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To gain insight into the behavior of the Hubbard model, we define a SU(n) invariant generali-
zation of the Hubbard-Heisenberg model and, in the large-n limit, solve it in one dimension and
in two dimensions on a square lattice. In one dimension the ground state is completely dimerized
near half filling. We show that this behavior agrees with a renormalization-group solution of the

one-dimensional SU(n) Hubbard model.

In two spatial dimensions we find several different

ground states depending on the size of the hopping term ¢, the doping &, and the biquadratic spin
interaction J. In particular, the undimerized “flux” or “s +id” phase is the ground state at half
filling for sufficiently large ¢ or J. We study the electronic and spin excitations of the various
phases and comment on the relevance of the large-n problem to the high-7. superconductors.

I. INTRODUCTION

The Hubbard model has been studied for over 25 years
and a variety of approximate and exact techniques have
been developed to understand its behavior. However, only
the one-dimensional version is well understood. For that
special case, an exact Bethe ansatz solution exists and
powerful field-theory techniques such as bosonization and
the renormalization group may be used to study it.

The behavior of the two-dimensional Hubbard model
became a pressing issue after Anderson used it to describe
the square copper oxide planes in the high-T, supercon-
ductors.! Of particular importance are the following
questions: What are the phases of the Hubbard model?
Does the ground state exhibit long-range spin order?
What are the low-energy excitations? Can superconduc-
tivity occur?

We attempt here to address some of these problems
with a mean-field theory for the Hubbard model. (A brief
outline of our results was given in Ref. 2. Some recent re-
lated work can be found in Refs. 3-5.) In spirit it is simi-
lar to the Green’s function or Hartree-Fock approxima-
tions that have been applied before but differs in several
respects. First, one of the two mean fields that we intro-
duce is proportional to the amplitude of a valence bond ly-
ing on a given lattice link; the other mean field is simply
the on-site electron number. Second, the approximation
that we make to solve the model is more systematic than
previous ones. Namely, we formally allow the number of
“flavors” of electrons to be an arbitrary even integer n
(the realistic model corresponds to n=2, the two spin
directions of the electron). Higher values of n do not cor-
respond to higher spin but rather to a higher symmetry
group SU(n). [Recall that higher spins correspond to
larger representations of the same SU(2) group.] Thus,
our work generalizes certain SU(n) antiferromagnets in-
troduced earlier.® We solve the model in the large-n limit.
It is then possible to calculate systematic corrections in
powers of 1/n. Of course in the real world the expansion
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parameter is of order one, which is not very small. How-
ever, the Hubbard model has no other expansion parame-
ters. (Weak-coupling perturbation theory is infrared
divergent and a strong-coupling expansion just leads to
another difficult problem—the Heisenberg model.) Per-
haps a coupling constant of order 1 is better than none at
all since at least we can investigate whether a qualitative
change in the behavior of the model occurs as n decreases
from large values down to two.

In the limit of infinite on-site repulsion, the Hubbard
model reduces to the nearest-neighbor Heisenberg antifer-
romagnet. An important clue about the behavior of half-
integer-spin antiferromagnets comes from a theorem
proved by Lieb, Schultz, and Mattis (LSM) and general-
ized in Refs. 7 and 8. Apparently this theorem implies
that there must either be broken translational symmetry
or gapless excitations. The LSM theorem also applies to
the SU(n) Heisenberg models that we discuss here. We
are reassured to find that the theorem is obeyed by our
large-n solutions.

We studied the two-dimensional Hubbard-Heisenberg
model in the large-n approximation for different values of
the hopping parameter, antiferromagnetic exchange con-
stants, doping, and temperature. A variety of phases exist
in this parameter space. In the Heisenberg limit (no elec-
tron hopping and a half-filled band) we find two zero-
temperature phases. For small biquadratic coupling the
ground state is highly degenerate and breaks translational
symmetry: It is a bond-centered charge-density wave in
which each site forms a dimer with one of its nearest
neighbors. We call this phase the “Peierls” phase because
the electrons are localized on individual dimers and the
electronic spectrum is completely gapped. (Another local-
ized state reported in Ref. 5 has the same ground-state en-
ergy as the Peierls phase for the case of zero biquadratic
exchange. It will play an important role in our stability
analysis.) At larger values of the biquadratic exchange, a
“flux” phase is the ground state. It has full translational
symmetry and the gap vanishes at discrete points in
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momentum space. It is particularly interesting because
the low-energy sector is described by a 2+ 1 dimensional
relativistic field theory.

Passing to the more general Hubbard-Heisenberg mod-
el (but with the biquadratic spin interaction turned off),
we find that the Peierls and flux phases exist at small dop-
ing depending on the size of the hopping parameter. For
low values of the hopping term the Peierls state remains
the ground state but there is a transition to the flux phase
at sufficiently large hopping. The bond-centered charge-
density wave vanishes at this transition; however, in both
phases diamagnetic currents flow around the unit cells in
alternating directions— “plaquette-centered antiferro-
magnetism.” These currents break the symmetry of
translation by one site down to translations across the di-
agonals of the unit cells. [The currents do not flow in the
pure Heisenberg model. We will show that their disap-
pearance is connected with the appearance of a local U(1)
gauge symmetry in the Heisenberg limit.]

For larger doping, two new phases emerge. At
sufficiently large doping, the ground state has unbroken
symmetry and a gapless Fermi surface. We call this
phase the “uniform” phase. We also find a peculiar phase
at intermediate doping. Again there is a bond-centered
charge-density wave, but unlike the Peierls phase, these
waves are continuous ridges that extend through the entire
system. All of these states conduct since no charge gaps
occur at nonzero doping.

In Sec. II we define the models and give some qualita-
tive discussion of their behavior. In Sec. III we solve the
one-dimensional n— o Hubbard-Heisenberg model and
compare the solution with exact results for the n=2 Hub-
bard model and with renormalization-group results for
general SU(n). In Sec. IV we present the details of the
two-dimensional large-n solution. We discuss the phase
diagram and characterize each phase by its symmetries
and electronic behavior. We show that these phases are
stable by considering the effect of small, but spatially ar-
bitrary, fluctuations of the order parameters. (The details
of this calculation are presented in the Appendix.) Sec-
tion V contains a calculation of the spin-spin correlation
function for the uniform and flux phases. In Sec. VI we
discuss the extrapolation from large n down to n=2 for
the case of the pure Heisenberg model. Finally, we con-
clude by discussing the relevance of our results to the new
high-T, superconductors.

II. SU(n) HUBBARD, HEISENBERG, AND
HUBBARD-HEISENBERG MODELS

The SU(2) Hubbard model Hamiltonian can be written
as

H=t (Z)(c,t°cya+ H.c)+U/2) X(ngx—1)2.
X,y X

Here ¢y, is the electron destruction operator and H.c.
denotes Hermitian conjugate; the first sum is over nearest
neighbors (on a square lattice, unless otherwise noted)
and the repeated spin index o is summed over the two spin
states. Also, nyx =c%s, the number of electrons on site
x. The usual Hubbard model interaction, nxnxt, can be
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written in this manifestly SU(2) invariant way due to the
Fermi statistics identity (nx,)?=ns, It is well known
that for U/ |t | — oo, the Hubbard model at half filling
({nx) =1) becomes a nearest-neighbor Heisenberg antifer-
romagnet:

H=J Y S:S,.
(x,y)

Here the exchange coupling J =4¢2/U and the electron-
spin operators are

Sx=1ci%Pexp, Q.1

where the o’s are the Pauli matrices. This exchange
occurs because in the large-U limit, the low-energy states
have one electron on each site but second-order perturba-
tion theory in ¢ produces a spin-spin interaction. Higher-
order terms are negligible if U — oo with ¢ %/U held fixed.

Alternatively, we may obtain the Heisenberg model as
the limiting case of an itinerant electron model. We first
set =0 and write an explicit electron spin-spin interac-
tion that is independent of U:

H=0/4) (E) (ci?0bexp) ey oicys)
xy

+WU/2) Xlefo%cxo—1)2. (2.2)
X

Using a Pauli-matrix identity, the Heisenberg interaction

can be written

(el oberp) (cf70lcys) = —2(ci%cya) (cfPexp) +2¢5% ko
—(c%xa) (ciPeyp) .

We have grouped together SU(2) invariant bilinears. The
second term on the right-hand side simply shifts the chem-
ical potential. The third term is a nearest-neighbor
Coulomb interaction that occurs in the extended Hubbard
model. It reduces to a constant (= —1) for U— oo so in
this limit we consider only the first term. The Hamiltoni-
an now reads

H=-(/2) (E)(c,“c,a)(c;ﬁcw)
X,y
+(U/2) X (cfocrxe—1)2.

Including the hopping term, we have a hybrid Hubbard-
Heisenberg Hamiltonian which reduces to the Hubbard
model when J=0 and the Heisenberg model when U— oo
and t — O:

H =(Z> [t(cio%ys+H.c.) = (J/2) (ci%y.) (cgPexp)]
xy

+WU/2) X (cf%xe—1)2. (2.3)
X

We wish to develop a general method for solving the
Hubbard-Heisenberg model at arbitrary values of ¢, J,
and U. Our approach is based on the functional integral
method and the Hubbard-Stratonovich transformation.
The partition function for this model can be written as a
Feynman path integral

Z ==f[dc] [delexp [ - j;ﬂer] .

Here B is the inverse temperature and the (imaginary

(2.4)
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time) Lagrangian is

L=Xlci°(d/dt)cxsl +H .

Antiperiodic boundary conditions at times =0 and r =8
are imposed on the Grassmanian integration variables.
This functional integral is, of course, nontrivial due to the
quartic interaction terms in H. However, the Hubbard-
Stratonovich transformation allows us to rewrite the La-
grangian quadratically in the fermions, at the expense of
introducing two new bosonic fields, ¢x (real) and yxy
(complex). We effect this transformation by adding two
terms to the Lagrangian that do not change the equations
of motion for the electrons:

L— L+ Q/U) X5 ox+i(U/2) (c % — D]

+Q/D) (Z) | axy+ T/ 2)e % yq| 2. (2.5)
X,y

That these two terms leave the dynamics unchanged may
be seen in two different ways. First, the equations of
motion for the auxiliary fields ¢ and y are trivial:

iox=U(ci%xo—1), (2.6a)

axy=—/2)ci%y,. (2.6b)
By using these equations to eliminate the auxiliary fields
in the Lagrangian (2.5), we return to the original form ex-
pressed solely in terms of the electron fields. Alternative-
ly, the functional integration over the ¢ and y fields can be
performed exactly. (The factor of i in the first Hubbard-
Stratonovich term is necessary to make the functional in-
tegral over ¢ convergent.) These integrals simply convert
the new terms to irrelevant constants.

However, upon adding the new pieces to the original
Lagrangian we eliminate the quartic Fermi interactions.
We now have a Lagrangian which is only quadratic in the
electron operators, though new cubic interactions emerge:

L(cte,x,0) -===<):,> {Q/1) | sy | 24+ 1@+ gyx)efocyo+Hee }
X,y

+X [(1/2U0) 92 —ipx+cio(d/dr+igs)cxo) -

The partition function for this new Lagrangian now
equals the old partition function (2.4) up to a constant nu-
merical factor:

Z =(const) [ ldc1lde 1ldy11dg]
Xexp [—j;ﬂL(cf,c,xm)dr] . Q.7

The advantage of this representation is that we may (at
least formally) integrate out the electron fields and obtain
an effective action written entirely in terms of the bosonic
¢ and y variables:

exp[—Seﬁ(x,¢)]=f[dc][dc*]exp [—j;pL(c*,c,x,q))dr} .
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Thus,
Ser(x,9) =fd‘r [(Z) QI |y | 2+ 2 [(1/2U0) 9F —igy]
Xy X

—2Trin(d/dt+ips+ it +x.(x)1A.+H.c}) .

