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Weak localization of polaritons and the generation of phase-conjugated light waves
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The microscopic mechanism of generation of phase-conjugated light waves is presented in terms

of weak localization of polaritons. Phase-conjugated waves, which are the time-reversal propaga-

tion of probe light, are shown to be enhanced by constructive interference between elastic multiple

scattering of polaritons at impurities and time-reversed processes. This is characteristic of the

time-reversal invariance of the system. We list several characteristics of generation of phase-

conjugated waves due to the weak localization of polaritons. These observations will be applied to
check the present theory.

I. INTRODUCTION

The propagation of a wave in a dense distribution of
elastic scat terers shows many interesting phenomena.
For example, constructive interferences arise for the
backscattering in the direction opposite to the incident
one, and this explains the enhancement of the backscat-
tered intensity with respect to the classical prediction.
This phenomenon has been recognized almost indepen-
dently in two different fields. In condensed-matter phys-
ics, it is the basis of the weak-localization regime for elec-
trons in impure metals, which led to dimensional depen-
dence of Anderson localization. ' In optics, since the
pioneering work by de Wolf, the intensity of light
scattering from disordered media has been observed to
show a sharp peak centered at the backscattering direc-
tion as well as the polarization dependence of the scat-
tered light. Weak localization of phonons was also
discussed. '

The basis of the interference effect in multiple scatter-
ing is very general. Consider a sequence of n scattering
events characterized by the wave vectors k, k& kp, . . . ,

k„=k&, where k is the wave vector after the jth scatter-
ing event and k; and k& stand for the initial and final

wave vectors. In classical transport theory, all n-order
sequences are assumed to be uncorrelated as result of the
random nature of the distribution of scatterers. Howev-
er, any given sequence and its time reverse
k k ] k 2 . . . k

& ky where the light is scat-
tered by the same centers but in opposite order, can inter-
fere constructively for a special choice of kI relative to
k, ." This coherent superposition comes from the time
invariance of the present system.

On the other hand, phase conjunction is defined as the
process in which the phase of the output wave is a com-
plex conjugate to the phase of an input wave. If the
phase-conjugated output propagates in the backward
direction with respect to the corresponding input wave,
then it can be used to correct aberration due to the phase
distortion experienced by the input wave. ' This is also
one of the degenerate four-wave mixings and can be un-
derstood from the following physical picture. Under
three input waves with a common frequency coo, i.e., for-

ward (ko) and backward (
—ko) pump waves and probe

wave (k, ), the signal wave (k, ) is possible in three direc-
tions k, =k;+2ko and k, = —k;. However, as ~k, ~

is not,
in general, equal to coo(e„)' /e, the generation in the
directions k, +2ko may not be phase matched but that in

k, = —k, is always phase matched. Here e is an optical
dielectric constant. This is the phase-conjugated wave of
the probe wave k, .

Here arises a question to microscopic understanding of
generation of the phase-conjugated wave. We will point
out in this paper that the weak localization of excitons or
polaritons plays key roles in generation of the phase-
conjugated wave for the cases of using excitons or polari-
tons as the nonlinear optical medium. The phase-
conjugated wave is the time-reversal propagation of the
probe light. We will microscopically describe formation
of the population grating from one of the pump waves
and the probe wave and reAection of the other pump
wave by the grating in terms of multiple elastic scatter-
ings of polaritons at impurities. This will be shown to be
related with elementary excitations which are precursors
of the Anderson localization and are also characteristic
of the time-reversal invariance of the material system.
These elementary excitations in metals have been called
"cooperons" and "diffusions. "'

In Sec. II, we introduce a model of four-wave mixing
under nearly resonant pumping of excitons, and derive
the Hamiltonian of polaritons in the crystal with elastic
scatterers under external pump fields. In Sec. III, we for-
mulate the third-order optical processes in which a signal
polariton is produced in terms of Green's functions of po-
laritons. Then we will show in Sec. IV that the vertex
part describing coherent superposition of the forward-
and backward-propagating waves induced by multiple
elastic scatterings at impurities, plays the important roles
in formation of the population gratings and reAection of
the third wave by the grating. This vertex part has singu-
larities in the difference of two input frequencies and in
the sum or difference of two wave vectors of relevant po-
laritons. We will discuss in Sec. V the conventional case
in which multiple elastic scatterings do not play any
roles. The generation of the phase-conjugated wave is
quantitatively discussed referring to the case of exciton
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polaritons in CuC1 in Sec. VI and Sec. VII in terms of the
results in the preceding two sections. Section VII is de-
voted to discussion and conclusion. Particularly, several
characteristics of the phase-conjugated wave due to the
weak localization of exciton polaritons are demonstrated.
These observations will work as confirmation of the
present theory.

