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For bulk samples of superconducting YBa2Cu307 powder and pellets subject to a dc magnetic
field Hp and a parallel ac magnetic field H~ at frequency f—10 to 10 Hz, we report data on
the generated harmonic power P(nf) up to harmonic n =40, finding: (I) If H&=0, only odd
harmonics; (2) if Ha~0, even harmonics are additionally generated; (3) for Hi sufficiently large
( 10 Oe) and n large, then P(nf) vs Hp displays sharp and deep periodic dips, revealing a re-
markably consistent and reproducible macroscopic flux quantization for the bulk sample. These
data, as well as the relative intensities of the harmonic power, are found to be in semiquantitative
agreement with detailed numerical predictions of a dynamical model of the material as a suitably
averaged ensemble of prototype flux quantized loops with weak links. At lower values of Hl addi-
tional structure is observed, related to fluxon pinning and depinning.

I. INTRODUCTION II. EXPERIMENTAL PROCEDURE

Soon after the discovery of the superconducting copper
oxides, the ceramic specimens were found to be granular
with weak links, having properties somewhat like those
predicted for superconducting glass clusters. Some
unusual properties reported for bulk YBa2Cu307 (Y-Ba-
Cu-0) were strong dependence of ac susceptibility on the
magnitude of the ac field; ' nonresonant microwave ab-
sorption in very low magnetic fields (H —10 Oe); sharp
decrease in transport critical current in low magnetic
fields; and limited critical current in high magnetic fields.
Novel nonlinear electrodynamics has been reported in-
cluding extensive harmonic generation which could be
semiquantitatively understood by modeling the system as
a suitably averaged collection of Aux-quantized super-
current loops containing Josephson junctions. In an exten-
sion of this model we have predicted that the harmonic
power will show strikingly sharp dips periodic in the dc
field, even with broad distributions of loop areas and
orientations, e.g. , as in sintered, polycrystalline, or
powdered samples. One would have naively expected the
periodic Aux quantization of the prototype loops to be
averaged out, but this is not predicted for high harmonics.
The present paper presents detailed experimental results
on Y-Ba-Cu-0, many of which are in semiquantative
agreement with the model predictions. Similar results will
be separately reported for Bi4Sr3Ca3Cu40 . In Sec. II
we describe the apparatus, procedures, and samples used.
Section III briefly reviews the theoretical model. The
data are presented in Sec. IV and compared to the predic-
tions of the model. Section V summarizes the results and
suggests further work on the rather complex problem of
understanding the electrodynamics of these granular ma-
terials.

The method we used to study nonlinear electrodynami-
cal behavior consists essentially of observing and process-
ing the voltage induced into a copper "receiver" coil
wound around a Y-Ba-Cu-0 sample, subject to applied dc
and ac magnetic fields. More specifically, the data shown
in this paper were obtained as follows. A sample of cylin-
drical proportions is subject to three applied magnetic
fields, all uniform and coaxial: (i) an ac field
H~(t) =Hi sincvt, with 0 &Hi &23 Oe, and frequency
f=cv/2tr = 10 to 10 Hz; (ii) a dc field Ho,
0 & Ho & 100 Oe; (iii) a repetitive "scan" field H, (t) of
triangular waveform at a low frequency =10 Hz.
These fields were produced by copper solenoids immersed
in liquid N2 in a magnetically shielded Dewar. Solenoids
(i) and (iii) were driven by very stable, independent syn-
thesized function generators (HP model 3325A). Two ar-
rangements of sample and receiver coils were used: (a) in
the "two-coil" method, a long cylindrical sample (2.7 X 10
mm ) of powdered Y-Ba-Cu-0 sealed in a quartz tube
(sample "C-15") is located in a 4-mm-diameter solenoid
in series with an identical but empty counterwound
solenoid. Except for the last figure, all data were taken by
this two-coil method, using this sample. ' (b) A rec-
tangular bar (2 x 2 x 9 mm ) of sintered Y-Ba-Cu-0
[sample "C-40" (Ref. 11)] with T, =91 K, closely wound
with a single receiver coil of 27 turns of 36 gauge copper
wire. Both the one-coil and the two-coil methods yield a
signal voltage of the form