Here A. is a lattice derivative operator and y. represents
the y variables on the links running in the e direction. The
repeated e index implies a sum over the X and y directions.
The factor of 2 in front of the Trln term results from the
identical contributions which occur for each spin of the
electron fields. Arbitrary electron Green’s functions can
now be expressed in terms of the bosonic auxiliary vari-
ables; for example, the time-ordered electron two-point
Green’s function is given by

(d/dr+iog+t+x.(x)1Ad 7D,

where () denotes a Boltzmann average using the effective
action. Note that the equations of motion tell us that i{¢x)
is proportional to the charge density at site x (relative to
one electron per site) and (xxy) corresponds to the hopping
amplitude for electrons between the sites x and y. We
have therefore rewritten the Hubbard-Heisenberg model
using the number density and hopping amplitude as order
parameters.

So far our transformations have been exact. To contin-
ue, we now must make some approximation. We will per-
form the integration over ¢ and y in a saddle-point ap-
proximation which we may regard as an approximate
technique for solving the exact model. Alternatively, we
can see it as the exact solution of an approximate model.
Let us define a generalized SU(n) invariant Hubbard-
Heisenberg model by making the spin index o in Eq. (2.3)
run from 1 to n (where n is even). Note that this generali-
zation is not the same as letting the electrons have a
higher spin. The coupling between the various spin com-
ponents would not, in that case, have the simple form of
Eq. (2.3). We should instead think of the existence of n
different “flavors” of electrons, all of which are equi-
valent. Note that the Hamiltonian conserves the total
number of electrons of each flavor. It is convenient to ad-
just the chemical potential to be zero for a half-filled band
by rewriting the Hubbard interaction as (¢{%cx,—n/2)2
We also rescale both U and J by a factor of 2/n so that the
large-n limit is smooth—the spacing of energy levels
should be O(1) as n— oo. The ground-state energy and
free energy are, however, O(n). Thus H becomes

H =(Z> [t (cf%yo+H.c.) = (I/n)(cicya) (cfPexp)]
xy

+WU/n) X (ci%xs—n/2)2. (2.8)

Apart from the desire to study the more general hybrid
model, we have a technical reason for keeping the explicit
Heisenberg interaction in our Hamiltonian even though
that term would be generated by the exchange of elec-
trons. We will be studying the limit n— oo with U held
fixed. We may then take U/t large if we wish. However,
these limits do not commute. An expansion in powers of
t/U contains higher and higher powers of n, so we cannot
justify truncating the series of O(z%/U). Conversely, in
the large-n limit, a large U eliminates fractional fluctua-
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tions in the number of electrons on a site, but the cost in
energy to add or remove a single electron is only O(U/n).
Taking n— oo first and then taking U/t— oo therefore
does not give the large-n limit of the Heisenberg model.
Thus, in order to have a model which interpolates smooth-
ly between the Hubbard and Heisenberg models at
n— oo, we are forced to consider the hybrid Hubbard-

]

L c,0,0) =(Z) {/T) | axy | 2+ L@+ gy edocyo+ Hoe B} + X [(n/4U) 97 —i(n/2)px+cio(d/dr+ips)cxo] .

xy
The equations of motion for the auxiliary fields now read

iox=QU/n)(c%xs—n/2),
xy=—/n)ci%ys,

and the effective action is

Se(r,0) -nfdr [(Z)(I/J) | 2ay | 2+ X [(1/40) 03 — (i/2)¢:] | —n Trin(d/dz+ips+ {lt + xe(x)]Ac +H.c}) .
X,y x

The factor of n outside the Trln term now reflects the in-
tegration over the n flavors of electrons. Thus, the entire
effective action is proportional to n and taking the n— oo
limit corresponds to the classical # — O limit.

We will also consider a further generalization of the
pure Heisenberg problem by including the biquadratic
spin-spin interaction (J/4)(Sx-Sy)?. In fact, we will show
that it is necessary to include such a term to stabilize the
flux state in the Heisenberg limit £— 0. For the SU(2)
case, this term simply renormalizes the bilinear interac-
tion (J) since (Sx:Sy)?=— 3 Sx-Sy+const but for n > 2
it corresponds to new processes that interchange four fer-
mions simultaneously. Biquadratic interactions are gen-
erated (along with next-nearest-neighbor and plaquette
terms) at order ¢*/U* in the large-U expansion of the
SU(n) Hubbard model. However, we will treat J as a free
parameter since these multiple-exchange processes are
quite natural from the large-n viewpoint. We may then
study the usual SU(2) Heisenberg problem using the 1/n
expansion as long as we restrict our choice of J such that
the renormalized value of J remains positive (antiferro-
magnetic). Thus, we have a one-parameter family of
SU(n) spin models (characterized by different values of
J/J) that all have the same SU(2) limit.

We start by writing down the Hamiltonian with a fer-
romagnetic biquadratic coupling that is properly scaled so
that the n— oo limit remains well defined:

H=(Z)[—(J/n)lcx“cy,,l 2+(j/n3)lcxacya| 4]
253 4

+W/n) X ci%xoa—n/2)2. (2.11)

In fact, this Hamiltonian is antiferromagnetic for arbi-
trary n as long as J < 2J in the sense that the ground state
of the two site problem is a SU(n) singlet for J <2J. To
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Heisenberg model. For n finite and even and a half-filled
band (now meaning an average of n/2 electrons per site),
the U— oo limit forces exactly n/2 different flavor elec-
trons per site.

Upon making the Hubbard-Stratonovich transforma-
tion, the SU(n) (imaginary time) Lagrangian associated
with the Hamiltonian (2.8) becomes

2.9)

(2.10)

[

prove this result, note that the different SU(n) representa-
tions that occur in the two-site problem can be labeled by
Young’s tableau with one column of (n—p) boxes and
another with 0 < p < n/2 boxes. (The singlet state corre-
sponds to p=0.) Using the SU(n) quadratic Casimir,®
we find

lefocsql 2=n%/4+n/2—pn+1 —-p)=n’x,.

Thus, the energy of the two-site problem (with nx=n/2)
becomes

E,=n(Ux}—Jx,).

Clearly, the minimum of the energy occurs at the value of
x, as close as possible to J/2J. Since x, is a decreasing
function of p, the ground state has p =0 for sufficiently
small J. Upon increasing J, the value of p for the ground
state increase by unit increments. The p=0 and p=1
states are degenerate at the boundary of the antiferromag-
netic region. Using xo= 4% +1/2n and x,= + —1/2n we
see that this boundary occurs at J =2J regardless of n.

The Hubbard-Stratonovich factorization of the spin-
spin interaction terms must now be done in two stages.
First we introduce a new real field ®yy to break up the bi-
quadratic term:

H— H+n.7(z) (/D) @y + G/nD) | ey, | 112,
X,y

Note the factor of i in this expression. Again, it is needed
to make the functional integral over ® converge. We shall
see, however, that ® acquires a pure imaginary value at
the saddle point and therefore the saddle-point free-
energy remains real.

After adding the first Hubbard-Stratonovich term, the
Hamiltonian still contains a four-Fermi interaction. This
term can now be factorized by introducing the complex y
fields:

H— H+n1(§y) /D gxy+ /)1 = Qif TPyl e foc, 3 /D) ply+ (/) (1 — QifT)Dry 2 JPexgh) .
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It is important to recognize that the added term is not Hermitian. In fact, the factors of i will complicate the discussion
of the stability of the saddle points. (We will return to this point in Sec. IV and the Appendix.) The new Hamiltonian is
now quadratic in the fermions and can be studied by our saddle-point method. Upon including the ¢ fields which act as
Lagrange multipliers to constraint the system to n/2 fermions per site in the U — oo limit, the Lagrangian reads

L=Xlcfo(d/dr+ip)cxo—i(n/2) el +<2) {(n/ D@2+ (/D) | axy | 24+ 11 = Qi / D@y 1 2 (aye f%exe+Hee )} . (2.12)
x X,y

Before proceeding further, we note that there exists
another way of enlarging the SU(2) symmetry to the
larger SU(n) group. Instead of demanding that each site
have n/2 electrons, we could instead require one electron
per site on the even sublattice and (n—1) per site on the
odd sublattice. This condition can be enforced by the
U— oo limit of a different Hubbard interaction that reads

W/n) X (ef%xe—1)2+WU/n) X lefocxe—(n—1)12.
X even x odd

(Note that this term explicitly breaks the symmetry of
translation by one site.) In this limit, we obtain the
SU(n) generalization of an antiferromagnet discussed
previously in the literature.®

To emphasize the differences between the two large-n
limits, consider the SU(n) analog of the usual SU(2)
operator S>= 3. For the case of m fermions on a given
site (m=<n) the Casimir takes the value (n+1)
x (n—m)m/2n. Thus, S’=n(n+1)/8 when m=n/2 but
S?=(n2—1)/2n for either m=1 or n—1. In the former
case the “spin” is of order n, while in the later case it is of
order n'/2

The ground state in the large-n limit of the m=1,n—1
model can be constructed out of nearest-neighbor valence
bonds. A valence bond for general # is the state

|x,)Ec;[“cy,,|O> s

where |0) has no electrons on site x and all # on site y. In
fact, the most general way of making SU(#n) singlets out
of the particle and hole indices— fundamental and anti-
fundamental representations of SU(n)—is to contract ar-
bitrary pairs of particle and hole indices. In general, the
valence bonds can have arbitrary length; however, they
must run between the even and odd sublattices. In the fol-
lowing discussion, we assume that the ground state is an
SU(n) singlet. (For n=2, the ground state of the finite
system has been proven rigorously to be a singlet.!?)
Long-range order occurs when the amplitudes for arbi-
trarily long valence bonds drop off as some inverse power
of their length. !

To study these valence bonds, it is convenient to make a
particle-hole transformation on the odd sublattice:

c¢=cJ* fory on the odd sublattice .

The bond operator y that we introduced earlier can then
be regarded a valence-bond creation or annihilation
operator:

Hxy=(J/n)c?], for x even and y odd .

In this basis, the Heisenberg Hamiltonian takes the fol-
lowing form:

H=-—/n) (2) (cf% s ) (cxpch) for x even and y odd .
xy

I

Consider the action of H on a valence bond:
H|xy)=—J|x,).

Obviously, the bond has energy —J. How does H act on a
lattice link not containing a valence bond? The sites at
the two ends of the link must form bonds with two other
sites somewhere in the lattice [see Fig. 1(a)l. We can
write this state, mentioning only the four sites, as
|xz) | wy). Acting with H on the x, link yields an O(1/n)
amplitude for a different configuration of valence bonds:
—(J/n) | xy)|w;). In other words, H creates a valence
bond on the link on which it acts, breaks the other two
valence bonds which had terminated there, and creates a
new non-nearest-neighbor bond between the two left over
sites.