II. POLARITONS IN THE CRYSTAL
WITH IMPURITIES

l~k~(a k+a —k )b k (a —k+a k )b k) l

(1)

where c"=c/(e„)' is light velocity in the crystal and
E (k) is energy of an exciton in the quantum state (v, k).
A coupling constant A k of an exciton and a photon with
the same polarization as the exciton is written as follows:

1/2

E,(k)N (0)p„, (2)
Ac*k

Ak=

with 4l, (0)=(aralu') ' . Here, N (0) is a wave function
of the electron-hole relative motion at origin in the eigen-
state v, az an exciton Bohr radius in the lowest eigenstate
v= ls for the relative motion, and p„, the transition di-
pole moment between the relevant valence and conduc-
tion bands. The exciton-photon coupling constant Ak is
much larger than other interactions in many cases, to
which we will confine ourselves in the present paper.
Therefore, we diagonalize first the Hamiltonian (1) in
terms of the hybridized modes of polaritons under the
transformation'

(ckl ' k2 —kl c —k2 ) C( k k —k'b —k )

Then we have the polariton Hamiltonian

Ho=+ A'al (k)c„ck
ka

(4)

where ck and ck are annihilation and creation operators
of polaritons with the wave-number vector k and a
denotes both the branch (upper or lower) and the polar-
ization direction. The eigenfrequencies co (k) of polari-
tons are obtained as solutions of the following dispersion
relation

2c*k 4irp
1 —[lri~/Eo(k) )

We consider a crystal much larger than a relevant opti-
cal wavelength A, =2irc /(e )' coo in the medium. Here c
is a light velocity in vacuum, e is an optical dielectric
constant, and coo is an angular frequency of an exciton.
An exciton (b„k,b„k) in a quantum state v for the
electron-hole relative motion and a wave-number vector
k for the center-of-mass motion, interacts with a radia-
tion field (a k, a k) with a polarization a and the same
wave-number vector k as the exciton inside the crystal.
The Hamiltonian of this system is written in the follow-
ing form:

Ho=+ Itic'ka "ka „+E (k)b „b„„

V= J dr/, „,(r) g V(r —r, )P,„,(r)

= & V„.(q)exp( q. r;)b', k+qbp. k .
i pvkq

(5)

This scattering Hamiltonian is rewritten in terms of the
polariton operators (ck, ck ) using Eq. (3) and we keep
only the elastic scattering on the polariton dispersion in
the lower branch. Then V of Eq. (5) is simplified into the
following form:

V=+ V(q)ck+ ck
k, q

where V(q) =g, Vo(q) e px(iq r; ) and is described by
V„,(q) in Eq. (5) and transformation matrix elements C
in Eq. (3). As a result, the material system is described by
the Hamiltonian

H=H0+ V

X ~( ) k k+ X VO(q) p( q'; )ck+q
k kq, i

Next we have to consider the eAect of external radia-
tion fields on the material system. The ground state of a
material system l0) is a vacuum of any kind of polari-
tons. The radiation field was considered to be divided
into those in two spaces inside and outside the crystal.
The former was taken into account already in forming
the polaritons. The external radiation fields E,„, excite
the polaritons at the crystal surface. This process is de-
scribed by the interaction Hamiltonian H'':

H'= g (Ck~+Ct )P .E, ,
a, j,k

where p is the polarization vector of the polariton (a)
and is evaluated in terms of the exciton dipole moment
and the transformation matrix elements C. External field
E- with an angular frequency cu can excite the polariton
with the same frequency co(k) =co with the wave-number
vector k which is determined by the incident angle and
the polariton dispersion. The wave-number vector k and
p can also be determined classically in terms of the
refiection constant (or refractive index) and the incident
frequency. The signal polaritons are produced through
nonlinear processes which will be discussed in the follow-
ing sections. These polaritons can be taken out to outside
the crystal as signal lights. This process is described also

with

P:—2E0(k)
lp„ l'

~A a~

Here Eo(k) denotes an exciton dispersion in the lowest
state v= ls, and fl, is an oscillator strength for the state
v= ls. We are interested in excitation around the lowest
exciton state with the largest oscillator strength, especial-
ly in its lower branch of polaritons. Therefore, we will
skip the suffix a specifying the branch and the polariza-
tion of polaritons and we will use a unit A= 1 hereafter.

