing the effect of K term is
much more essential as it enters explicitly the correspond-
ing pairing potential.

I
I

I
I

II
I

% I
Al8X Ts

I
I

I

I

0.8-
t2

0.4-
I

I
I

Ig
I maxTd

I
I

S
0 I 1

, (
I

I I
I

i S I
't I

I
I
I

I
I

I
I

fllSX Ts

II
I

-0.8-
I
I
I

FIG. 6. Diagram for relative stability of s- and d-wave pair-
ings in t2/t vs n plane for J/D l/3 (U O, fV 0). The solid
lines separate the phases with s and d pairings, while the dashed
lines mark the maxima for T; and Td.

where

n —1

2t

[D +p —4'(n —I)+2@ Yl,
4t D

p
2tD

(3.ib)

(3.1c)

/D2 -22 c
(3.id)

kgT, x
C 0.577 is the Euler constant and, at T 0 K, p

D(n —1). Equations (2.11) and (3.1a)-(3.1d) yield
the following expression for T, of s-wave pairing:

It is instructive to consider first the case of rectangular
density of states of the form p(a) (1/2D)B(D —)s( )
where B(x) is the Heaviside function and D is the half
bandwidth. Upon using the weak-coupling approximation
one obtains for @~, @2, and N„(neglecting the normal
Hartree-Fock terms):

Y1 (3.ia)
2D

ktt T,
D

- 1.13'(2 —n) exp
2[i+K(n —1)]2—X[1 —3(n —1) ]+2ku(n —1)

2X(n —1) + (Xu+ K )[1+(n —1) ] + 4K (n —1) —2u,
(3.2)

where K K/2t, u U/2D, A, ( —', J—W)/2t, D 4t. T;
given by (3.2) shows nonmonotonic behavior with n and a
maximum of T,' occurs for n~1.

For the two-dimensional square lattice, the T; has been
determined numerically from Eqs. (2.11) and (2.7) and
the results are shown in Figs. 7 and 8. Figure 7 shows T;

l

vs n for a given ratio (W —
2 J)/D —0.5 and different

values of K/D. Upon increasing K/D (K & 0), T; is sub-
stantially enhanced in the regime 1 &n (2 and s-wave
pairing extends over a wider range of densities. For
0 ( n & 1, T; is reduced and the s-p (d) phase boundary is
shifted toward smaller densities.
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kBT
D

0.10-

0.05—

/
/

/
/

/
/

I
I

0

sion 8'& 0. Thus except for very special cases the corre-
lated hopping term alone cannot serve as a driving mecha-
nism of superconducting pairing. In particular, it be-
comes completely uneffective in the large-U limit.

It should be stressed, however, that in the presence of
other terms favoring superconductivity the effects of K
can be important, and they can substantially modify the
relative stability of superconducting states and the varia-
tion of T, with the electron concentration.

00 1.0 &.5 n 2.0

FIG. 7. T; vs electron density for fixed value of
(W —

2 J)/D = —0.5, U 0, and dilferent values of the correlat-
ed hopping K/D given next to the solid curves. For comparison
T," and TE' for W/D —0.5, J 0 is plotted by the dashed and

dotted lines, respectively. d 2 square lattice.

I

0.5

We should point out that the K term breaks the
electron-hole symmetry and similarly as in the case of the
next-nearest-neighbor hopping there exists the following
relation for T;: T;(n, K, . . . ) =T;(2 —n, —K, . . . ),
which links the cases of K&0 and K&0, respectively
(provided that Hartree-Fock terms in a„are neglected).
In Fig. 8 T; vs n is plotted for the case W J 0 and
different values of K/D and U/D. This figure shows that
there is a potential possibility of having the s-wave pairing
due to the K term only, i.e., even if all the other mecha-
nisms of pairing (i.e., W&0, J, or U & 0) are absent.