We can now see the simplification that ensues when
n— oo, Those processes that create non-nearest-neighbor
bonds have amplitudes which are of order 1/n. The
ground state in the n— oo limit can therefore be con-
structed just from nearest-neighbor valence bonds. In the
one-dimensional case there are only two such states (see
Fig. 2). In two (or higher) dimensions, there are an

[ ] [ ] [ ] [ ]

| 1
x @ [ ] [ ) ez
ve [ ] [ ] [ ]
wve [ ] ® [ ]

(a)

o o o [ ]
x @ ® ® Tz
v e [ ] o [ ]
w o—J ) ) [ ]

(b)

FIG. 1. The effect of H on a valence-bond configuration (a)
before H acts on the link (x,y?, and (b) after.
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FIG. 2. The two dimerized ground states of the antiferromag-
netic chain.

infinite number of such states. O(1/n) perturbations mix
these states and pick out a unique ground state (or a set of
ground states if some symmetry is broken).

In O(1/n) degenerate perturbation theory we need only
consider matrix elements of H between nearest-neighbor
valence-bond states. The only nonzero matrix elements
are between two states that differ by the rotation of a pair
of parallel valence bonds through an angle of 90° around
a plaquette. (See Fig. 3.) This matrix element has the
value —J/n. It is easy to check that the ground state is
not simply an equal-weight sum of all nearest-neighbor
valence-bond states with some simple assignment of
phases. The weighting factor for a given diagram must
depend on the number of plaquettes containing parallel
valence bonds (as well as on how that number changes
upon making the 90° rotation, etc.). Thus the ground
state has quite a bit of information built into it about how
the bonds “resonate.” Recently, Read and Sachdev exam-
ined the 1/n corrections to this state using this Hamiltoni-
an approach.* One could try to solve this problem by the
path-integral methods developed here for the problem of
n/2 electrons per each site. However, we have encoun-
tered some problems with this approach and will not dis-
cuss it further.

The two SU(n) models have an important difference:
the first generalization (with n/2 electrons per site)
preserves lattice-translation symmetry, whereas the
second (with one electron on each even site) is obviously
not invariant under translation by one site. Since the

@ o o———o
) ° °
[ J [ Y
® o ° °
° ° ®
o————o °

FIG. 3. The two valence-bond configurations that mix in de-
generate perturbation theory.
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Lieb-Schultz-Mattis theorem only applies to spin Hamil-
tonians which preserve translation symmetry, it is useless
in the second case. The theorem implies that either the
spectrum contains gapless excitations or the ground state
exhibits broken symmetry of translation by one site. In
fact, the second generalization could exhibit a ground
state with no broken symmetry and a gap, but this phe-
nomena should not happen in the first model.

Returning to the model with n/2 electrons per site, it is
clear that singlet states have n/2 valence bonds emanating
from each point. (Again we define a valence bond as a
contraction between a particle index on an even site and a
hole index on an odd site. Odd sites contain n/2 holes in
this case.) In general, a large number of valence bonds, of
O(n), exists on each link. The probability for H to break
a valence bond is now O(1) because there are O(n)
different valence bonds to choose from. However, this
model is also solvable in the large-» limit because the frac-
tional fluctuation in the number of valence bonds on each
link is suppressed -at large n. Indeed, the number of
valence bonds on any link becomes a classical quantity as
n— oo,

More formally, the overall factor of n in the effective
action (2.10) means that the saddle-point approximation
becomes exact as n— oo. The Feynman diagram loop ex-
pansion is thus equivalent to a power series in 1/n.
Higher-order terms in the 1/n expansion can be calculat-
ed; we will only consider the lowest order term here (see,
however, the Appendix). This approach has several ad-
vantages over other mean-field theories of the Hubbard
model:

(1) It is possible to systematically calculate corrections
to our approximation.

(2) The approximation is justified insofar as we may re-
gard 1/n as a small parameter. How small 1/n must be to
make the approximation good is of course not obvious.

(3) By thinking about the differences between large-n
and n=2 we may be able to understand the strengths and
limitations of our approximation.

With this justification, we now proceed to discuss the
details of solving the model in the large-» limit by making
the saddle-point approximation. We must find the ap-
propriate minimum action saddle point of the effective ac-
tion of Eq. (2.10). This problem is still not completely
trivial. However, we expect that the minimizing con-
figuration will have a high degree of symmetry reflecting
the unbroken symmetries of the equilibrium state. In par-
ticular, the minimizing configuration should be time in-
dependent since we wish it to describe an equilibrium
state. If we assume ¢ and y to be time independent, then
we can write S in 2 more familiar way:

Sen(o,x) =BF (¢, ;1)

where F(¢,x;u) is the free energy of the electrons in the
static classical fields ¢ and y and chemical potential u:

Flp,u)=n [(xzy)(w) |2y | 2+ Z101/40)02 - (i/2)9,]
—(1/8) X Infl +expl— B(E.» —u)]}] )

(2.13)
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Here E,, are the energies of a single electron interacting
with the static, classical fields ¢ and . In other words, E,
are the eigenvalues of the one-particle Hamiltonian

H, =<Z> [(t+xyx)cicy+H.c] +iY ¢xcicx.
X,y X

Thus the large-n limit amounts to a type of Hartree-Fock
approximation in which the quartic interaction terms are
factorized. We now seek the lowest saddle point of Flg,x]
where the ¢ and y fields in principle can have arbitrary
spatial dependence. Anticipating a high degree of sym-
metry in the equilibrium state, we will however limit our
search to a subspace of ¢’s and x’s with a certain specified
symmetry.

Turning our attention to the bosonic auxiliary fields, we
see that nonuniform | y,y | corresponds to a bond-centered
charge-density wave since xxy is related to the electron-
hopping amplitude. In the Heisenberg limit, a site-
centered charge-density wave is impossible; however, a
bond-centered charge-density wave can still occur. It also
corresponds to a modulation of the strength of the
nearest-neighbor spin-spin correlation (Sx-S,) (a spin-
Peierls phase). This relationship between the correlator
and the y fields can be seen by evaluating | xxy| 2) in the
functional approach

Uy | 2 =01/2) [ lde Mde) [dgdx] |y |2

Xexp—fer(cT,c,cﬁ,x).

Here the Lagrangian L is given by Eq. (2.9). The Gauss-
ian integration over the y fields can be performed by shift-
ing the integration variable to xiy =xxy+ (J/n)cicyq.
With this shift, it follows that

(ledocyal D=(n/T)? €| xxy | D=y | ),

since (xxy)=0. Now the second term on the right-hand
side is simply a constant, so

(/D xxy | 2 =Clcf%yal 2+ const
o (Sx- Sy) +const .

Thus, modulation in the magnitude of the y fields does
indeed correspond to a bond-centered spin-density wave.

This bond-centered wave can also be discussed in the
language of valence bonds. A uniform value of |jyxy|?
corresponds to equal numbers (n/4) of valence bonds on
each lattice link. In two spatial dimensions, such a uni-
form state is not possible for »=2, but only for » equal to
a multiple of 8. At large n, this constraint effectively
disappears since the number of bonds can be equal up to
relative corrections to O(1/n). Thus, though a uniform
phase can occur at large »n, the valence bonds must
“resonate” at n=2. Apparently, the large-n limit repre-
sents a sort of static limit of the resonating valence bonds.
On the other hand, a simple spin-Peierls configuration
with | xxy| nonzero on only one link emanating from each
point can be realized for n=2.

The phase of y is not physical in the Heisenberg limit.
In particular, if we take t— 0 and U— oo (with J held
constant) then the global charge symmetry cxo—* €'©cxo
of the Hamiltonian (2.3) is promoted to a local (or gauge)
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symmetry under which the electron phases can be rotated
by a different amount at each point in space and time:
cxo(T)— €%, (7). (The gauge transformations
should be continuous in the time direction, however.)
This local symmetry simply reflects the fact that the pure
Heisenberg Hamiltonian conserves the number of elec-
trons at each site. For the Lagrangian (2.9) to be invari-
ant under such a gauge transformation, y and ¢ must also
transform in the following way:

(2.14a)
(2.14b)

Zay () — explilO©(y,7) —O(x, 1) 15y (0) ,
0x(1)— ¢x(7) —dO(x,7)/d~.

In fact, the y fields transform in the same way as link vari-
ables of a lattice Abelian gauge theory. Thus, we may
identify the phase of y as a spatial gauge field A.:

Xx,x+e= |Xx,x+e | Cxp[iAe(x)] . (2.15)

Again e is a unit vector pointing in either the X or y direc-
tions. Clearly, ¢ transforms as the temporal component of
the gauge field. Finally, note that the @,y fields that we
introduced above to describe biquadratic interactions are
invariant under gauge transformations since they couple
only to the charge singlet operator xxyc;f“c,m.

Compact gauge symmetries cannot break spontaneous-
ly, so x cannot have an expectation value in the Heisen-
berg limit. However, the magnitude of y may have an ex-
pectation value. In fact, fluctuations in the magnitude are
suppressed in the large-n limit. In contrast, pure gauge
fluctuations are not suppressed, even at n— oo, since the
effective action depends on the gauge fields only through
gauge-invariant combinations. Thus, while no gauge sym-
metry breaking occurs, the bond-centered charge-density
waves associated with modulation of the magnitude of x
can arise. Of course, at nonzero ¢, the phase of y is mean-
ingful and does have an expectation value in the large-n
limit. But, as z— 0, the fluctuations in this phase become
stronger and eventually restore the gauge symmetry.

The spatial plaquette operator I1=y,x23x34x41 (1, 2, 3,
and 4 are sites on the corners of a unit square) is another
gauge-invariant object that will interest us. It obviously
exists in spatial dimensions greater than one and is gauge
invariant because the net phase from the gauge transfor-
mations on the four sites cancels out. From Eq. (2.15) it
is clear that the phase 0 of the plaquette is related to the
gauge fields by 0=A,,+ A3+ A3+ As. By Stoke’s
theorem, @ is the flux due to a fictitious magnetic field
penetrating the plaquette.

We will discuss saddle points with nonzero yxy. We em-
phasize that all gauge-equivalent saddle points have ex-
actly the same action (or free energy). However, a con-
sistent saddle-point evaluation of any observable must al-
ways . average over all gauge-equivalent saddle points.
Consequently, only gauge-invariant observables will be
nonzero. We must be careful to classify saddle points in a
gauge invariant way. For example, the single-particle
spectrum of H can be extracted once we know the saddle
point. However, we should interpret this spectrum with
care, since it is, in general, gauge dependent.

Finally, while lattice symmetries can break in the
large-n limit, the global spin rotational [SU(#)] symmetry



must be maintained. This symmetry is protected because
the available order parameters ¢ and y are both singlets.
However, Néel order apparently occurs at sufficiently
small n (see Sec. VI) and breaks the SU(n) symmetry. It
may be possible to see a tendency towards long-range or-
dering at finite n by examining higher-order corrections to
the spin-spin correlation function in the 1/n expansion.

I1I1. RESULTS IN ONE DIMENSION

We study the one-dimensional case (at zero tempera-
ture) first to gain some understanding of the behavior of
the large-n solutions. In one dimension we can understand
the qualitative behavior of the large-n saddle-point equa-
tion without resorting to the computer. We will compare
the large-n results with the Bethe ansatz solution for the
n=2 Hubbard-Heisenberg model and the renormalization
group results for the general SU(n) Hubbard model.

To begin, we must first choose a reasonable ansatz for
the equilibrium configurations of the y and ¢ fields. Anti-
cipating spontaneous dimerization of the chain, we choose
a configuration that permits different values of y on alter-
nating links and different ¢’s on the two sublattices (see
Fig. 4). We choose to consider only real values of . For
the pure Heisenberg case we can always make the y real
by a gauge transformation since in one dimension there
are no spatial plaquettes to frustrate this choice. For ¢#=0
we have no such gauge freedom, but impose the reality
condition as part of the configuration ansatz.