V,„(t)=A„sin(ncvt)+B„cos(ntot), n =1,2, . . . , (1)
which is processed by an analog spectrum analyzer with a
90-dB dynamic range (HP model 3585A), to yield the
power spectral components P(nf) cc (A„+8„).However,

39 11 526 1989 The American Physical Society



39 NONLINEAR ELECTRODYNAMICS IN THE GRANULAR. . . 11 527

13

-40-
3

-1OO-j

-120 '

0.4
I

0.6
I I I

0.8 1.0
I

1.2
f(MHz)

FIG. 1. Power spectrum for powdered Y-Ba-Cu-0 (sample
C-15) at T =77 K, driven by an ac field at f=28 kHz, of ampli-
tude H~ 23 Oe, in a dc field Ho= 1 mOe. Odd harmonics up
to n 41 are clearly observed, as well as much weaker even har-
monics. The broad background resonance at f= 363 kHz is
that of the receiver coil itself.

III. MODEL

Since details of our model have been given in previous
papers, ' we will only brieAy review it here and summa-

the two-coil method allows a balancing out of the funda-
mental component (n 1), giving improved sensitivity to
the high harmonics; harmonics up to n = 41 can be readi-
ly observed (see Fig. 1). We study and report here P(nf)
as a function of the parameters Hp, H~, f, n and the tem-
perature T of the sample.

The signal V,„(t) is also processed, for n =1 and 2, by a
phase-sensitive lock-in detector (PARC model 5209),
with output voltage V, . For n 1 and assuming linear
susceptibility theory for the sample magnetization,

M g'H
~ sinmt+g "H

1 coscot,

where g' and g" are the real and imaginary components of
the complex ac susceptibility g=g' i@",on—e can define a
normalized output voltage proportional to

V,/H, ~(1+4~~') or ( —4~~"),

respectively, for the in-phase and in-quadrature com-
ponents of the lock-in output voltage, for the one-coil
method. For the two-coil method one finds V,/H ~

ce(4'') or ( —4'"), respectively. Here, for simplicity
in expression, we have neglected the demagnetization
effect in the sample, which will be taken into account later
in actual calculation of g'. In this paper our primary con-
cern is with the harmonics rather than the linear suscepti-
bility.

All data shown were taken with the sample cooled in
"zero" dc field (Ko~ 1 mOe) by immersion in liquid ni-
trogen. Essentially similar results were obtained in a
variety of ceramic pellets and powdered Y-Ba-Cu-0 sam-
ples; the general features are believed to be generic. We
only show data for f 28 to 52 kHz; the results are not
very sensitive to frequency in this range.

rize some of the equations of its different versions for use
in numerical evaluations to be compared to the experi-
mental data in Sec. IV.

The granular superconducting sample, in the presence
of magnetic fields, is assumed to be essentially composed
of a collection of current loops formed by superconducting
"grains" in contact through Josephson junctions or other
weak links. We model these loops, complex as they may
physically be, by a simple prototype resembling an rf
SQUID (superconducting quantum interference device),
a thin ring-shaped loop of area Sp in series with a single
junction. In our model, these loops are assumed not to be
coupled and to behave independently from one another.
We then study the behavior of the signal one would get
from the surrounding receiver coil if an ensemble of these
prototype loops of various areas and orientations is driven
by an applied ac magnetic field superposed on an applied
dc field. All loops are assumed to be subject to the same
external fields. In our model, the areas of the junctions
are assumed to be much smaller than the loop areas, so
that the diffractionlike pattern of the junction as a func-
tion of dc field can be neglected at low fields. Then the
Josephson current-phase relation becomes

I(t) =I, sing,

where I, is the junction critical current, and the phase
difference y is proportional to the instantaneous number
of Aux quanta enclosed by the loop.

Zero-order model. In the simplest version of the mod-
el, we assume I, to be small and neglect the field generat-
ed by the loop current itself and thus

y = (2nSo/@o) (Ho+ H i sintpt ),
where @o=hc/2e is the fiux quantum, and the quantity in
the second set of parentheses is the total applied field.
Due to the nonlinearity of the current-phase relation, har-
monics will be generated in the loop current and should be
detected by the receiver coil. Define the dimensionless
quantities

a =2n'SpHp/@o, p =2&SoH I/C'o—

where Sp is a characteristic loop area, and a/2x is just the
number of Aux quanta in the loop due to Ho, etc. For a
single loop the Fourier components of the current are

l„(t) ce J, (p)sinacos(mot), n even,

I„(t)ce J„(p)cosa sin(mot), n odd,

where J„(p) is the Bessel function of integer order n As-.
sume that in a particular ensemble the loop areas S are
characterized by a distribution function F(A), with
A:—S/Sp. Then, integrating over all the loops, the signal
amplitude of the nth harmonic as detected by the receiver
coil should be