Ho~ever, as the pairing induced by this term always
consists of on-site s-wave and the extended s-wave com-
ponents (AnaO, h„eO), it will be strongly suppressed by
both the on-site repulsion U) 0 and the intersite repul-

IV. CONDENSATION TRANSITION

+ —,
' g W;/S;Sj, (4.1)

together with the condition

In the presence of an attractive density-density interac-
tion the electronic system can undergo under definite con-
ditions a condensation phase separation transition, such as

liquid-gas condensation. For the case of the half-filled

band, this problem has been recently discussed by Guber-
natis et al. ' for the two-dimensional spinless fermion
model and by Lin and Hirsch' for the one-dimensional
extended Hubbard model with nearest-neighbor interac-
tion. In particular, for the latter model it was found by
the combination of the analytic results and the Monte
Carlo simulations that the condensed phase occupies an

essential part of the U, 8'plane of the ground-state phase
diagram for 8'& 0.

Let us first consider some particular limits of the Ham-
iltonian (1.1) for the case of attractive interaction, for
which one can find the relation with appropriate pseudo-
spin models.

(i) In r =0 limit, upon substitution S; =n;l+n;I —1 the
Hamiltonian (1.1) can be transformed into

H =N( —,
' zW —U) —(p —zW ——,

' U)QS;+ —,
' Ug S;

kgT
0

0.35—

005-

i

0.5 l.o 1.5 n 2.0

FIG. 8. T; vs electron density for K/D =0.5 (W=J=O) and
diA'erent values of U/D, for the square lattice and nearest-
neighbor hopping. The dashed line denotes T; for U/D = —0.5,
K =O.

(4.2)

Therefore the system is equivalent to the S=1 Ising mod-
el with single-ion anisotropy and with the eigenvalue zero
doubly degenerate in an effective magnetic field given
self-consistently by (4.2). For the half-filled band p
=zW+ 2 U and the thermodynamic properties of (4.1)
are the same as those of the Blume-Capel model with the
anisotropy parameter D =U/2+keTln2. 2c For W& 0
the ferromagnetic order of pseudospins will correspond to
electron droplet formation. In the ground state for U & 0
the transition between the droplet phase and the Mott
phase (i.e., the phase with one electron per site con-
figuration) is of first order and takes place for
U/z ) W )

=
2 (exact result). For finite temperatures the

transition can be of first or second order together with the
tricritical point. For U &0, W& 0 the droplet phase (fer-
romagnetic order) is always stable at T=O and a transi-
tion to the disordered phase at finite room temperature is
of second order.

On the other hand for W )0 the charge-order (antifer-
romagnetism of pseudospins) can develop and at T=O
K it is a stable phase for any z W & 2U.
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For the non-half-filled band, the analysis of (1.1) in the
r 0 limit or (4.1) has also been performed but only for
W & 0 (Ref. 20) and the problem of droplet formation for
W (0, n&1 has not been studied so far.

(ii) For U (0 and
~
U

~
&& r, W the perturbation theory

can be used to derive an effective pseudospin Hamiltonian
of the form'

2 ZJij(Pi Pj +Pi Pj )+X&ijpiPj'
I,J L,J

—Bg(2pi'+ 1)—
~ W(Jo+ 2 Wo) (4.3)

together with the condition

—g&2p,'+1)-n,1

l

(4.4)

where

J;, -2i,j'/(U(, SC,j-J,j+2Wj, B-p+ 2 IUI —Wo,

Jp gJ;
J

Wo -ZWij .