With this choice for the fields, we can now evaluate the
J
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FIG. 4. Ansatz for the symmetry-breaking pattern on the
chain.

free energy. Since to leading order the y and ¢ fields as-
sume their classical expectation values, the electrons
behave as fermions in a tight-binding model. The energy
of a single electron of momentum k is given by

E (k) —ip=*1[|2tcos(k)+ yoexp(ik)
+y.exp(—ik) | 2= (a¢)2]1/2.

Here, Ap=(po—¢.)/2 and ¢=(¢o+¢.)/2 with the sub-
scripts denoting odd and even sites. The evaluation of the
total free energy [Eq. (2.13)] can now be performed by
summing over the reduced Brillouin zone (now half the
size of the original zone). The chemical potential y must
also be chosen by requiring the total number of electrons
to equal V(1 —&)/2 where § is the doping below a half-
filled band and N is the number of sites on the chain.

To find the minima of the free energy with respect to
the two y and two ¢ fields we first make the free energy
completely real by continuing ¢4 into the complex plane
with the redefinition ¢x— i¢x. Now we must maximize
the free energy with respect to ¢ and A¢ since the factor of
i changes the sign of the saddle-point curvature in the ¢x
directions. The (zero-temperature) free energy now reads

F(,A0,20,7e;1) =Nnl(1/27) d +22) — (1/4U) (9?2 +A93) + + 9] +n§ [E(k)—pul,

where
E (k)= =% [| 2t cos(k) + yoexp(ik)

+yeexp(—ik) | 2+ (Ap)21' 2 —¢

and the sum over momenta k runs only over the filled
states. Next, note that the total free energy is minimized
in the y directions by choosing the (—) sign in the one-
particle energy. We should now set A¢ =0 (for U > 0) to
maximize the free energy with respect to A¢. Thus, there
are no site-centered charge-density waves in the large-n
limit. Finally, ¢ can acquire a positive expectation value
at the saddle point for nonzero doping. However, its be-
havior is not interesting since it merely shifts the saddle-
point free energy by a constant regardless of the y fields.
We will therefore ignore it in the following expressions.
(For 6 =0 it is clear that ¢ =0 at the saddle point since the
two terms linear in the ¢ cancel out in the free energy.)
Furthermore, at ¢=0 the Hamiltonian possesses the
particle-hole symmetry cfo 2 ¢y, that forbids nonzero ex-
pectation values for ¢x. .

Defining Ay= (yo—y.)/2 and y =(yo+y.)/2 we arrive
at the single-particle energies

E (ki) = =21+ ) *cos” (k) + (ap) sin? (k)] 12

[

Therefore, the ground-state free energy per site for an
infinite chain is now

F(y,Ax)=n [1/(21)[12+ (Ap)?l +f(dk/lr)E(k)] .

The integral is over the filled region of the Brillouin zone
and runs over the range —n/2 <k <=/2 at half filling
(5=0).

Focus attention on Ay. If we minimize F(y,Ay) with
respect to Ay we can see how it behaves. The first deriva-
tive is

8F/3(ay) =1/ 1Ay — Ay [ (/) sin?(k)
x |E(k;x,a0)| 7.

Clearly, Ay =0 is a saddle point. However, it is unstable
since the second derivative 32F/9(Ay)? is negative and
logarithmically singular because the single-particle energy
vanishes at the two Fermi points. Nonzero Ay opens a
charge gap of AE =4Ay at the Fermi points that elimi-
nates the singularity. Therefore, the system does have a
bond-centered charge-density wave. (In fact, for £ =0, the
chain dimerizes completely.) Near half filling this dimeri-
zation persists; but if the doping is large enough a uniform
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phase with Ay =0 will supersede the dimerized phase as
the lowest energy state. In either case, there is no gap if
8§>0.

The behavior of the charged sector of the large-n
Hubbard-Heisenberg model agrees qualitatively with the
Bethe-ansatz solution for the n=2 Hubbard model. Lieb
and Wu'? find that at half filling, a charge gap opens for
any U > 0 and the system becomes an insulator. Howev-
er, at any nonzero doping there is no charge gap and the
system remains metallic. Had we considered the Hubbard
model alone and not its generalization to the Hubbard-
Heisenberg model, we would have found no dimerization
(and no charge gap) since A¢ would still be zero. This be-
havior would be at odds with the exact solution but we see
that a charge gap does develop for any J, no matter how
small. Apparently, the pure large-n Hubbard model is un-
stable and an explicit spin-spin coupling should be includ-
ed. We can view this instability as further justification for
considering the hybrid Hubbard-Heisenberg model.

The Bethe-ansatz solution also shows no spin gap for
U > 0. However, the dimerized phase found above has a
gap for any single-particle excitations, including spin exci-
tations. To understand this conflict better, we apply
renormalization-group methods to the general SU(n)
Hubbard model. In particular, we will consider weak-
coupling perturbation theory. (See Ref. 13 for a more de-
tailed explanation of this method.) The SU(n) Hamil-
tonian in one dimension can be written as

H=Xlt(cf%+1..+H.c)+U/n(cf%a—n/2)?].

For small U/(nt), we can take the continuum limit by
considering only low-energy excitations near the two Fer-
mi points. The dispersion relation of free electrons near
the Fermi points is linear so the electrons there behave as
chiral left- and right-moving relativistic fermions. Ex-
pressing the lattice electron operators in terms of these
chiral fields by cx, =(+i) *y1(x) + (— i) *yr.(x), we see
that the noninteracting piece of the Hamiltonian density
becomes Ho=i(y[%d/dxy o — wL*8/dxyr,) (We have set
the Fermi velocity to one). The corresponding Lagrang-
ian density is Lo=i(y]*d—wis— y}*d+yrs) where we
have introduced the light-cone coordinates x+
=(t+ x)/2. The low-momentum modes of the interact-
ing four Fermi term may now be expressed as the sum of
three terms: A U(1) charge current-current interaction, a
SU(n) spin current-current interaction, and an umklapp
piece. We define the currents as

u(), JL,RL—‘ilVZf’RWL,Ra .

SU®), JLr=ylRTvL rs,
where the colons denote normal ordering so. that (J)
=(Jg)=0 and the T%s (a=1 to n>—1) are the genera-
tors of SU(n) that satisfy the relations

Te(T*T?) =5°/2 ,

@G3.D

(T4)- (T3) = 3 [688) — (1/n) 85541 .

The interaction Lagrangian density now reads

Linn =MJJr +2A2J. - Ig — 2031 (yf%yr) 2+ Hoc.].
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Left-left and right-right terms such as J;J; do not appear
here because they can be absorbed into a redefinition of
the Fermi velocity in Lo which we will continue to set
equal to one.'? The values of the bare coupling constants
are A, =2(1/n*—=1/n)U, A, =4U/n,\3=—U/2n.

First-order perturbative renormalization of the coupling
constants A, is now straightforward. Defining s=In(L)
where L is the length scale at which the couplings are
defined, we find

dh/ds =(32/x)(1/n—1)A3,
dhafds = — (n/2x)03+ (32/7) 2 —n)A$,
d)\.3/ds = (4/7[)7»17»3+(1/7E)(1 -n +2/n)k2)»3 .

Note that for n=2 the renormalization of A, decouples
from A3 (it never couples to A because J; - Ji is a charge
singlet). This decoupling actually holds to all orders in
perturbation theory and occurs only for n=2 since the
umklapp term for that special case can be written as the
spin-singlet  object  [(e.pwi®wi?) (e”yr,wrs) +H.c.].
Thus, the SU(2) case behaves differently than the
SU(n=2) case. In particular, for n=2and U >0, A,— 0
and A,— oo as L— oo; therefore a charge gap, but no
spin gap, opens up in agreement with the Lieb and Wu
solution. However, for n > 2, a simple numerical integra-
tion shows that both the charge and spin coupling con-
stants renormalize to large values so both sectors develop
a gap. Although this analysis was based on weak cou-
pling, we expect it to remain qualitatively valid right up to
U=oo. For n=2 the gapless spin excitations describe
those of the Heisenberg model. For n > 2, there is no
reason to have gapless spin excitations for any U. We
should therefore expect the spin gap that our large-n re-
sult displays. .

At nonzero doping the four-Fermi umklapp term disap-
pears because umklapp processes no longer result in a
change of 2z in the lattice momentum. Setting A3 =0 in
the renormalization-group equations we see that the other
coupling constants no longer renormalize to large values
so no gaps develop. Again, this conclusion is consistent
with the large-n solution and the exact result for the Hub-
bard model.

Thus we see that the large-n limit is actually misleading
in one dimension because the n> 2 case behaves dif-
ferently than the n=2 case. The Lieb-Schultz-Mattis
theorem required either vanishing gap or broken transla-
tional symmetry (i.e., dimerization). We see that the
former occurs at n=2 but the latter for n > 2. Dimeriza-
tion can occur at n=2 with the addition of a next-
nearest-neighbor coupling:

H=JXS;Si+1+/228:"S;i+2.
1 !
This system is dimerized for J,/J greater than approxi-
mately +. In fact, for Jo/J =1, the ground state consists
of disconnected dimers (like those depicted in Fig. 2).'4
IV. RESULTS IN TWO DIMENSIONS

To study the two-dimensional case, we again make an
ansatz for the minimal symmetry of saddle-point con-
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figurations. The assumption of constant ¢ and y is sim-
plest since the translational symmetry cannot then break
spontaneously. However, as in the one-dimensional case,
such a configuration can be proven not to be the minimum
of the free energy for small doping (i.e., close to half
filling) because of a Fermi-surface instability connected
with the perfect nesting of the Fermi surface for nearest-
neighbor tight-binding models on a square lattice. It ap-
pears that the minimum amount of symmetry breaking
which will allow a locally stable minimum is an increase
of the unit-cell length by a factor of +/2. Thus the square
lattice breaks up into even and odd sublattices and the
Brillouin zone is reduced to half its original size [see Fig.
5(a)l. ¢x may now have different values on each sublat-
tice (¢o and ¢.), corresponding to a site-centered charge-
density-wave state. Also, xxy can have four dif-
ferent values (12, 123, x34, and xa1) [Fig. 5(b)]. We will
allow the y fields to be complex, and therefore oriented.
Finally, when the biquadratic interaction is present, we
will permit the ®,, fields to have the same symmetry
breaking pattern as the yxy fields. We will check the sta-
bility of the saddle-point configurations we find using this
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ansatz. Of course, energy barriers must exist between our
saddle points and any other possible saddle points that
break the +/2 unit cell to insure stability.

For the pure Heisenberg model (t=§=0) we can al-
ways gauge transform a given saddle-point state and still
have a saddle point. However, unlike the one-dimensional
case, for d =2 we cannot in general find a gauge transfor-
mation that will make all the x’s purely real because the
plaquets IT=y 2x23x34x41 could have a nontrivial phase.
In other words, if the plaquette is not purely real, no
gauge transformation can make all four x’s real. There-
fore, if the flux 6 does not equal 0 or = (mod2r), at least
one of the four y fields must have an imaginary com-
ponent. Of course, when 0, the “gauge” transforma-
tions no longer leave the Hamiltonian invariant and there-
fore generate distinct states that are generally not saddle
points.