(V„)=neo„AJ„(AP)cos(Aa)F(A)dA/G, odd n,

(2a)

(V„)=neo„AJ„(AP)sin(Aa)F(A)dA/G, even n,
(2b)
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where

G= I F(A)aA,

and 8 & 0 is a lower cutoff. We have shown numerically
that loop orientations may be approximately neglected in
Eq. (2). In this model the signal has only one phase and
the harmonic power is P(nf) =201ogio

~ (V,) ~
dB.

Loop model. Another version of the model explores the
possibility that the current-flux relation of the prototype
loop is not sinusoidal, but still periodic with period @o.
We name this version as such because one of many possi-
ble reasons for a nonsinusoidal, periodic current-flux rela-
tion is that there may be current loops in the sample
which simply do not have junctions in their paths, and
obey London's fluxoid quantization equation. In that par-
ticular case the current-flux relation is a sawtooth func-
tion, and the Fourier series of such a function is given by

I(r)= g ( —1) +'nI 'sin(nI2IrcII/IIIo).
m=1

For convergence we will arbitrarily replace the coefFicients
1/m above by exp( —m+1) to somewhat smooth the
sawtooth. The sample-averaged harmonic signal com-
ponents for this model version are then

(V ) =neo g ( —1) +'e
m=1

P OO

AJ„(mAP)cos(mAa)F(A)dA/G,

(3)

for odd n. Again, cos(nIAa) is to be replaced by
sin(nIAa) for even n. Also, orientation averaging has
been neglected.

First-order model In or.der to take the self-field and
dissipation of any normal current component into account,
we introduce a self-inductance L to the loop and shunt the
junction by a resistance R. The self-inductance produces
a Geld LI which opposes the external field, causing screen-
ing. Thus a relaxation time to the loop current, r =L/R,
is also introduced. A first-order nonlinear differential
equation describing the loop current in response to the ac
field is then derived to be

from the symmetry in Eq. (2). (3) If HI is sufficiently
large then the harmonic power P(nf) for both even and
odd n displays sharp, essentially periodic dips as dc field
Ho is scanned, revealing periodic flux quantization of the
prototype loop, even in a "random" granular sample.

IV. EXPERIMENTAL RESULTS AND INTERPRETATION

It will become evident below that much of the data
shows a nonlinear dependence on the ac field HI which al-
lows one to distinguish a transition between several re-
gions: a "high-H~" region, roughly 2 & H~ & 25 Oe, an in-
termediate region 0.2 (HI (2 Oe, and a "low-HI" re-
gion, roughly 10 &Hi &0.2 Oe, although there is not
always a clear distinction We fi. rst show some data in the
high-H ~ region.

Extensive harmonic generation Figu. re 1 shows the
harmonic power P(nf) versus the harmonic number n for
Y-Ba-Cu-0 powder sample C-15 at T=77 K, taken by
the two-coil method, with H~ =23 Oe, Hp= 1 mOe. The
power falls off slowly with n; all odd harmonics up to at
least n 41 are clearly observed, superposed on a broad
receiver coil resonance at 363 kHz.

Figure 2 shows the P(nf) vs n data of Fig. 1, corrected
for the receiver coil resonance; the slope for large n is 1.9
dB/harmonic. The broken line is that computed for the
zero-order model, Eq. (2a) with the area distribution

F(A) sinh(AIr/2)/[A(cosh(AIr) —I)), (5)

which is to be discussed below; the slope for large n is 2.4
dB/harmonic; this model thus gives a reasonable explana-
tion of the slow falloA' of the harmonic power. The dotted
line, computed for the first-order model, Eq. (4), does not
fit the data owing to a resonance near n =17 due to the
choice of the parameters Lo and Ic.