II(q) - &p~(z) p~t(0))dr,

where

Pq Qck+q, acket
ka

(4.5)

(4.6)

is the density operator. Within the RPA one gets for
rI(q),

where

rIp(q)
RPA 'q

1 +6 ( )
(4.7)

f(4+q) -f(4 )
Hp q —Z

g —~+q
is the noninteracting particle-hole bubble:

(4.8)

Gq U+2Wq, sk sk —ji, p iu
—n( 2 U+ Wp),

The charge operators

p;+ -c;etc;i, p; -(p;+)t, p - —,
' (n;t+n;t —1)

have s —, Pauli statistics. This is the anisotropic Heisen-
berg antiferromagnet in an effective magnetic field, which
again has to be determined self-consistently by Eq. (4.4).
It has been demonstrated by the spin-wave method ' that
the superconducting ground state of (4.3) and (4.4) be-
comes unstable towards droplet formation for K/J ~ —1

(i.e., —W~ J) and any n. Apart from these two cases
not much is known about the condensation transition for
the extended Hubbard model with arbitrary electron den-
sity.

In the following we will present the results concerning
the condensation transition for the two-dimensional ex-
tended Hubbard model [Eq. (1.1)] including in addition
explicitly the long-range part of Coulomb interaction.
Moreover, contrary to Refs. 18 and 19, the case of arbi-
trary electron concentration has been analyzed. In order
to determine the condensation transition we consider the
zero-frequency q-dependent density-density susceptibility

1+GpHp(0) -0, (4.9)

rIp(0)- 4~ k cosh'(p, sk/2)

~here

(4.10)

Gp U+ 2+z„W„U—8
~
W I

+2WLR

in d 2 and WLa $„~2z„W„denotes the long-range
part of the Coulomb interaction. Equations (4.9) and
(4.10) should then be solved together with the equation
determining the chemical potential, i.e.,

n —1-——gtanh1 /jcak

N k 2
(4.11)

This set of equations determining T„„has been analyzed
numerically for the d 2 square lattice and also for the
case of rectangular density of states (DOS). The critical
values of 6/D —Gp/4D 2 ) W )/D —U/4D —WLR/2D
above which the condensation transition can occur at
T 0 K are given as a function of electron density in Fig.
9(a).

The case of half-filled band for square lattice is very
peculiar as it is the only case for which the condensation
can develop for any 6 & 0. This is due to the presence of
the Van Hove singularity coinciding with the Fermi level.
In contrast to the rectangular DOS, as well as for any
d 3 DOS, the condensation transition is possible only
above some finite value of G/D [for example, for elliptic
DOS (G/D)„ i 4/n].

For n 1, j 0, and the low- and high-temperature ex-
pansions of Eqs. (4.9) and (4.10) yield for d 2 lattice:

x D
kii Tppp 4 exp for 0&6«D,

kii Toon
2

6 2
for 6))D, (4.12)

whereas for the rectangular DOS T„„is given by

kg T„„—arctanh
D 26 (4.13)

The numerical plots of T„„vsG/D for n 1 are given in
Fig. 9(b). As is seen from Fig. 9(a) for the d 2 lattice
even a small deviation from n 1 makes the condensation
much less favorable to occur and yields a sharp increase of
6„;&. Moreover for G/D (0.7846 there always exists a
critical concentration n, below which the condensation
can never occur. This is clearly seen from Fig. 10, where
the numerical plots of T„„vsn are given for several 6xed
values of 6/D. A comparison of condensation transition
temperature and the superconducting transition tempera-
tures versus electron density yields the mutual stability
phase diagram given in Fig. 3. This diagram includes an
extreme case U 0, WLR 0, and also shows rapid shift of

f(sk) being the Fermi-Dirac distribution function. The
condensation instability temperature T„„determined as
the temperature at which H&pA(0) diverges is given by the
following equations:
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FIG. 9. (a) G/D vs
~
n —

1 [ diagram for condensation insta-
bility at T 0 for the square lattice (G/D 2~ W~/D —U/
4D —8'LR/2D). The dashed line denotes the condensation in-

stability for the rectangular DOS. t2 0. (b) T„„vs G/D for
n 1. The solid and dashed lines are for the d 2 DOS and the
rectangular DOS, respectively.

