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Vertex correction to the Eliashberg equation for the superconducting critical temperature
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The effects of the electron-phonon vertex correction, including high-order correction, on the su-
perconducting transition temperature T, are discussed. For an Einstein spectrum, a self-
consistent vertex solution is obtained which goes beyond the ladder approximation and satisfies
the Ward identity. The numerical results show that the T, change due to this vertex correction is
significant at small coupling constant A, , but much smaller for large X,.

I. INTRODUCTION

The recent discovery of high-T, superconductivity in
oxide systems (La2 „Ba Cu04 and YBa2Cu307, etc.) has
spurred a remarkable surge of interest and research activi-
ty. A large number of models have been suggested for this
superconductivity. The identification of the primary
mechanism responsible for high T, however is still an
open problem. Although different mechanisms and mod-
els are based on completely different conceptions and in-
teractions, many of them still invoke the T, equation in
conventional BCS or Eliashberg theory to give an estima-
tion of superconducting transition temperature in
phonon-, exciton-, and plasmon-mediated pairing mod-
els. ' It is well known that the derivation of the Eliash-
berg equation rests on the Migdal approximation, which
states that the contribution from electron-phonon vertex
corrections to the electron self-energy are of order of
a=AtoD/eF, where toD is the characteristic phonon fre-
quency and eF is the Fermi energy. In conventional me-
tallic superconductors, in which eF is of the order of 10 K
and thus a~1%, the linearized Eliashberg equation has
been proven to be a good theoretic basis for the discussion
of superconducting critical temper'ature.

The situation in high-T, oxides however is quite
different. Experiments showed that both Lap —„Sr„Cu04
and YBa2Cu307 are low-carrier density systems with
n —10 '/cm, much smaller than that in a conventional
superconductor. Even making a conservative estimation
htoD-0. 04 eV and N(0) ~10 eV/cm, we have a~0.2.
This shows that the linearized equation in its conventional
form is not good enough for high-T, oxides. In other bo-
son (nonphonons) exchange mechanisms, the characteris-
tic frequencies are generally much larger than coD, the ap-
plicability of the T, equation with Migdal approximation
is even more questionable.

The theoretical calculation of the superconducting criti-
cal temperature beyond the Migdal approximation is gen-
erally a formidable task, especially for high-T, oxides
which are strongly anisotropic. To estimate this effect,
people usually discuss model three-dimensional systems,
as addressed by Grabowski and Sham. They discussed
the lowest-order vertex for a model interaction but
dropped all the higher-order contributions. The purpose
of this paper is to discuss the effect of the vertex correc-
tion, including higher-order corrections within ladder and

nonladder approximations, on superconducting transition
temperature T, for the same model system, hoping that
the results obtained are qualitatively meaningful in the es-
timation of the superconducting critical temperature for
oxide systems.

We confine our discussion to the case of an Einstein
spectrum which has also been widely used in boson (non-
phonon) exchange models in the estimation of T, for ox-
ide systems. ' The Einstein spectrum not only simplifies
the calculations but also makes it possible to obtain a
self-consistent solution which goes beyond the ladder ap-
proximation and satisfies the Ward identity. Our results
show that the T, change due to vertex correction is
significant at small and mediate A„but much smaller for
large X.

II. VERTEX CORRECTION TO THE LINEAR
EI.IASHBERG EQUATION

A. Ladder approximation

We begin with the Hamiltonian of an electron-phonon
system. The self-energy of the superconducting con-
densed state is shown graphically in Fig. 1(a), and the
corresponding linearized gap equation at T T, can be
written as

to Z(k)
t0„[I—Z(p) l = ——g

P t, tu2 Z(k) 2+&(k) 2

V„(k —p)1.(k,p),
A'(p) = —— e(k)

p t to Z(k) +e(k)
x &,tr(k —p)I (k,p),

c(p) = —— e(k)
P t Z(k)'+ (k)'

x I ff(k —p)l (k,p), (lc)

in which k = (k, ito ), p = (p, ito„); co = (2m + 1)tr/p,
to„=(2n+1)tt/p; m and n are integers; k and p are mo-
menta; I (k,p) is the total vertex part e(p) =ed+A'(p);
and Z(p), A'(p), and C&(p) are the components of the
electron self-energy X(p) in the Nambu representation
[here I is the 2x2 unit matrix and a; (i =1,2, 3) the Pauli
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Fig. 2(a)]:

r(k, p) 1 ——g V,a(s)g(k+s)Q(p+s)I (k+s,p+s)l

FIG. 1. Self-energy (a) with vertex correction and (h)
without vertex correction. The wavy lines represent the eA'ective
interaction between electrons and the heavy solid lines represent
the electron Green's function.