For simplicity, we first consider the problem with no bi-
quadratic interactions (J =0). With the above ansatz for
the y and ¢ fields at the saddle point, we can now evaluate
the free energy. The electrons have single-particle ener-
gies:

E (ky,ky) —ip =% {|2tlcos(k,) +cos(k, )]+ y12exp(ik, ) + y3sexp(—iky)

+x3explik,) + xdexp(—ik,) | 2 — (ag) 3 /2

and as before the total free energy is given by Eq. (2.13).
Again we should set Agp=(¢o— ¢.)/2 =0 for any filling
factor because of the quadratic terms (A¢)? in the free en-
ergy. Also, the dependence on ¢ is again trivial. We can
now calculate the free energy numerically and employ the
Metropolis Monte Carlo algorithm to find the minima.
That is, we set an artificial Monte Carlo (MC) tempera-
ture Bmc and evaluate the free energy for a given starting
set of values for the four real and four imaginary com-
ponents of the y fields. A new point in this parameter
space is then chosen by moving in a random direction
away from the old point. After each move we must recal-
culate the chemical potential by requiring that the aver-

(a)

-

age electron density equal (1 —&)/2 per site. (Again, the
chemical potential is strictly zero for the § =0 case.) The
new point is accepted with conditional probability one if
the free energy decreases (AF <0) and with probability
exp(—pBmcAF) if it increases. This process is repeated
and as we approach the equilibrium values of the y fields,
we decrease the temperature (simulated annealing) and
make smaller random jumps until the fluctuations away
from the equilibrium point are sufficiently small to identi-
fy the phase.

We will classify the saddle-point solutions by their sym-
metries. For this purpose, it is sufficient to consider parity
(P), charge conjugation (C), translation by one site (7),

A 3
9 9 > 9,
X4 X3 X4
4 /N \\'4
5 )

9 > 9 < 9,
XZS X41 X23
AN 2 A
9 £ 9 > 9

(b)

FIG. 5. (a) The reduced Brillouin zone for the +/2 unit cell. (b) Ansatz for the symmetry-breaking pattern in the two-dimensional

Hubbard-Heisenberg model.
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and rotations through 90° (R). Since we are considering
a lattice problem, we must specify these operations more
precisely. By parity we will mean a reflection across a line
that cuts through the midpoint of a link. Implicit in our
discussion is the fact that we could reflect about either
vertical or horizontal lines. We will say that parity is bro-
ken if either operation changes the saddle-point solution.
Similarly, we could study translations by one site in either
the vertical or horizontal directions. Again, a saddle-point
solution that breaks either translational symmetry will be
said to break 7. R will be a rotation of 90° about the
center of a plaquette. Finally, by C we mean complex
conjugation of the link fields y,y. We must remember,
however, that the gauge-invariance of the pure Heisen-
berg model allows us a great amount of freedom in our
choice of the y fields. For this special case, we instead
consider the effect of complex conjugation on gauge-
invariant quantities such as the plaquette II.

We treat the Heisenberg (t=8=0) case separately
here from the more general Hubbard-Heisenberg model
because the gauge invariance of the former model leads to
qualitatively different behavior. At zero temperature our
ansatz yields two saddle points.

(1) Peierls. Only one of the four x’s is nonzero and it
may be made real by a gauge transformation. The
nonzero link has | x| =J/2 and the saddle-point free en-
ergy is F=—nJ/8 per site. It violates P, R, and T but
preserves C.

(2) Flux. All of the y’s are equal in magnitude and the
flux =7 since IT is real and negative. There is only one
gauge nonequivalent state of this kind and it has a free en-
ergy about 10% higher than the Peierls phase:
F= —0.115(nJ) per site. This state preserves P, T, R,
and C.

The Peierls state corresponds to the dimerized state we
found in one dimension because each site forms a dimer
with one of its neighbors. The electrons are completely lo-
calized on each bond and the spectrum has a gap of
AE =J. The state obviously breaks 7 symmetry and the
gap is consistent with the LSM theorem. In our ansatz,
the dimers form staggered columns. However, since the
electrons are localized, the saddle point is actually highly
degenerate. Any configuration of dimers will be a large-n
solution as long as every lattice site is attached to a
nearest-neighbor site by a dimer. However, this degenera-
cy is broken by 1/n corrections. In fact, Read and
Sachdev* find that the dimers arrange into regular
columns at next order in the 1/n expansion [see Fig. 6(a)l.
This column state breaks the /2 unit cell into a 2% 1 cell
that can be described by three different y fields [Fig.
6(a)]. Curiously, the column state no longer breaks P.

By considering a larger 2X2 unit cell, Dombre and
Kotliar demonstrated that the flux saddle point is unsta-
ble.® Indeed, it collapses into a new “box” phase that has
the same free energy as the Peierls phase but is separated
from it by energy barriers. This new phase is depicted in
Fig. 7. It consists of disconnected plaquettes and the
fields are zero on half of the available links. The flux
passing through the nonzero plaquettes is #. This phase
breaks 7 and R but preserves P and C (it is invariant un-
der Csince I is real for every plaquette).
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FIG. 6. (a) The ground state determined by 1/n corrections
to the Peierls saddle point. The dimers form columns. (b) The
2x 1 unit cell needed to describe the column state.

Apparently, it is important to test the local stability of
the saddle points in the most general possible way. Only
then can we be sure that the saddle points we find with a
given ansatz are completely stable to small perturbations.
(Of course, a saddle point can be locally stable and still
not be the global minima of the free energy. We will not
address this possibility directly, but rather argue that the
configurations we consider are sufficiently general to ac-
commodate the global minima.) To accomplish that end,
we consider the effect of adding small but spatially arbi-
trary perturbations to the yxy fields and examine the
change in the free energy. This problem is equivalent to
finding the curvature of the saddle point in the infinite-
dimensional functional space of the x,y fields. Fortunately,
in momentum-space perturbations with different wave
vectors decouple and the problem becomes tractable. The

FIG. 7. The box phase that is degenerate in the n— oo limit
with the Peierls phases. y is nonzero only on the depicted links.
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details of this calculation are presented in the Appendix;
here we note that the flux phase is unstable for a range of
momenta near (0,7) and (r,0). Indeed, these modes cor-
respond to the instability that moves the flux phase into
the box phase.

Since the flux phase has great intrinsic interest, we seek
to stabilize it by adding the biquadratic interaction. To
explore this possibility, we calculate the saddle-point free
energy of the Peierls, flux, and box phases for J#=O.
We first must analytically continue the saddle-point value
of ®yy into the complex plane with the redefinition: ®yy
— i®,,. Now the free energy associated with the La-
grangian (2.12) is completely real. Next, we will assume
that the @,y fields are nonzero only on the links that have
nonzero xxy. There is now no need to recalculate the fer-
mionic contribution to the free energy since we already
did that above. Setting J=1 for simplicity, the free ener-

gy is
F(®) =n{2al| x| 2— /D)@ — (b/2) (1 +20) 2| x|},

where | x| and ® denote their values on the nonzero links
and a equals the fractional number of such links.
Specifically, a= %+ (Peierls), + (box), and 1 (flux). The
fermionic contribution to the free energy is encapsulated
in the number b which equals 1 (Peierls), v2 (box), and
~1.916 (flux). The saddle-point equations F/dy =0 and
9F/39®—0 then give ®=—J(b/8a)> and y=(b/8a)
x(14+2®)'2. A simple calculation now shows that the
flux-free energy does indeed drop below both the Peierls
and box free energies for J 2 1.134.

Two possible objections must be addressed before we
can be sure that this flux state is sensible. First, is the
critical value J so large that the system is now a ferromag-
net? The answer to this question is no, as long as J <2
since (as mentioned earlier) the two-site problem can be
shown to be antiferromagnetic in that case.

The other objection concerns the stability of the new
flux state. Is it truly stable to all perturbations in the aux-
iliary fields? This question is complicated by the fact that
the saddle-point free energy should be a maximum with
respect to the redefined @ fields and a minimum with
respect to the y fields. We sort out this problem by in-
tegrating out the @ fields (exactly in the n— oo limit).
We then calculate the saddle-point curvature of the
effective action that now depends only on the y fields and
which must be positive in all directions for stability. We
conclude (see Appendix) that the unstable directions
disappear for JZ1.45. (Some intermediate phase ap-
parently interpolates between the box and flux states in
the range 1.134 SJ <51.45.)

The flux phase appears to break translational symmetry
since y12 and x4, for example, are oriented in opposite
J
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directions. This orientation is a gauge artifact, however.
Because the plaquette IT is real, we can always find a
gauge transformation that makes all of the yx’s real and
therefore unoriented. By the Lieb-Schultz-Mattis
theorem, we expect gapless spin excitations. Similarly,
this phase also respects C and P because I is invariant un-
der these operations.

The electronic spectrum for the flux state is not gauge
invariant. For example, gauge transformations that shift
the phases of the four x’s also move the spectrum around
in momentum space:

Elky,ky)— Elky+a,ky+p) .

However, this gauge dependence does not lead to any in-
consistencies since the physical excitations consist of
particle-hole pairs confined together on the same site. For
example, the operator c;“’cxﬂ produces a spin excitation at
site x and is clearly gauge invariant. Thus, the dispersion
relation for spin waves should not depend on the choice of
gauge. Apparently, the higher-order processes (in the 1/n
expansion) that lead to particle-hole confinement play a
crucial role in maintaining gauge invariance. (We men-
tion one possible mechanism below.)

In the gauge with x> =yx3s=i|x| and y23=xs1 =1zl
the single-particle spectrum is

E(k) =2| x| [cosk, +cos?k,1'2.

Note that the gap vanishes only at the four Fermi points
k=(=x /2, = n/2). Thus, the particle-hole excitations
have zero-energy modes at momenta (0,0), (0,7), (x,0),
and (r, ) in accord with the LSM theorem.

The gap vanishes linearly at the Fermi points, so the
low-energy theory is a 2+ 1 dimensional (massless) rela-
tivistic free-fermion quantum-field theory. Let us exam-
ine the low-energy excitations more closely. With the
above gauge choice, the Hamiltonian becomes

H=|x| X {eMlilc,szte,—)+(cpuyte,_p)1+Hel.

r,even

Here the sum over r runs only over the even sublattice
points. In momentum space this Hamiltonian reads

H=2Ix|f[d2k/(2n)2]

x {li cos(ky) +cos(k,)lcS (K)c, (k) +H.c}.
4.1

We take the two nonequivalent points where the gap van-
ishes in the reduced Brillouin zone to be (n/2, + z/2).
The low-energy Hamiltonian near these points can be
written in terms of shifted momenta k,=nr/2+k{ and
k,=*n/2+k, as

H= —2|y| f [d2k'/Qa) 1 Gky+k))edi (Ko (k) +Hoed+ [Gky — k) e (ke (k') +H.e 1}

We may now introduce two-component Dirac spinors, y;=(c.1,c,1) and y>=(c,2,c.2). In this basis, the continuum

Hamiltonian acquires a particularly simple form

H=-—2i lefdzxwl(618;+dzaz)v/,, .
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Here we are implicitly summing over the a=1,2 fermions.
Defining #=v'yo and y,=(i03,01,0,), the continuum
limit Lagrangian density is also simple:

L=—iy,y000y, — # ===i‘l.;ayl"aull’a .