Plots of P(nf) vs H~ for n =3, 5, and 7 show a roughly
cubic dependence on H I in the intermediate-H I region,

-4P I I I

8
0

co - (IcLo) [sin(a+ psincor LoII ) I I 1
, dIt

dt

cosset,
Lo

(4) ~ ~ ~

o

0 0
0 0

0 o

where II —=I/I„ Ic=—h, co/2eRI„Lo—=2nLI, /C&o. The signal
voltage of the receiver coil due to a prototype loop is pro-
portional to dII/dt, computed by numerical iteration. By
averaging over a distribution of loop areas F(A) and
Fourier transforming dII/dt numerically, we get the har-
monic signals predicted by this model.

These three variations of the model predict similar but
not exactly the same behavior. However, they all predict
the following. (1) If Ho 0, then a 0 and only odd har-
monics are generated. (2) If HoAO, then even harmonics
are additionally generated. These two conclusions arise

14P, I I I I I I I I I I I I I I I I I I I I

3 7 n 41

FIG. 2. Circles: P(nf) vs harmonic number n from Fig. 1;
crossed circles: data from Fig. 1 corrected for receiver coil reso-
nance. Broken line: relative P(nf) computed from the model
Eqs. (2) and (5), P =5, adjusted to fit data at n =3. Dotted line:
P(nf) computed for first-order model, Eq. (4), with P =5,
L0=0.35, x =0.3, as in Fig. 8.
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for which we have no numerical model, and more complex
behavior in the high-H~ region. We note that Xia and
Stroud' have developed a model of superconducting clus-
ters by which they try to explain the power dependence on
n reported earlier.

Temperature dependence T. he circles in Fig. 3 show
the temperature dependence of P(2f) at Ho 2.7 Oe and
H~ 2.3 'Oe, i.e., in the high-H~ region. Order harmonics
show quite similar behavior. The solid line is a fit of the
Ambegaokar-BaratoA expression' for the critical current
of a Josephson junction

10-

J,- [xh (T)/2eR„) tanh [h(T)/2k T], (6)
-30-

where we have used the high-temperature limit for the
gap d (T)/h(0) =1.74(1 —T/T, ) ' with T, =88.5 K,
chosen for best fit. Although there are Auctuations at
T, + 2 K, the data fit this expression over 3 orders of mag-
nitude, but only for our limited temperature range, T, to
77 K. This suggests that the weak links are Josephson
junctions, but other types of weak links cannot be ruled
out.

Symmetry of harmonic power. Figure 4(a) shows the
second harmonic power P(2f) as a function of Ho, ob-
tained by slowly scanning from Ho = +20 to —20 Oe.
The dip at Ho 0, shown in expanded scale in Fig. 4(b), is
very narrow, d,H-0. 1 mOe; P(2f) increases by 85 dB for
a dc field change of —1 Oe. This is qualitatively in agree-
ment with the prediction of the model, based on the sym-
metry of Eq. (2b), that P(nf) 0 as Ho 0 for even n.
To observe this very narrow dip it is necessary to both use
H~ ~ 2 Oe and to cool in zero field to reduce the remnant
local fields due to pinned fluxons. Moreover, there is some
experimental evidence that this very narrow dip is an un-
stable state. If the dc field is scanned up to Ho & 5 Oe and
back, the narrow dip cannot be recovered without zero
field cooling, possibly the result of pinned fluxons. The
system appears to be somewhat unstable, probably at lo-
calized sites, against self-symmetry-breaking.

-20
l I

H(Oe) 20

-35

-10
H(mOe)

FIG. 4. (a) Second harmonic power P(2f) vs dc field Ho for
Y-Ba-Cu-0 (sample C-15) at T=77 K, H~ 2.3 Oe, f=52.5
kHz. (b) Expansion of the scan resolution by 2000x, showing
narrow dip at Ho 0, of width h, HO —0.1 rnOe.
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FIG. 3. Circles: observed intensity of P(2f) vs temperature
T for Y-Ba-Cu-0 powder, sample C-15 with f 52.5 kHz,
Ho 2.7 Oe, Hl 2.3 Oe. Solid line: computed behavior from
Eq. (6).