where 9 is the normal electron Green's function. The to-
tal vertex can be divided into an electron-electron part and
an electron-phonon part:

r(k, p) -r, ,(I,p)r, „(k,p),
with

I - '(k p) 1 Zvsc(s)Q(k+s)1

it S'(p+s)r, ,(k+s,p+s), (7a)

V a(q) Vsc(q)+ V -ph(q) (3)

where Vsc stands for the screened Coulomb potential,
which is usually taken as (static approximation)

v, (q)v.,(q)- '
e, (q)

with e, (q) being the static dielectric function of electrons.
The fact that the effective electron-phonon (e-ph) interac-
tion V, ph is strongly frequency dependent but weakly.
momentum dependent, makes it possible to neglect the
momentum dependence of the electron-phonon interaction
by averaging out the momentum component of the
electron-phonon spectrum on the Fermi surface, leading
to

V, ph(q, iron) 2„den
roa 2F(co)

CO +COI

where a F(ro) is the Eliashberg function, in which the
electron screening and polarization effects are included.
For conventional metallic superconductors, a good ap-
proximation is to use the unit part in place of the vertex
part as was done by Migdal, and Eqs. (1) reduce to the
well-known linearized Eliashberg equation.

In the following, we are going to approximately deter-
mine the vertex part in Eqs. (1). First we discuss the ver-
tex nart within the ladder-graph approximation [shown in

matrices]

Z(p, ir0„) iso„[l —Z(p)]I+x(p)cr3+@(p)o&. (2)

Since we are interested in the vertex correction on T, only,
we can ignore the anomalous Green's function correction
(or spin fiuctuation). In Eq. (1) the effective interaction
between electrons V,s (q) is composed of two parts:

r, ,„(k,p) 1 ——g [V, h(s)I, , (k+s,p+s)]8-p r

p
8-p

x Q(k+s)Q(p+s)

XI, ph(k+s, p+s) .

In deriving Eqs. (7a) and (7b) we have used the fact that
the electron-phonon vertex part is mainly a function of
variable (k-p) and varies slowly with k and p. It is worth
noting here that the electron vertex part can be combined
into a modified Eliashberg spectrum and averaged on the
Fermi surface as discussed before, but we still use a F(ro)
for it. The electron-phonon vertex correction has been
studied thoroughly in the literature. 9'o Obviously, for
strong electron-phonon coupling or large phonon charac-
teristic frequency the higher graphs (vertex correction)
should not be discarded. Nevertheless, we can still simpli-
fy our calculation by considering that the dominant con-
tribution to the integration comes from the frequency re-
gion ro, co„-k T, « roD, and the momentum region
q»pFco/sF. " It should be noted that in principle large
a c0D/eF means a possible large momentum dependence
of the vertex and gap functions, but as pointed out by
Grabowski and Sham, the numerical solution for the
electron gas shows' that the node of the gap function @
comes mainly from the variation in frequency, not in
momentum. Thus, as did Grabowski and Sham, we treat
the momentum-transfer dependence of the effective in-
teraction and vertex function as unimportant compared
with the frequency dependence in the determination of su-
perconducting T,. For quasi-one-dimensional systems of
very strong momentum-dependent interaction, this may
not be justified. In the present paper we confine our dis-
cussion to the former case and simplify the integral equa-
tion

r, „(k,p) 1+2 de —g Q(k+s)Q(p+s)I, (k+s,p+s)a F(ro) 1 ro

P s CO +C0~

approximately into an algebraic equation

I, ph(iro, iro„) I+2J dro lim C(co;q, ro, r0, )
a'F(a))

CO q 0
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in which

&(Co;q, CO~, Con) ——g 2 2 Q(S,iCO, )Q(S+q, iCO —iCO„+iCO, ) .
N

P s co2+ co, —co„)2

Notice that the function C describes the electron-phonon
correlation which has a maximum at co 0 and decreases
to zero at large frequency. This can be seen directly from
the expression (10). The C function, which is a smooth
and monotonous function of variables m and ca„, behaves
as Aoco /[co +(co —co, ) ] at low frequency (small co

I

and co„), and varies as A /co or A /co„at high-
frequency (large co or co„) [here all the energies and fre-
quencies (ill 1) are measured by the Fermi energy EE].
Thus, in analogy with Grabowski and Sham, it may be ob-
tained by interpolating between zero-frequency and
infinite-frequency limits, resulting in

cocl2F(co) 2(A /Ap)
I e ph(lCoppg, lCOn) 1+2 dCO 2 2 Ap

co +(corn con) corn+con+2(A /Ao)

where for three-dimensional systems and for two-dimensional dispersionless systems,

A (co)

Ao(co)

0.293co
co+0.667 '

4J2 0.667+co ~
3 0 586

(i2a)

(i2b)

Ap(co)
Coll/8

A (co)
16(i+co) ~ 16.