Note that the y matrices obey the Clifford algebra:
{yu =2g.. We also have adopted the standard index
raising convention so y* =(— y,,7;,72) and set the speed
of “light” ¢=2|y| to one. It follows that L is invariant
under Lorentz transformations and describes two Dirac
fermions for each spin component. Furthermore, this
theory possesses a global SU(2n) symmetry since it is in-
variant under transformations that mix the »n flavor and
the two Fermi-point indices. Lattice effects, however,
break this SU(2n) — SU(n).

For n— o we can ignore fluctuations of the gauge
fields. The effective action is of course proportional to n so
that any fluctuations away from the saddle point are
suppressed by powers of 1/n. This means that the square
of the effective U(1) coupling constant g? is O(1/n).
Thus in the large-n limit we obtain a system of free fer-
mions. However, at next order in 1/n we must include in-
teractions with the ¢, y, and ® fields. These interactions
could qualitatively change the low-energy excitations,
even at very large n. Indeed, the compact U(1) gauge
symmetry cannot break so the gauge interactions must
confine the fermions. Thus, the leading order spectrum
consists of noninteracting particle-hole pairs but at finite n
we should find that the spectrum consists of confined
particle-hole pairs (mesons), and possibly other collective
excitations. It is not at all obvious that the massless exci-
tations that we found in the flux phase at momenta (0,0),
(0,7), (x,0), and (x,7) will survive at finite n. For exam-
ple, a gap of order 1/n might be produced. If a gap forms
the Lieb-Schultz-Mattis theorem suggests that either
translational symmetry has broken or else some other
types of gapless spin excitations exist.

We can include the background field fluctuations away
from the flux saddle point in the continuum theory. For
this purpose it is convenient to introduce the link fields
oe(x) and A.(x):

Ixx+:=Ji(—1)*Poexpligdy) ,
Ixx+y=Jogexpligdy) .

Here, x=(x,y). With the above choice of gauge, the sad-
dle point corresponds to setting 4. =0 and o, =const. Of
course, the A, are the spatial components of the U(1)
gauge field mentioned earlier and we can combine them
with the time component ¢(x) to form the three-vector
field 4,. If we ignore the o and ® excitations (which have
a mass gap), the continuum theory assumes the usual rel-
ativistic form: '3

L=iy,y*(d,tigA) vy, .

(Note that the gauge field does not couple 7, to v, or i,
to y; in the continuum approximation.) Apparently, the
low-energy excitations in the flux phase of the Heisenberg
model are described by a 2+1 dimensional relativistic
U(1) gauge theory of massless fermions.

Let us return to the hybrid Hubbard-Heisenberg model
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problem with no biquadratic interactions (J =0). We find
two new phases in the parameter space of different values
of the doping & and the ratio #/J. These regions are de-
picted in the phase diagram of Fig. 8. The Peierls state of
the Heisenberg model persists for small doping and hop-
ping term ¢. However, the flux state becomes the ground
state at small doping and larger values of . We again
characterize the various phases by their symmetries.

(1) Peierls. The x’s are complex and 12 =jx23 =34 but
{2411 > |x12]. (There are three other equivalent states
corresponding to 90° rotations of this state.) This phase
breaks P, T, R, and C. (However, C is a symmetry when
=0 because the four y’s are then real.)

(2) Flux. All the y fields are equal and have imaginary
components. This state breaks P, T, and even C since the
orientation of the links now cannot be removed by a gauge
transformation. The 90° rotations remain a symmetry,
however.

(3) Uniform. All the y fields are equal and real. This
state is invariant under translations, reflections, rotations,
and complex conjugation (i.e., it has the full tetragonal
symmetry).

(4) Kite. The y’s are nonzero, real (invariant under C),
and are equal in pairs. All three kite states break R but
only two break P and T: x;2=x23=yx3s=x4 and
X12=x417x23=x34. The third state respects these sym-
metries (yi2=x3a%x23=x41).

Near half filling (6=0) and small ¢/J the partially
dimerized Peierls state has the lowest energy. It is just
partially dimerized now because (for £0) all the y’s are
nonzero even though the number of valence bonds is
larger on one of the four links. Thus, this state remains a
staggered bond-centered charge-density wave. The elec-
tronic spectrum is completely gapped at § =0 so this state
insulates at half filling. To test its stability, we also calcu-
lated the free energy at half filling of the “column” Peierls
phase [using the unit cell depicted in Fig. 6(b) with real
Z1» X2 and x3l. Although it is degenerate (at n— o) with
our “staggered” Peierls phase for r =0, we find that it has
a higher free energy for t=0. Finally, we checked that the
saddle-point curvature of the staggered Peierls state is
positive, at least for §=0 and 0 <t 0.4 (see the Appen-
dix).

0.4 -

0.3 —

t/Jd 0.2 = Uniform

Peierls

0 T T T T T
0 0.1 0.2 0.3 0.4 0.5

FIG. 8. Phase diagram for the saddle points of the two-
dimensional Hubbard-Heisenberg model.
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For larger values of #/J the flux state has the lowest en-
ergy and is the genuine large-n ground state. In fact, for
the case of zero doping we have verified (again by the
saddle-point curvature calculation) that it is stable to fur-
ther symmetry breaking for ¢/J 2 0.15 so that it is at least
a local minima. Physically, we might expect a phase of
this type for sufficiently large ¢ because, unlike the one-
dimensional problem, the flux phase has no Fermi-surface
instability since the density of states near the Fermi points
vanishes linearly with the energy. [The electronic spec-
trum of the flux state still has four Fermi points at mo-
menta (&£ n/2, & /2) at half filling.] Thus, the saddle-
point equation can be solved in two dimensions without
gapping the entire surface. Also, we know that the uni-
form phase must occur as ¢t/J— oo, Thus, the flux phase
is the logical candidate to interpolate between the Peierls
and uniform phases at intermediate values of z.

The flux phase is still undimerized in the hybrid model
since the number of valence bonds (proportional to
| xxy| ?) is the same on all links. However, diamagnetic
currents flow around the plaquettes in an alternating sense
and break the tetragonal symmetry. In fact, the current
on the link xy is

Jry=Wef"eya = %)) =@n/ DIm ey} .

(These currents also flow in the § > 0, ¢ > 0 Peierls phase
since it too violates C.) Note that the current becomes an
unobservable gauge artifact in the pure Heisenberg limit
since all of the y fields can be made real by a gauge trans-
formation.

The new uniform state corresponds to the undimerized
state found in one dimension for large doping. It occurs
for sufficiently large doping since the Fermi-surface singu-
larity disappears. Because the x’s are real and equal, they
simply renormalize ¢ in the single-particle spectrum. Thus
there are no gaps and this state corresponds to the spin-
liquid state proposed by Baskaran, Zou, and Anderson. !¢

Finally, we find “kite” states at intermediate doping
that, like the Peierls phase, consist of -bond-centered
change-density waves. The links with a higher valence-
bond density form lines that run through the lattice. For
example, the state with y;» =y»3; makes zigzags through
the lattice. These strong bonds should have an excess
electron density and hence a net negative charge. This
state is actually highly degenerate since any combination
of straight lines and zigzags that have the same connec-
tivity will have the same free energy. Again, we expect
1/n corrections to break this degeneracy and pick out the

I
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true ground state.

The phase diagram of Fig. 8 is unaffected by small
nonzero temperatures. This behavior respects the
Coleman-Mermin-Wagner theorem for two spatial di-
mensions because the different phases are characterized
by the breaking of discrete lattice symmetries. [In con-
trast, continuous symmetries such as the SU(n) spin sym-
metry can break only at zero temperature in two spatial
dimensions.] _

For the pure Heisenberg system (with J =0), one might
expect a transition from the Peierls phase to the flux phase
at a nonzero temperature because entropy favors the delo-
calization of the electrons. Instead, the Peierls phase
changes directly to the uniform xxy =0 phase at a temper-
ature T =J/4. This transition can be shown to be second
order by the usual mean-field methods. Clearly, a transi-
tion to a uniform phase will always occur in the hybrid
model at sufficiently high temperatures because thermal
fluctuations effectively remove the Fermi-surface instabil-
ity.

V. SPIN-SPIN CORRELATIONS IN
THE HEISENBERG MODEL

The spin-spin correlation function for the copper-oxide
planes in the high-7, superconductors has been deter-
mined experimentally by neutron scattering (see, for ex-
ample, Ref. 17). To make contact between our large-n
solution and experiment, in this section we study the
correlator in the uniform and flux phases at zero doping.
(There are no low-energy spin excitations in the Peierls
phase.) Of course, the uniform saddle point is unstable at
low temperatures, but we will investigate its behavior any-
way. We present results for both the low-energy (quasi-
static) and instantaneous correlators.

Since | xxy | 2 only gives the nearest-neighbor correlator,
we instead work directly with the electron fields. Rela-
tions (3.1) for the SU(xn) generators allow us to express
the spin-spin correlator in terms of the fermions:

(Sx(1)-S0(0)) = + (et () exp(t) c§P (0)co,(0))
— (1/2n)¢c () exa()c§P (0)cop(0)) .

To proceed further, we transform to momentum and fre-
quency space. For the uniform phase, the odd and even
sublattices can be treated together and the correlator be-
comes

(Sq(w) S-q(0)) =7 fdzp dn/2r)3 el p(w+n)eps(me P (M eqpal@+1))
= (1/n)ep(@+n)epa (e P (M eqepslw+n))].

Since the electrons are free in the n— oo limit, these four-point functions can be decomposed exactly into products of
two-point functions using Wick’s theorem. The two-point functions are simply

(ed®(Mecpp(n)) =6888ln—E (p)1fIE(p)]

where fIE] =[exp(BE)+1] ! is the Fermi function and E(p) = | x| [cos(p,.) +cos(p,)] is the single-particle energy.
(| x| =2J/#? at the unstable uniform saddle point.) Upon contracting and performing the integral over the frequencies
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n we find

(Sq(w)'S—Q(O))=(n2—-1)/2fd2p/(2n)2f[E(p+Q)]{1 —fIE@)}slo+E(Q) —E(Q+p)].