F/ux quantization. Yet another aspect of the nonlinear
electrodynamics observable in Y-Ba-Cu-0 powder is
shown in Fig. 5, the relative harmonic power for selected
harmonics, versus Ho, scanned at a uniform rate for field
increasing and then decreasing; the ac field has the rela-
tively large value H~ 23 Oe. For n 2 the trace is simi-
lar to Fig. 4 except for a broader dip at zero field and a
larger hysteresis. However, for the higher harmonics,
both even and odd, a series of sharp dips is observed, ap-
proximately equally spaced, with average spacing bHo in-
versely proportional to n. These dips are distinct evidence
for flux quantization of superconducting loops in the
granular sample and are a confirmation of the predictions
of the model in Sec. III. For example, Fig. 6 shows P(nf)
vs a, computed for the zero-order model, Eqs. (2) and (5),
for the same harmonics as Fig. 5. Since a is just propor-
tional to 00 a strong correspondence between experiment
and model is readily apparent for all harmonics. The
small hysteresis in the data is believed to have an origin in
pinning and depinning of fluxons, as discussed by Blazey
e~ al. '4

In the computation for Fig. 6 we used the loop area dis-
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shapes of the lock-in voltage signals V, vs Ho, for n =1
and 2, and the falloff of P(2f) in Fig. 4(a), as Ho moves
away from zero. Note that in Fig. 4(a) of Ref. 7, we ex-
plained the falloff by averaging the diffraction pattern of
Josephson junctions. We now believe, however, that the
falloff may eventually be explicable purely by a more
carefully determined distribution function F(A) which fits
the data more quantitatively, without invoking the
Josephson junction area as an additional parameter.

We also used Eq. (2) to compute P(nf) vs a for the
Gaussian distribution function

F(A) -exp[ —(A —1) '/2a'j,

finding predictions similar to Eq. (5) for large n [see, e.g.,
Fig. 1(c) of Ref. 8]. However, for small n, predictions do
not agree well with experiment. From data like that of
Fig. 5 we plot in Fig. 7(a) the average spacing AHo be-
tween dips for n=3, 4, . . . , 30. Except for small n the
data are well fit by the expression b.Hoer-n ' . In simi-
lar fashion we compute from Eqs. (2) and (7) the average
spacing ha, plotted in Fig. 7(b) for several values of the
standard deviation cr of the Gaussian distribution. We

10— I I I I I I

(a) H, =230e

find that the slope converges to —0.98 for o~2. Using
Eqs. (2) and (5), we also find a very good linear fit for Aa
vs n with slope —0.97. So both calculation and experi-
ment suggest that as n increases, the slope asymptotically
approaches —1. We thus conclude that the decrease in
spacing of the dips with n in Fig. 5 can be semiquantita-
tively understood by the zero-order model, and that it is
not sensitively dependent on the assumed distribution
function F(A), other than that it should monotonically
decrease for large A; however, Eq. (5) fits the data better
than Eq. (7) for small n.

Figure 8 shows P(nf) vs a computed from the first-
order model, Eq. (4). This model provides a mechanism
for dissipation, so it is not surprising that the dips are
broader and less resolved, e.g. , n 15 and 30. The Fourier
transform of (V„(t)) now contains both real and iinagi-
nary components, and both must vanish to give a deep
power dip. The pattern is more complex, and, in fact, this
feature is qualitatively observed, e.g., in Fig. 5(f), if we ig-
nore the hysteresis. More work is being done on exploring
the (Lo, x) parameter space; values of Lo and x that fit the
data quantitatively have yet to be found.

Why does a random sample show flux quantization?
Recognizing that various versions of the model can ex-
plain the experimental finding of deep dips in the harmon-
ic power, almost periodic in the dc field, we ask an in-
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FIG. 7. (a) Average spacing AHO between dips from the data
of Fig. 5, vs the harmonic number n (b) Average .spacing da
between dips vs harmonic number n, computed from Eqs. (2)
and (7) for various values of the standard deviation cr of the as-
sumed Gaussian distribution.

-4.0 0.0 4.0

FIG. 8. Relative harmonic power (10 dB/div) of P(nf) vs a,
computed from the first-order model, Eq. (4), using parameters
P=5, Lo 0.35, x 0.30, and F(A) from Eq. (5).
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teresting question: How does it come about mathemati-
cally that all this structure is not averaged out in, say, Eq.
(2). Or, to put the question in physical terms, why does a
random powder sample of Y-Ba-Cu-0 show sharp dips,
e.g. , as in Fig. 5(e), quite similar to those observed in fa-
bricated thin film arrays of identical loops, ' or arrays of
identical junctions? ' It will be easier to first answer this
question mathematically by examining Eq. (2).