V. FINAL REMARKS

In this paper we presented further mean-field studies of
anisotropic superconductivity and condensation transition
in the two-dimensional extended Hubbard model. These
results were mainly oriented to show the eA'ects of direct
exchange interaction and the correlated hopping term on
the stabilization of various superconducting pairings
versus the band filling for d 2 square lattice. We have

1.0-

ksTcoN
D

0.5

0.5
25

1.0 2.0

FIG. 10. T„„vs electron density for dilferent values of G/D
and nearest-neighbor hopping for the square lattice (solid lines).
The dashed line denotes T„,for G/D 0.5 and t2/t =0.3.

the phase separation line towards higher values of
~

W
~
/D

upon increasing of the repulsive Coulomb interactions.
We have analyzed also the inliuence of next-nearest-

neighbor hopping on T„„.As in the case of the supercon-
ducting pairings T„„for t2 & 0 and t2 & 0 is linked by the
relation

T„„(n,t i/t) -T„„(2 n, ——t z/t) .

Upon increasing t2/t (t2 & 0) the maximum of T„„moves
towards higher densities and nonzero T„„spreads over a
wider range of densities in the regime 1 & n & 2. In the
regime 0 & n & 1, T„„is strongly reduced and n, for the
onset of condensation at the ground state is shifted to-
wards higher densities. In Fig. 10, T„„vsn for G/D =0.5
and t 2/t =0.3 is plotted by a dashed line.

also discussed the condensation transition for the extended
Hubbard model with attractive intersite interaction and
arbitrary electron density. We presented the results for
the pure phases only, leaving the discussion of the coexist-
ing SDW with superconductivity and the mixed supercon-
ducting solutions to another work.

It is worthwhile to compare the superconducting phases
with intersite pairing stabilized by intersite terms
(W & O, J) with the superconducting on-site pairing of the
attractive Hubbard model.

If W 0 T, for on site -pairing (which is isotropic s
wave) shows monotonic behaviors versus electron density
with a maximum at n 1 and for the square lattice it is
strongly enhanced by the Van Hove singularity. ' For
d 2 this pairing can exist for any U & 0 and arbitrary n.
If W& 0, T, becomes nonmonotonic' with a maximum
of T, at the border with CDW and above some critical
density the superconductivity can coexist with CDW.

On the other hand the intersite pairing can be of aniso-
tropic s-, d-, or p-wave type depending on the symmetry of
pairing potential, the strength of interaction parameters,
the electron density, and t2/t ratio. All these pairings can
be driven by the intersite density-density attraction
W & 0, whereas the antiferromagnetic exchange enhances
extended s and d pairing and suppresses p pairing.

T, vs n for extended s pairing is strongly nonmonoto-
nous with a maximum for low densities (if t 2 =0),
whereas the maximum of T, occurs at the border with
SDW close to the half-611ed band. Further differences are
related with the tendency towards droplet formation and
phase separation. For example, for U & 0, 8'=0 the sys-
tem never undergoes condensation while for W& 0 this
tendency is quite substantial to such an extent that for
n= 1 additional repulsive Coulomb interactions (long-
ranged or on-site) are necessary to stabilize superconduc-
tivity. As it was previously stressed' for the on-site at-
traction (U & 0) one can go continuously to the large at-
traction limit, i.e., from the Cooper pairs to the local
pairs, ' at least at T 0 K, and there exists an exact
mapping of the U & 0 extended Hubbard model onto the
hard-core charged Bose gas on a lattice for ( U

~

&&t, H, k&T."
It is an interesting problem concerning the formation of

real-intersite pairs and the transition from the BCS super-
conductivity to superQuidity of charged bosons in the case
of intersite pairing. We should mention that for the con-
tinuum case such a changeover exists and is smooth as it
has been proven by Nozieres and Schmitt-Rink. So far
for the fermions on a lattice this is an open problem.
However, recent calculations of the binding energy of a
single intersite pair support such a possibility.