The instantaneous correlator is easy to calculate:
(Sq(t=0)-S -t =0)) = [ du(Sq(®)- S -(0))

=2~ 1)/2f a*p/ O IE @+ — FIE@ .1

Since some of the neutron-scattering experiments integrate over a range of exchange energies, it is also interesting to
compute the finite-energy correlator:

(Sq- S—@)a=_f dolexp— (0%/24))KSq(@)- S (0))
=(n2- 1)/2fd2p/(2n)2f[E(p+Q)l(1 — fIE(p)lexp(— {[E(q) — E(Q+p)]1%/2a%}).

|

Here A controls the range of integration over the neutron Turning now to the flux phase, we must distinguish be-
energies. In practice, A is much smaller than J so the tween even and odd sites. The eigenstates of the flux
correlation function only measures quasistatic low-energy Hamiltonian (4.1) are created by the single-particle
processes near the Fermi surface. operator v (k):

For the purpose of evaluating the correlators, we now
set n=2, \%c l<):an check the 85(2) quantum-mechanical Hy (0|00 = = E()yk (k) |0)
sum rule Sy-Sxy=17 by integrating the correlator (5.1)  where now E(k) =2 x| [cos?(k,)+cos?(k,)1'? and
over all momenta Q. However, this integral yields only  ,~0.2397. The y (k) operators may be expressed in

&. Arovas and A.Aue‘rbach note ‘hf‘t the sum rule fails be-  terms of the even- and odd-site creation operators by
cause the factorization of four-point functions into prod- ; it '
ucts of two-point functions is valid only in the n—> oo lim- yh (k) =27 "[c/ (k) £ g(k)cg (k)]

it. Higher-order terms in the 1/n expansion apparently
lead to the recovery of the sum rule.? '

The correlators peak at wave vectors (0,0) and (z,7)  g(k) =[cos(k,) —icos(k,)1/[cos®(k,)+cos?(k,)]1'/?.
because low-energy processes can occur at these momen-

Here the phase factor

ta. [See Fig. 9 for an example of a process that contrib-  The various two-point functions that contribute to
utes to the (x,7) correlator.] Figure 10 displays the low-  the correlator such as {cJ(k,w)c,(k,®)) and
temperature (7=0.02J), low-energy correlator evaluated (¢ (k,w)c,(k,)) can now be expressed as linear com-
at A=0.14J. The (z,r) scattering peak is clearly evident.  binations of the two y + two-point functions:

Note that the magnitude of the peak is quite small com- +

pared to that of the instantaneous correlator (Fig. 11). It (ylk,0)y-(ko)=slo+EKII-EK],

is small because only a few scattering processes are ener- + - _
getically allowed. The instantaneous correlator is peaked Wi o)y (k,0))=slo—EM]fIEW].
at (z,7) though the width is half the zone size. It is quite Also,

insensitive to the details of the single-particle spectrum

since all processes are energetically possible. (Wik,0)y-(k o)) =yl o)y: (ko)) =0
N p : { T T T I T T T I T T T I 1“
TC Y a 10 :_ ]
JAY C .
T 8L ]
w C 3
— 6 [ .
pd 'T( / T N % E 7
~ 7 Py v 4 —
=R .
2 g
C "
o 2 4 6
-TC Q X
2

FIG. 10. The low-energy (A=0.14J) spin-spin correlator in
FIG. 9. Fermi surface of the uniform phase and a (r,7) exci- the uniform phase at momenta Q,=n. The temperature is
tation that contributes to the peak in the spin-spin correlator. T =0.02J.
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at zero temperature since all the positive energy states are empty. For this case, the spin-spin correlator is particularly

simple:

(Sq(®) S-q0)) =(n?—1 )/Sfdzp/(27r)2[l —g*p+Q)g(P)1slw+E(P)+E(Pp+Q)].

The low energy (A=0.14J) and instantaneous correlators
are plotted in Figs. 12 and 13. Again there is a peak in
the low-energy correlator at momenta (r,7) but there are
also smaller peaks at (0,7) and (x,0) corresponding to the
other processes that link Fermi points. As expected, the
instantaneous correlator differs little from that of the uni-
form phase.

V1. SU(2) HEISENBERG MODEL

To gain some understanding of relevance of our large-n
solutions to the real SU(2) Heisenberg model, we consider
several aspects of the n— 2 limit. We first note that
long-range Néel order probably occurs in the two-
dimensional SU(2) system. We then discuss a variational
approach to understanding the ground state that makes
use of the large-n saddle-point wave functions. Recent
numerical calculations of the energy of the Gutzwiller
projected wave functions support the conjecture that the
flux phase is a better saddle point than the Peierls phase
for describing the SU(2) case. Finally, we mention the lo-
cal SU(2) gauge symmetry that appears in the n=2 sys-
tem.

Recent exact,'® numerical,!® variational,!! and renor-
malization-group calculations suggest that Néel order
occurs in the zero-temperature two-dimensional spin-+
Heisenberg model. In fact, it has been rigorously proven
to occur for s> % in two dimensions and in the spin- %
case with weak spin-spin coupling between the two-
dimensional planes.'® Experimenters also see long-range
spin order in good two-dimensional spin- 3 antiferromag-
nets such as the undoped La,CuQy4 material.?’ Apparent-
ly, a transition at some finite value of n (possibly equal to
2) separates the large-n phases with short-range order
from the Néel ordered n=2 case. By considering finite n
corrections to our large-n solutions, it may be possible to
see the onset of long-range order. In this regard, the flux
phase is probably a better starting point since it has gap-
less excitations that could lead to long-range order at

1,19
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FIG. 11. The instantaneous correlator in the uniform phase
for Q, =n. The temperature is 7=0.02J.

finite n. Some support for this point of view comes from
the method of Gutzwiller projection. Let us briefly review
this method.

In our analysis of the large-n Hubbard-Heisenberg
ground states, the saddle-point solutions had a trivial
dependence on the Hubbard repulsion U. Indeed, for pos-
itive U (regardless of its numerical value) we found that
¢x was constant and consequently no site-centered charge
density wave formed. It is easy to understand why the
Hubbard repulsion is important only at next order in the
1/n expansion. The saddle-point states have an average of
n/2 electrons per site but the fluctuation in this number is
of order n'/? since the electrons are basically free. Thus,
in the n— oo limit, the fractional number fluctuations
vanish as n ~"/2 regardless of the value of U.

For the pure SU(2) Heisenberg model, U— o so the
number fluctuations must be completely suppressed by
higher-order corrections to the saddle point. Gutzwiller
projection allows us to account for some of these correla-
tions. To implement this procedure, we examine the wave
functions for the electrons moving in the background yx
fields and project out the parts that correspond to doubly
occupied sites. The expectation value of the Heisenberg
Hamiltonian for the resulting projected state can then be
evaluated. Thus, Gutzwiller projection is in some sense
equivalent to integrating over the ¢x and yxy fields in the
functional integral (2.7) with a fixed-fermion background
wave function.

The Gutzwiller projection of the completely dimerized
states may be performed exactly because the electrons are
completely localized on particular bonds. Consider the
one-particle Hamiltonian for the dimer between sites 1
and 2: H,=|yx|(c]%2,+H.c.). The lowest-energy state
for two electrons on this dimer is given by

[12)=(c{* —c$)(efT =it |0).

The doubly-occupied sites can be eliminated by hand,
yielding the singlet state | y):

ly)=2""2Pg[12)=2""2(| 1 )= | I D).

- T T T T T T T T T
10 ——l ] r —]
N c ]
PAS 8 - .
T E
7 sF .
i C 7
w4 =
% C 3
ok =
(o]
Qx
FIG. 12. Same as Fig. 10, except for the zero-temperature
flux phase.
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FIG. 13. Same as Fig. 11, except for the zero-temperature
flux phase.

In fact, a projected dimerized state is a valence-bond solid
(VBS) since the singlet bonds are frozen on the lattice.
Clearly, {y|S;-S,|w)=—% so each dimer contributes
— 7 J to the expectation value of the energy.

In Sec. III we found that the saddle point of the one-
dimensional Heisenberg model was dimerized. Since the
dimers cover only % of the lattice links, the expectation
value of the energy for the projected state is
E=—%J=—0.375J. This value compares poorly with
the exact Bethe-ansatz ground-state energy of
E=(% —In2)J = —0.443147J. It is interesting to also
consider the uniform state (the electrons in this state are
the usual tight-binding wave functions with momenta in
the range — /2 < k < n/2). The projected uniform state
must resonate, and this resonance complicates the calcula-
tion. However, resonance also lowers the energy. Gros,
Joynt, and Rice?' have calculated the energy of the pro-
jected  uniform  state  numerically and find
E=—1(0.44217%0.00006)J which is only 0.2% higher
than the exact energy. Thus, the dimerized large-n saddle
point is probably a poor starting point for understanding
the n=2 physics via a perturbative expansion in powers of
1/n. Our renormalization-group analysis of the Heisen-
berg chain in Sec. III supports this idea since the n > 2
systems had a spin gap whereas the SU(2) system
remained gapless.

Turning now to the two-dimensional case, we also ex-
pect that resonance can lower the energy of the undimer-
ized states. Consider the energies of the projected Peierls,
uniform, and flux states. The Peierls dimers cover only Y
of the lattice links, so the energy of the projected state is
E=— & J=—0.1875J. The calculation for the undimer-
ized states again must be done numerically. Gros and co-
workers?? have evaluated (yPg|Sx'Sy|Pcy) for both
states and find that £ = —(0.267 % 0.003)J for the uni-
form state and E = —0.32J for the flux phase. Apparent-
ly, both undimerized states have lower energy than the
Peierls VBS. Indeed, the energy of the projected flux
phase is only about 5% higher than that of the best varia-
tional estimate (using a Néel ordered state) of the
ground-state energy:'! E= —0.3344J.

For the special case of n=2, the Heisenberg model has
a larger local gauge symmetry that contains the U(1)
symmetry.?>?* This symmetry mixes particles of spin o
and holes of spin —o. Consider the expression for the
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spin operator (2.1). This operator is invariant under the
local transformations:

i1 — axcdt +Bxcxy
cxi— —BresiHatex,

subject to the constraint | ay| 2+ | Bx [2=1. The three in-
dependent degrees of freedom of these local transforma-
tions correspond to the three generators of SU(2). [Note
that the U(1) gauge symmetry appears here as the sub-
group of the SU(2) symmetry defined by setting 8, =0.1
A Lagrange multiplier can now be included to constrain
the system to one particle per site and it transforms as the
time component of a SU(2) gauge field. Finally, a
Hubbard-Stratonovich transformation may be used to in-
troduce spatial SU(2) gauge fields. This version of the
Heisenberg model was used in Ref. 23 to show the
equivalence of the large-n problem and the mean-field
method of Baskaran, Zou, and Anderson. '

VIiI. CONCLUSION

Having solved the Hubbard-Heisenberg model in the
large-n limit, we now want to comment on its relevance to
the high-temperature superconductors. Only the outer d
orbitals of the copper ions are considered in Anderson’s
simplified description of the copper-oxygen planes. The
Hubbard-Hamiltonian models the hopping of electrons
between different Cu atoms and the highly screened
Coulomb repulsion between the electrons. The number of
electrons in the CuO; planes of the high-7. superconduc-
tors is controlled by the atoms above and below the planes.
For example, strontium doping (x) in La;—,Sr,CuO, or
oxygen addition (y) in YBa,Cu30O¢ s+, lowers the number
of valence electrons. Zero doping or y =0 corresponds to
approximately one valence electron per copper atom. Cu-
riously, a structural transition from tetragonal-to-
orthorhombic phases occurs in the lanthanum-based com-
pounds at x = 0.15 with the more symmetric phase exist-
ing at higher doping.?> The superconducting transition
temperature also hits a maximum of about 40 K at ap-
proximately the same doping. The question of whether
this structural transition is related to the electronic behav-
ior, and in particular to superconductivity, has generated
a great deal of interest.

The orthorhombic-tetragonal transition could be driven
by a Fermi-surface instability. Indeed, our large-n solu-
tions do show this sort of behavior. For large doping, the
uniform phase (which exhibits the full tetragonal symme-
try) is stable. At small doping, two phases are candidates
for the observed orthorhombic symmetry: the flux and
“zigzag” kite states. However, only the flux state has the
full-orthorhombic symmetry. In the “zigzag” kite state,
the two sides of the unit cell with larger || should have
different lengths than the other two sides. However, no
such charge-density waves are observed. The sides of the
unit cell in the flux state do have the same length but it is
unclear how the rhombic distortion would arise.