The general behavior of the voltage signal, as modeled
by Eq. (2), is clearly determined by the integral in the
equation. To understand the structure of the signal as a
function of a, one can separate the integrand, say of Eq.
(2a), into two factors: the periodic factor cos(Aa) and
the amplitude Q„(P,A) =AJ„(AP)F(A). One recognizes
that Q, (P,A ) is, within a constant factor, the Fourier
cosine transform of (V„(a)), for odd n; for even n, Eq.
(2b), it is the sine transform. For n ~ 1, the Bessel func-
tion J„(x) initially increases rapidly as J„(x)= (x/2) "/
(n!), and then behaves like a damped oscillation. If the
area distribution F(A) is a sufficiently rapidly decreasing
function, at least for large enough values of A, then
Q„(P,A) will be a rapidly decreasing oscillating function
ofA, with a well defin-ed peak at A„*~, dependent on n and

For example, in Fig. 9(a), we have used F(A) from Eq.
(5) and computed

~ Q„(P,A) ( vs A for the parameters
n =10 and P =5.0. It indeed shows successive decreasing
peaks with the dominant peak at A A„*~ 2.09, larger
by a factor of 6.7 than the next peak. Thus the integral

x 10-3

9.0-
= 5.0
= 10

0.0

x 10-2

6.0
f3 = 5.0
n=5

0.0

x 10-'

1.5- (c) P = 10.0
n=5

0.0
0.0 5.0

&1G. 9. I Q. (P,A) [ =—!AJ.(AP)F(A) [ vs A, in dimension-
less units; F(A) from Eq. (5). (a) n =10, p=5.0; (b) n =5,
P=5.0; (c) n =5, P =10.0.

could roughly be evaluated at only the dominant value of

(V„&)—A„~J„(A„*pP)F(A„,p) sin(A„pa),

giving a harmonic power P, (a)-sin (A„pa), with
periodic spacing between dips Aa = n/A„*& =1.50, in good
agreement with the directly calculated value of h, a 1.52
using the full expression equation (2b). To show the
dependence on n, we plot, in Fig. 9(b), ( Q„(P,A)

~
vs A

for n 5, P 5.0, also using Eq. (5) for F(A). In this case
the location of the dominant peak decreases approximate-
ly by a factor of 2, to A„p=1.10, corresponding to dip
spacing of ha=+/A„& 2.86, again in good agreement
with Aa 2.80, directly calculated from Eq. (2a). Addi-
tional computation shows that A„p is approximately pro-
portional to n, in agreement with the full integral and also
with the data, hH„~ n ', as in Fig. 7, for large enough n.

One can take the view that A„~ is an "effective loop
area" in the sense that the dip spacing hach(A„*p)
cL n ' is, for large n, determined by the larger areas A in
the distribution and for small n by the small areas. In
some sense Q„(P,A„p) is a "sensitivity" factor: out of the
wide distribution of areas, observation of the nth harmon-
ic selects out only areas near A„*~.

To examine the dependence of b,a on the ac field P, we
show in Fig. 9(c), (Q„(P,A)

~
vs A for n-5, P-10.0.

The dominant peak, A„*p 0.58, corresponds to dip spac-
ing ha 5.45, in good agreement with that computed
from Eq. (2a), d, a 5.39. Additional calculation shows
that approximately ha ce P, i.e., AHo ee H &, for large
enough values of H1. We show belo~ that this behavior is
observed experimentally.

To summarize, the unexpected observation of sharp, al-
most periodic dips in the nth harmonic power with dc field
for a distribution of loop areas A can be understood semi-
quantitatively as the consequence of the folding of a rap-
idly decreasing function F(A) and the rapidly increasing
part of the Bessel function J„(x).