The exciton is scattered elastically by the impurity po-
tential g; V(r —r, ):
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by Eq. (7) and can also be classically determined in terms
of the refractive index and the angle hitting the surface
from inside the crystal. Therefore, we will pursue the
generation of phase-conjugated polariton waves through
the excitations of the time-invariant collective modes in
impure crystals in the following sections.

gratings. In this section, we will specify the expression
for the amplitude of the phase-conjugated wave among
processes of the general four-wave mixings.

The amplitude of signal polariton is expressed as' ''

III. THIRD-ORDER NONLINEAR
OPTICAL PROCESSES

The amplitude of the phase-conjugated wave is derived
by two steps. First, we derive third-order perturbations
of the density matrix in the polariton-external field in-
teraction H' and obtain the expression for an amplitude
of signal polariton through four-wave mixing. Second, in
terms of this expression, we take into account effects of
elastic multiple scatterings of polaritons at impurities.
Then we will be able to give microscopic expressions for
formation of population gratings due to two input polari-
tons and reflection of the third input polariton by the

I

where p(t) is a density matrix of the total system
HT=H+H', and the double angular brackets mean tak-
ing the ensemble average over the impurity distribu-
tion as well as the quantum-mechanical average.
A state &ctc ~

is a Hermitian conjugate of a single-Po-
S

lariton state cK ~0). The density matrix p(t)
S

=exp( —iHTt)poexp(iHTt) is expanded to the third or-
der. of H', where po denotes the crystal ground state
~0) &0~. Then we have a familiar expression'

& cz (co, ) & =( —i ) f dt e'"''f
dt's f dt2 f dt, « cz [H'(ti), [H'(tz), [H'(t, )po]]])) . (8)

The result is independent of the value of the lower
bounds in the three integrals, as will be shown later.
Here we take —~ as in Refs. 17 and 18. Here we apply
three input optical fields as external field E,„,: (1) forward
pump field (coo, Ko), (2) backward pump field (coo, —Ko),
and (3) probe field (co, , K;). Here, and hereafter, we con-
sider a case under nearly resonant pumping of the lowest
exciton so that a rotating-wave approximation is well
justified. Three commutators in Eq. (8) bring about eight
terms, but only four kinds of diagrams drawn in Fig. 1

contribute to the four-wave mixing under a rotating-wave

I

approximation. In the diagrams in Fig. 1, we have denot-
ed (co, , K, ), (co&, K2), and (co3, K3) as polaritons generated
by input fields at times t& (or t2), t2 (or t, ), and t3, re-
spectively. There are six combinations of these three in-
put fields for each diagram in Fig. 1 so that we have a to-
tal of 24 contributions, as shown in Table I. Then we get
three kinds of signal polaritons (co,. =co, , K, =K, +2K„)
and (co, =2~o —co, , K, = —K, ). The last wave corre-
sponds to generation of a polariton wave phase conjugat-
ed to the probe field (co, , K;) for the degenerate case
cop 63 co . As shown in Table I, the phase-conj ugated

f M3

t t

/CAN p

FIG. 1. Feynman diagrams describing four kinds of contributions to four-wave mixing under the rotating-wave approximation.
The leftward and rightward arrows denote the corresponding propagations of states in the density matrix. Time development in the
diagram is leftward. ul, coz, and ~3 represent three input fields and co, represents the signal at time t.
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TABLE I. Twenty-four cases contributing to four-wave mixing of coi, co2, and co, input waves. The
cases a, b, c, and d correspond, respectively, to the processes of the Feynman diagrams in Figs. 1(a),
1(b), 1(c), and 1(d), with the described combinations of forward- and backward-pump waves and probe
waves. co, and K, denote, respectively, the signal angular frequency and signal wave-number vector.
E, describes the polarization dependence of the signal wave on the polarizations of three input waves.

Case E,

Np+ Kp co;K; cop+ Kp

CO —
CO;

K, =K;+2Kp
~s 2MO ~1
K, = —K;.