The spin-spin correlator provides additional contact be-
tween experiment and theory. Neutron-scattering experi-
ments'” in the lanthanum compounds show a narrow
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Q =(n,n) scattering peak with a width of less than 5% of
the zone size. These experiments typically involve energy
exchanges of at most tens of meV. Since this energy scale
is small compared to J (which is of order 1000 K or about
100 meV) we should compare these measurements to the
low-energy correlators calculated in Sec. V. These corre-
lators do have peaks at momenta (r,7) though the flux
phase also has peaks at (0,7) and (x,0) that are not seen
experimentally. However, the widths of the calculated
peaks depend strongly on the cutoff A. Since no such sen-
sitivity is seen in the experiments, the observed (z,7) peak
probably corresponds instead to spin excitations about
true long-range Néel order. 26

Finally, the presence of superconductivity in the
Hubbard-Heisenberg model cannot be addressed in the
n— oo limit. Off-diagonal long-range order (ODLRO)
requires large particle-number fluctuations, but all such
fluctuations are suppressed at large n. Furthermore, the
only available order parameters (y and ¢) are electrically
neutral and cannot break the U(1) gauge invariance. For
finite n the conventional superconducting order parameter
generalizes to the charged SU(n) singlet operator:
€ap. _wCi%efP. . .c1? and n tuples of particles might condense
together. The search for ODLRO at finite n would make
an interesting, but difficult, project.
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APPENDIX: THE SADDLE-POINT CURVATURE

To compute the curvature of the saddle points, we con-
“sider the effect of small but spatially arbitrary perturba-
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tions of the bosonic fields yxy on the free energy (we post-
pone the study of fluctuations in the ®yy fields until the
end). We will restrict ourselves to time-independent per-
turbations; the extension to dynamic fluctuations is
straightforward. Also, for simplicity we only consider the
case of a half-filled band (§=0). Finally, we will ignore
the fluctuations in the ¢4 fields. For the pure Heisenberg
model, ¢x cannot have a nonzero saddle-point value by
particle-hole symmetry; therefore ¢x =0 is always a stable
saddle point. But, for nonzero ¢, we will simply assume
that the ¢, directions remain stable.

Suitably generalized, this calculation provides the foun-
dation for calculating higher-order terms in the 1/n ex-
pansion. In fact, the O(1) correction to the free energy
can be obtained by integrating out the fluctuations around
the saddle point in the Gaussian approximation. To this
order, we only need to know the curvature (no higher mo-
ments).

We will calculate the free energy by integrating out the
electrons in the background fields:

exp(—BFxD) -f[dc] [deflexp(—Slct,e,x1) .

We first decompose the action into a purely bosonic piece
and a term that includes the fermions: Slct,c,x]
=gFglyl+Srlct,c,x]. Here,

Fplyl=n Z |ny| 2 s
(x,y)
and
B
Sr(cte,x) -j; dr [Ed"(d/dr)cxa
X
+3 (zxyc;"c,a+H.c.)] .
(x,y)

(We set J=1 and take f— oo at the end of the calcula-
tion.) Thus, Fly]l =Fgly]+ Frly] where Frly] is defined
by

exp(—BFrly]) -f[dc] [de 1expl—Sp(ct,e,x)].

To proceed, we now decompose the y fields into a saddle-
point value plus a perturbation yxy =Zxy +8xxy. Then

exp(—BF[z1) =expl — BF5 g+ 8101 [ ldcllde Nexpl— [Sr(et,e, ) + 68 (c e, 601 .

Here we have introduced a term that couples the fermions to the perturbation

B
5Sr(c’t e, 87) ==J; dr ( p (8xxyc}"cm+H.c.)] .
(x,y)

Upon expanding the exponential to second order, we have

exp(—BF[x]) =expl —B(Fplzl + Fployl )]f[dc] [deflexpl—Sr(ct,e,7)1{1+ + (6Sklct,c,621) 2+ 01(82) 1}

=expl— B(Fglgl + Fglsy)lexp(— BFrlz]) {1+ + npw (z,6%) + Ol(5x) 1}

=cexpl — B(FIz1+ Fzlsx D11 + £ npw(z,67) +0l(5x) 1} .

Note that the terms linear in 8y cancel out at the saddle point. By taking the logarithm of both sides of this equation we

can now extract the total second-order correction
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to the free energy:
Flyl=Flzl+Flz, 621+ 01(5x)°].

Filz,671=n [<,‘Z,> | 8xay | 2+ & W(Z,Jx)] :
To actually compute W(7,5y) we transform to momen-

tum space. Let us perturb the four y, fields (a =12, 23,

34, or 41) of the /2 unit cell with fluctuations of momenta

+p:

(AD

Here, x is on the even sublattice and the four y,(x) are at-
tached to it as shown in Fig. 14. Defining w,(k)
=[c,q.(k),co.(k)] we can write the unperturbed action us-
ing the 2x2 matrix inverse propagator for the fermions
G " (w,k):

2a(X) =7, +8y.cos(p-x) .
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FIG. 14. The identification of the four x,(x) fields with the
even site Xx.

Sew v p) = [ ldo d*k/(4x)1y *(w,k) G ™ (0,0 v(w,K)

where
G o,k =iol+i&K)et+7*(k)o .

Here

7(k)=2tlcos(ky) +cos(k, )1+ Fi2expliky ) + F3aexp(—iky) + 733explik, ) + i exp(—ik, ) ,

and o+ (7 is the 2 2 matrix with only one nonzero entry (=1) in the upper right (lower left) corner. Likewise, §Sr can

be expressed as

sSrytp,6x) =1+ f[dwdzk/(47r3)] [y (w,k+p)SL(w0,k;p) yolw,k) + vy *(0,k —p)SL(w,k; — p) yolw,k)]

where
SL(0,k;p)=6y(k)ot +6x* (k+plo~

and

Sx (k) =8y12explik, )+ Sxssexp(—ik,) +8x3explik,) +5xfiexp(—ik,) .
The one-loop Feynman diagram that corresponds to the fermionic contribution to the second-order term is displayed in

Fig. 15. Itis given by

W(z,620) =+ [ 1dod?k/(4x)] TrlG (0, 5L (0,k; — p)G (,k+p)SL(w,k;p)]

Fortunately, the integral over @ can be performed analytically and we have

W(;z,ax,p)=-;—f[dzk/(2n2)1(Re[z*(k)az(k—p)z*(k+p)5x(k+p)]{lx(k)x(k+p)| x|+ | x&k+p) | B!
— |6 | 2| x®) | + | x(k+p)|171).

Further evaluation of W(Z,8y;p) must generally be done
numerically. However, for the t =0 Peierls case we can do
it exactly since the dispersion relation for the disconnected
dimers is so simple. It is instructive to check our calcula-
tion in this way and we proceed by setting 712 =223
=734=0and 74, = 7. Then it is easy to see that

F2(z,8x:p) =(n/2){| 512 2+ | 82231 2
+ | 8x34| 2+ 2[Re(6241)13 .
This result agrees with a direct calculation of the free en-
ergy away from the saddle point. Also, note that F, does

not depend on Im(8y4). The curvature is flat in this
direction because this mode corresponds to a gauge direc-

f
tion that simply changes the phase of Z4. Apparently,
F,> 0 for all the physical modes, so the Peierls phase is
locally stable. For ¢ > 0, we have evaluated F, numerical-
ly and find that the Peierls phase remains locally stable for
1504,

As another test, we look for flat gauge directions in the

§X(k)
— -

§X(K)
— >

FIG. 15. Feynman diagram that contributes to the saddle-
point curvature. The solid lines represent fermion propagators.
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<+ Peierls
-~ Flux

lowest eigenvalue
o
1

-0.3 4§

0.0 0.1 0.2 0.3 0.4
tJ

FIG. 16. The lowest eigenvalue of the saddle-point curvature
vs t/J. At t=0, note the zero gauge mode of the Peierls state
and the unstable mode of the flux state.

flux phase of the Heisenberg model. For p=0 there
should be three such zero modes since there are a total of
eight degrees of freedom (the real and imaginary com-
ponents of the y,) but only five of these are physical (the
magnitudes |y,| and the plaquette angle 6). Upon di-
agonalizing the 8 X8 matrix corresponding to F,(z,8x;0)
we do in fact find three zero modes. At nonzero p the sit-
uation is rather more complicated. In general, we expect
only one gauge mode. Two modes disappear because our
choice (A1) for the perturbations causes 6 to fluctuate
from plaquette to plaquette for these modes when p=0.
In particular, consider the gauge in which the saddle point
1S Z12=%23=X3u= |x| and 74 =— ;x‘ Only the mode
Sx12=8x34=—8x23=—8x41 =ie (for € infinitesimal and
real) maintains 8=r in each plaquette. However, a spe-
cial case does occur at momenta (0,7) or (x,0): two zero
modes exist there. We have checked that the eigenvalues
of F; exhibit these features.

The instability in the flux phase shows up at momenta
p=(0,7) or (x,0). The two negative modes are (with the
above gauge choice): 8yi12=—5y3s=¢€ and &x23=6xa
=¢. Indeed, by examining the various links it is easy to
see that these modes are responsible for the decay of the
flux state into the box state. The unstable modes have a
nonzero width in momentum space; for example,
p=1(0,2.2) is a marginally unstable direction.

This instability can be cured in two different ways.
First, it disappears for 2 0.15 in the hybrid Hubbard-
Heisenberg model. This transition can be seen in Fig. 16
which displays the lowest eigenvalue of F, as a function of
t/J for both the flux and Peierls phases. (A boxlike phase
may be the correct saddle point for the narrow range
0.08 <t <0.15 since the flux state has a lower free energy
than the Peierls state for 1 2 0.08 yet is still unstable to-
wards the box phase for £ $0.15.)

Alternatively, we can include the biquadratic interac-
tion to raise the free energy of the box phase above that of
the flux phase. However, the introduction of the ® fields
complicates the study of the saddle-point curvature so we
proceed by integrating them out. The effective action
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~ Ze

/
v

N

FIG. 17. The steepest-descent trajectory in the complex plane
passing through the saddle point.

then depends only on the y fields and the meaning of the
curvature remains unambiguous.

We recall the Lagrangian (2.12) for the biquadratic
problem (we continue to set J=1 and ¢5 =0):

L=Y cio(d/dr)cxo
X

+(§y) [(n/ )DL +n]| xay | 2
+ (1 — 2idyy) '/2(xxycy“cxa+H.c.)] .
It is convenient to use the variables Qxy and ﬁxy:
Quy= (1 =2idyy) 2pyy,
Qay=(1—2i®yy) 242, .

Note that Q,’:‘,# ﬁxy except when @,y is purely imaginary
(such as at the saddle point). We can now integrate out
the fermions and find the free energy.

F(y,®) -n<2>[(1/1')q>3,+ | xxy | 214+ nFr(Q,0).
X,y

Here, Fr(Q,0) is the fermionic contribution defined
above. ‘

To proceed, we expand F(Q,Q) around the saddle
point to second order in the perturbations Syxy and 6®yy
using the definitions for the Q fields and the function
w(Q,5Q;p). The Gaussian integral over the §® fluctua-
tions can now be performed and the path follows the
steepest descent trajectory through the imaginary saddle
point depicted in Fig. 17. (We can continue the integra-
tion contour off the real axis because the integrand con-
tains no poles. The boundary conditions ®— = oo along
the real axis make the functional integral convergent.)
Note that the Gaussian approximation becomes exact at
n— oo, The crucial point is that this integral renormal-
izes the curvature in the y directions. After a rather tedi-
ous but straightforward calculation, we find that the x
modes are stabilized when J 2 1.45—i.e., J is sufficiently
large that the flux phase has lower free energy than the
box phase. Indeed, all the y directions now have positive
curvature, so we conclude that the flux phase is at least lo-
cally stable.
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