Structure in the intermediate H1 region -Figure 10.
shows what happens to P(16f) vs Ho as the ac field is re-
duced from H1 23 to 2 Oe. The spacing WHO decreases,
initially linearly with H1, as expected from the argument
in the previous paragraph. Then structure develops,
which seems irregular, and depends on the sense of the Ho
scan, e.g., Figs. 10(c) and 10(e). However, if the leftward
trace is reversed, shown as the dotted line in Fig. 10(d), it
superposes exactly on the rightward trace. This is the
same property shown by the traces in Fig. 5 and is possi-
bly a consequence of fiuxon pinning and depinning, ' but
here the narrow spacing gives an enhanced effect. In Figs.
10(i) and 10(j) there are many resolved and reproducible
sharp dips not uniformly spaced but with average spacing
still roughly proportional to H1. This behavior in the
intermediate-81 region is similar to the Aux jumps ob-
served in nonresonant microwave absorption in low fields
[see Fig. 15(c)],but is not really understood yet.

A set of P(nf) vs Ho traces taken as in Fig. 10 but for
odd harmonics shows similar behavior for large H~, with
hH0 linearly proportional to H1, but with the dips de-
creasing in amplitude as H~ becomes small. The sharp
spikes in Figs. 10(i) and 10(j) are not observed for odd
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FIG. 16. (a) The inductive phase of the lock-in voltage at the
fundamental frequency (f 28 kHz), normalized by the ac field

H&, measured by the two-coil method for Y-Ba-Cu-0 powder
(sample C-15) at Hp~ 1 mOe, T 77 K. The vertical axis is

just proportional to ~4ttg'~. (b) Inductive phase of the funda-
mental lock-in voltage (f 28 kHz), normalized by the H&,
measured by the one-coil method for a Y-Ba-Cu-0 pellet (sam-
ple C-40) at T 77 K, Ho~ 1 mOe. The vertical axis is propor-
tional to

~
I+4ttg'~. (c) Same as (b), but resistive phase; verti-

cal axis proportional to ~4ttg" ~; the broken line marks the
zero-voltage level.
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FIG. 15. Nonresonant microwave absorption at f 9.6 GHz
for Y-Ba-Cu-0 pellet at T 14 K, using magnetic field modula-
tion H cos(2' t), and lock-in detection, with f 8.7 kHz.
(a) H 5.0 Oe, relative lock-in gain=1. 0; (b) H =0.5 Oe,
relative gain 5; (c) H 0.11 Oe, relative gain 50; (d)
H 0.03 Oe, relative gain 50. Each figure is a superposition
of five scans, revealing reproducible dips due to flux jumps.

largest (negative) value. Taking demagnetization eH'ects
into account, and finding the demagnetization factor D
to be 0.088 for the geometry of sample C-40, ' the
minimum and maximum values for ( 4trg'( are calculated
to be 0.21 ~0.03 and 0.85 ~0.13, respectively. The be-
havior in Fig. 16(b) is quite similar to that of Raboutou et
al. , for a Y-Ba-Cu-0 pellet at 77 K. Following their

ideas as well as those of Clem, we draw a simple pic-
ture of what is happening in the low-H

~ to high-H~ transi-
tion: At very low H~ the ac field creates few vortices; g' is
constant. At high H~, most vortices are freely swept in
and out of the sample with the ac field and g' is again con-
stant. At intermediate fields there is a nonlinear region in
which a significant portion of the vortices is being pinned
and unpinned by surface or volume pinning centers, giving
rise to hysteresis and ac losses. Other loss mechanisms are
also possible, e.g. , flux flow or "eddy current" losses,
which should be frequency dependent.

V. SUMMARY AND CONCLUSIONS

In Sec. III we reviewed several variations of a simple
model of granular superconductors that numerically pre-
dicts the electrodynamic behavior for bulk materials by
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suitably averaging over an area distribution F(A) of flux
quantized current loops containing weak links. We have
presented a number of experimental data on Y-Ba-Cu-0
powder and pellets at 77 K in parallel dc and ac fields,
H =Hp+H& sin(2nft), for Hp and H& each in the range 0
to 20 Oe, and f in the range 28 to 52 kHz. For a given Hp
the data are sensitive to the magnitude of Hi, and we
roughly distinguish these regions: "low-H i,

" where
presumably fluxons have not penetrated the intergranular
space; "intermediate-H|, " where fluxons are being pinned
and depinned, with hysteresis and ac loss; and "high-Hi, "
where most of the fluxons are freely swept in and out of
the intergranular space. The models in Sec. III are valid
for the high-Hi region, and do not take account of fluxon
motion or pinning. We have not investigated the even
higher field region where Hi & H, i for the grains them-
selves.