Ao co

(i3a)

(i3b)

Furthermore, if the upper cutoff frequency co, in the Eliashberg function is less than 1, the last factor in Eq. (11)may be
replaced by 1 since the dominant contribution of co and co„ in the linearized gap Eq. (1) comes from the region of
co -e„-kT,& e, . Therefore we have the simplified expression for the electron-phonon vertex in the ladder approxi-
mation

r, „(i~,i~„)-1;„h(im im„)—- 1+2 dco Ao(co)
coa 2F (co)

co 2+ (co —co„)2 (i4)

As to the electron-electron interaction part we will use the conventional pseudopotential p approximation. Equation (1)
is then reduced to

co Z(k)
co„[l —Z(p)] ——g V, ph(ico ico„), —

P Z(k) + (k)
1 ~ s(k)

co~Z k +E k

e(k)e(p) ——g 2 2 2 [p —V, ph(ico~ icon)] . —
co Zk +ok

(is)

Here @, Z, s, and 2' now represent their respective phonon parts only. V, ph(ico —ico„) is the renormalized effective
electron-phonon interaction including the vertex correction

V, ph(ico —ico„)=2„dco 2 2 (1+@ Ao) 1+2 dco
2 Ap

coa 2F(co) coa'F (co)
co2+ co —co„)2 co 2+ (co —co„)2

In the case of an Einstein spectrum

a2F(co) =—coEB(co —coE),
2

(i6)

(i7)

the eA'ective electron-phonon interaction without vertex correction is

COg
2

Ve-ph(l Con )
CO&+ COp

The eA'ect of the vertex correction is equivalent to a change of the interaction constant X and the characteristic frequency
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COE.

NE~
2

Vz ph(-iron ) Xl
~+~Ei

where

i.e., solutions of a two-variable algebraic equations

I+Xa@E/(b+a, )
'

roE [I +) acoE/(b+ coE) l '~ rnE .
(24)

I +XarnF. /(b+ rnF. ) '

1(2
(20)

Thus Eqs. (24) are self-consistent equations for the
effective coupling constant and characteristic frequency,
since they depend functionally on themselves.

amE
co~ 1+A. coEb+ coE

For this special case, A, roE is an invariant quantity. The
vertex correction in the ladder approximation [Eqs. (14)
and (20)] is an extension of that given in Ref. 7 and can
be reduced to that of Migdal in the small co, limit.

8G '(P)
1

8Z(P)
Bpo tipo

and a "generalized" Ward identity"

qoI (p,p+q) 9' '(p+q) —9 '(p)

(21)

(in the limit p~0) are a consequence of charge and
current conservation. It is an exact relationship between
vertex functions and self-energies. The ladder graphs for
I can satisfy Ward identity only with a self-energy given
by Fig. 1(b), i.e., no vertex correction at all. To include
the vertex correction in self-energy it is necessary to go
beyond ladder graphs and the vertex equation becomes a
rlonlinear integral equation. Figure 2(b) is one of the sim-
plest possibilities. To solve this nonlinear integral equa-
tion for an Einstein spectrum, we need only to iterate our
ladder approximation expression Eq. (14) repeatedly.
The final results are the fixed points of following equa-
tions:

8. Nonladder approximation

We can go beyond the ladder graphs by taking the
proper vertex part determined by the self-consistent equa-
tion as depicted by Fig. 2(b). It is worth noting that if
I (p, k) is a function of p —k, the vertex part shown in
Fig. 2(b) associated with the self-energy given in Fig. 1(a)
satisfies the Ward identity. The Ward identity'