In our previous papers, ' we have already pointed out
a possible relevance of the intersite pairing for the high-T,
superconducting oxides and shortly discussed the various
hypotheses regarding the possible types of pairing in these
materials.

The concept which seems to be well substantiated at
present is that upon doping the extra holes go to the oxy-
gen ions. Hence, the pairing occurs primarily on (neigh-
boring) oxygen ions, i.e., we deal with the case of intersite
pairing of holes on oxygen (p —ps). 25 Such a picture is
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strongly supported by recent spectroscopic data- which
identify the charge carriers in the normal state as the
holes in the oxygen p band, as well as by possible peroxide
(or superoxide) formation. Moreover, recent
theoretical studies support the existence of an e6'ective
(short-range) attraction just between the p holes on oxy-
gens, induced either by (i) coupling to local magnetic
configuration of Cu +, (ii) polarization mechanism,
(iii) electronic correlations, ' ' particularly due to Cu-
0 repulsion. '

In contrast to the hypothesis of pairing d holes on Cu
sites which would correspond to the nearly half-filled band
case, now we approach the model (1.1) from the opposite
side of electron densities, namely from the limit of small
concentrations of holes in the p-like band (i.e., for exam-
ple LaqCu04, with Cu + ions, will correspond to n =0 in
the p-holes representation). In such a case theory predicts
s-wave-type pairing which is isotropic, for U & 0, and
anisotropic-extended s for W & 0 or J~0. T, vs n is non-
monotonic and has a maximum for some n. In fact the
n(x) dependence of T, recently observed in Laz „Sr„-
Cu04, is very similar to the plots of T,' vs n given in
Figs. 3-6 of Ref. 1 or in Figs. 1, 4(b), 5, 7, and 8 of this
paper.

The model considered seems to account also for several
other experimental findings:

(i) T, and 6 can be high and n dependent since pairing
takes place in the whole Brillouin zone, contrary to the
BCS model.

(ii) The short coherence length observed in these ma-
terials is consistent with the model assuming local, short-
range interactions.

(iii) The linear in T behavior of the resistivity in the a-b
plane can be accounted for by low-carrier p-holes concen-
tration, reinforced by quasi-two-dimensional transport.
As we have shown in Sec. II and in a previous paper, ' in
the case of intersite pairing there can be a transition from
extended s-wave to d-wave (or p-wave) state upon in-
creasing n. Eventual observation of such a behavior would
provide further support in favor of intersite pairing and
exclude the concept of on-site pairing. This is a possibility
for the higher T, materials based on Bi and Tl and having
higher n.

Let us stress that our conclusions have been mostly de-

rived on the basis of the broken-symmetry Hartree-Fock
approach, which is perhaps better justified for p-like elec-
trons than for strongly correlated d electrons. However,
even for p electrons the nature of the many-body state in
the presence of local attraction can depend on the density
of carriers and in the small density limit the formation of
real bound pairs is likely to occur. Moreover, low dimen-
sionality of lattice structure provides an additional factor
in favor of it, as in two dimensions even weak attraction
can produce a bound state of two holes. In such a case
the superconductivity will result from the Bose condensa-
tion of these pairs and their superfiuidity. Increasing car-
rier concentration can yield a changeover to the weak-
coupling behavior.

In summary, we have presented further results concern-
ing the superconductivity with intersite electron pairing
and the electron-droplet formation in narrow band for two
dimensions, which completes our previous mean-field stud-
ies. ' We think that the results of the present paper can be
also relevant to heavy-fermion superconductivity '
as well as to the organic charge transfer salts, both
(TMTSF)zX family and BEDT-TTF salts.

Note added in proof: Recently, J. E. Hirsch [Phys.
Lett. A 136, 163 (1989)] has pointed out that the corre-
lated hopping term K can arise for hole conduction
through oxygen ions when coupling to a degree of freedom
describing the deformation of the outer electron cloud of
the ion by the presence of the conducting hole is included.
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