In the high-Hi region extensive harmonic generation is
experimentally observed for all harmonics up to at least
m =41. If HO=0 the even harmonic power shows a deep
(85 dB) and sharp dip, a consequence of the symmetry of
Eq. (2b). Remnant local fields from fluxon pinning, to-
gether with a tendency for self-symmetry-breaking
prevents the even harmonic power from actually dropping
below the spectrum analyzer sensitivity ( —125 dBm).
The odd harmonic power falls off slowly (—2
dB/harmonic) and is in fair agreement with the predic-
tions of Eq. (2a) and Eq. (5) for a monotonically decreas-
ing distribution function F(A). This same model also ex-
plains the shape of the lock-in signals, V(f) vs Hp and
V(2f) vs Hp in the high-H| region. Gaussian distribu-
tions and uniform distributions do not explain the data for
our samples for small n.

The temperature dependence of P(nf), n =2, 3,4, is
reasonably consistent with that expected for Josephson
junctions; however, the limited temperature range of the
data, 77 K & T & 95 K, does not preclude other types of
weak links.

All versions of the model predict the rather surprising
result that for large n the harmonic power should show
sharp dips (40 dB) essentially periodic in the dc field (cf.
Fig. 6), and this was experimentally verified (cf. Fig. 5)
for powder and pellets. This strong evidence of flux
quantization is the principal new result of this paper and
was observed in many samples of Y-Ba-Cu-O. We argue
above in Sec. IV that this structure is a consequence of the
product of the (decreasing) distribution function F(A)
and the Bessel functions J„(AP) in Eq. (2), and that large
areas contribute to high harmonic power generation and
vice versa. Except for the small hysteresis in Fig. 5 due to
fluxon pinning and depinning, the data of Figs. 1, 2, 4, 5,
and 7 can be reasonably understood by the models of Sec.
III in the high-H| region, perhaps best by Eq. (2) with the
distribution function F(A) given by Eq. (5), a monotoni-
cally decreasing function obtained empirically. However,
we do not claim to have shown that real samples will all be
well represented by this function; in fact, even for the
samples reported here, more work on refining F(A) will
be needed to fit the data more quantitatively.

As Hi is reduced new phenomena appear as in Fig. 12,

showing onset of additional fine structure in the dips for
n =2,4, . . . . This behavior is predicted by the loop model,
Eqs. (3) and (5), in Fig. 13, which could represent flux
quantized loops without weak links; this is experimentally
possible since details of the sample microstructure are not
known. However, other mechanisms cannot yet be ruled
out, e.g. , onset of a critical state. For example, under the
same conditions as Fig. 12, the lock-in detected second
harmonic signal at 56 kHz, Fig. 14, shows a transition to
the intermediate and low-Hi regions as Hi is further re-
duced. In fact, the behavior in Fig. 14 is remarkably simi-
lar to the lock-in signals from modulated microwave ab-
sorption, Fig. 15, showing transition to a critical state in
Fig. I5(d).

From the measurement of the complex ac susceptibility
g' and g", Fig. 16, one can see more directly the transi-
tions from high-Hi behavior (small shielding, small loss)
to the intermediate region (maximum ac hysteresis loss),
to the low-H 1 region (maximum shielding, low loss).

Clearly much remains to be done to understand the
complex and interesting problem of the electrodynamics
of granular superconductors. The microscopic models
presented here are sufhcient to explain much of our data
at large Hi, but we have yet to show that they are also
necessary; simple emperical or phenomenological models
may also suffice. Data over a wider range of temperature,
frequency, magnitude, and orientation of the ac and dc
fields will be essential, and are in progress. Although the
experimental phenomena we report here are believed to be
generic to Y-Ba-Cu-Q, and probably also to
Bi4Sr3Ca3Cu40, similar studies of other materials, in-
cluding films, single crystals, powders, and pellets with
different grain sizes and inethods of preparation, are also
essential and may reveal additional phenomena. The
theoretical models of Sec. III should be generalized to in-
clude the geometry of the sample, the critical state, and
fluxon pinning and motion. Finally, we note that some in-
teresting work on harmonic generation by Y-Ba-Cu-0 has
also been done by Shaulov and Dorman. However, they
were interested in the very small Hi regime, as first sug-
gested by Bean on conventional type-II superconductors, '

in contrast to what we have mainly reported in this paper.
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