III. T, %'ITH VERTEX CORRECTION AND DISCUSSION

For an Einstein spectrum the vertex cotrection is to re-
normalize X and &os into X and ms. We plot ()j,~, ro~) in the
ladder approximation and (X,co) in the nonladder approxi-
mation in Figs. 3 and 4 as functions of the original in-
teraction constant X and characteristic frequency roE ac-
cording to Eq. (20) and Eq. (24), respectively. The super-
conducting transition temperature T, with vertex correc-
tion can be obtained from the original Eliashberg equation
(without vertex correction) with the modified coupling
constant K and characteristic frequency cop. We can use
the reasonably accurate T, formula obtained from the
conventional Eliashberg equation in Ref. 14. For an Ein-
stein spectrum, in small and intermediate A. region,

2y 1+X
T& mE exp

p

while in large A, limit (for )I, & A 2)

T, 0.182(pro )'

(25)

(26)

4.0

3.2

By combining Eqs. (24), (25), and (26), the transition
temperature T, with vertex correction is easily evaluated.
As an example we show in Fig. 5 the calculated value of
T, for three-dimensional systems. Our results confirm

1+&n iaroEn &/(b+ roan i)—

roEn —1 [I +~n —larnEn —1/(b+ roEn —I ) 1
' 'roe

(23)

~~ Z4

~ 1.6

0.0 0.8 16 Z4 32 / 0

(b)

FIG. 2. The vertices of (a) the ladder approximation and (b)
nonladder approximation.

FIG. 3. The normalized electron-phonon interaction con-
stants X~ in ladder approximation (dashed lines) and K in non-
ladder approximation are plotted as functions of X, for various
characteristic frequency mE. Line 1 stands for the case of



3911 622 J. CAI, X. L. LEI, AND L. M. XIE

1.0

0.8

0.4-

OZ-

00
0.0

s

0.2'
s

0.4
l

0.6
I

0.8 $.-0

0.0 0.2 0.4 0.6 0.8 1.0

G3~
~ ~FIG. 5. The ratios of the superconducting critical tempera-

T* to that without vertex correctionture with vertex correction, o
a su erconductor of Einstein spectrum, are plotte asT, or a supercon
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FIG. 4. The normalized characteristic frequencies mE& in
ladder approximation (dashed lines) and coE in nonladder ap-

roximation are po e1 tt d as functions of coE for various electron-p
phonon interaction constants k. Line p

'
e 1 re resents the case of

E 1 ~E ~E.

that if the phonon characteristic frequency is less than 1%
that of the Fermi energy as in the metallic case, the vertex
correction is neg igi e w'1' bl ithin a few percent, in agreement
with that obtained by Migdal. In the case of a large p o-
non characteristic frequency, however, the vertex correc-
tion becomes important.

As is seen in ig.F' 5 in the weak-coupling region, t e
h f T can be as large as 50%. In the large X re-

ared with thegion, T, changes are relatively small compare
weak-coupling case. or vaF r X value of 1-2, the calculated T,
involving vertex corrections will be about 80% o t at o
the original values.

It is worth noting that although X.coE is an invariant
quantity, i oes't d s not imply zero vertex correction of T, in

Expression (26) is applicable on y in e
case with vertex correction for large A, . Therefore, t e re-
gion for Eq. (26) to be valid is greatly reduced due to ver-
tex correction. n eI th numerical calculation we have as-

' g ~ ~ ~

sumed that the electron pseudopotential p is an invanant
constant we c oose p( h 0.2). This assumption has been

to be correct for metallic materials, in w ic t eproven o e c
phonon Debye energy is less than 5% that of the Fermi en-
ergy, while p is equal nearly to 0.1-0.3. These results

be valid for nonmetal systems, in which the
Coulomb effect may be more important in dete

' '
grminin

T. If thethe relevant parameters and superconducting
* with co~ is taken into account, we expectvariation o p wi co~

h T h nge due to vertex correction to e muc
stronger than that shown in curve 2 of Fig. 5, or even
appearance of superconductivity to be suppressed by ver-
t correction as discussed in Ref. 7.

Of course the present results are basedd on the
oversimplified Einstein spectrum. In a real system, the

2F(ro) ma be much more complicated and the
ue ndcnt. To see thevertex correction may be spectrum epen cn . o

vertex correct~on on T for a realistic spectrum, extensive
numerical calculation is necessary especially in t e case
be ond the ladder approximation. Fortunately our calcu-
lation for an Einstein spectrum shows t a in

h 2 nd cu less than 1, the results obtained in the
onladder a-

Thus we may expect that Eq. (15) withproximation. us,
1 dd roximation is a reasonable startmg poin or ea er appr

e su er-estimation o ef the vertex-correction effects oh t e p
conducting T, for mediate coupling constant and me ia e
characteristic frequency. The detailed calculation accord-
ing to Eq. (15) will be reported later.
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