(E E+ )E+

a
b

co;K; cc)p+ Kp

cop+ Kp

ct)p+ Kp

co;K;

CO —QP;

K, =K;+2Kp
, —CO;

K, =K;+2Kp

CO —2670

K, = —K;
M, —CO;

K, =K;+-2Kp

(E;-E+ )E+

(E+ E+ )Et

wave is generated in cases Ic and Id, i.e., diagrams (c) and
(d) of Fig. 1 with col =(coo, + Ko), coz=(m;, K&), and
co3=(coo, +Ko), and in cases IIIa and IIIb, i.e., diagrams
(a) and (b) of Fig. 1 with co, =(coo, +Ko), coz=(coo, +Ko),
and co3=(co, , K;). We will show evaluation of &cz (co, ) &

S

for case Ic as an example:

and

G(t, t, , t„t, )

=( —i)'& co, K, le
' I~,K, &e

«etc (t)H'(Ko, t3)poH'(K;, tz)H'( —Ko, t, ) » xe'"'"&co,K, le' " "
l~o —Ko&e (9b)

=A&G(t, t„t„t,)&,
where

A = &olcK lm, K, &&moKolc~ )M E(KD)lo&

x &Olctc )M E(K;)*Ice;K, &

x&~,—K,le'„p E( —K, )lo&,

(9)

(9a)

Here the time interval (t, ti ) is divided into three parts
(t, t3), (t3, tz), and (tz, t& ) as shown in Fig. 1. Then an
ensemble average of G over the impurity distribution for
the time interval (t, t, ) is approximated by a product of
three ensemble averages for (t, t3), (t3, tz), and (tz, t, ) as
follows:

&G(t t3 tz ti) &=( —i) e
' " '"e' ' ' "'« ~, K le

' " l~'K' &+ &

Then a contribution of case Ic in Table I to & cK (co, ) & is expressed in terms of three propagators as follows:
S

E2

&,„(~ )& =g f dte' '"'+ ' 'f' dt3 f dtz f dt, G (t —t3):"(t3 tz)Gf(tz tl)

dte ' ' ' G, &3dw3 = w&dr2 Gf w& dTi (10)

Here Gf(r, )= —ie ' '« cooKole 'luoKo&+ & . (1 lc)

G, (r, )= —ie ' '« co, K, le 'l~,'K,' &

:-(rz)= ie' ' '"' "«co—,'K,'le '
"leo,K, &+

x &co, K,. le' "Ice,—K, &

(1 la)

(1 lb)

Here we used abbreviation Ice,'K,' & & co,'K,'
I=g, z, lco,'K,'&&co,'K,'I, which is equal to 1. Propaga-

S S

tors G (t) describe propagation of polaritons (ceo, Ko) and
(co„K, ) in a crystal with elastic scatterers. It is the ver-
tex part = that represents formation of population grat-
ings of polaritons as well as generation of the conjugated
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wave (co„K,) due to refiection of one of the pump fields

by the population grating. Suffixes + and —of the inner
brackets in Eq. (11) mean the leftward and rightward
propagations of the states in the density matrix as also
realized in Fig. 1(c).

Contribution of the diagram of Fig. 1(d) is obtained by
replacing the last propagator Gf(r, ) in Eq. (10) by

Gz(r)= —ie
"

( (cop Kp~e ' '~ct)p Kp) )

Contributions to ((cK (rp, ))) from cases Ic and Id in
S

Table I with K0 and —K0 exchanged are obtained from
the above results by exchanging K0 and —K0. These
give the same results besides the factor A given by Eq.
(9a) as long as co( —Kp) =co(Kp).

IV. MICROSCOPIC DESCRIPTION
OF GRATING FORMATION

Effects of elastic scatterings of polaritons by impurity
centers are evaluated in this section. Only a single polari-

ton propagates for time intervals (t2, t, ) and (t, t3) in all
diagrams in Fig. 1. For the diagram of Fig. 1(c) with a
combination case Ic in Table I, which we discussed in
Sec. III, the forward pump polariton (cop, Kp) propagates
for the initial interval (tz, t& ) while the signal polariton
does so in the last interval (t, t3). For the intermediate
interval (t3, tz ), polaritons (cop, Kp), and (~, , K, ) propaga-
ting, respectively, in the leftward and rightward direc-
tions in the density matrix form the population grating
with the difference wave-number vector K0 —K, and os-
cillating in time with the difference frequency co0 —co, .
Then the third polariton (cop, —Kp) is refiected by this
grating and the phase-conjugated wave
(cp, = 2cop —cp;, K, = —K, ) is generated as a signal polari-
ton. Therefore the vertex part plays the key role in gen-
eration of the phase-conjugated wave.

Integrals in time in Eq. (10) are performed using per-
turbational expansions of the propagators in the
polariton-scatterers interaction V of Eq. (6)

—iH(t —t )
—iH(t —r )

—iH t0 1 y 0 1 2 y 0 2—iHt
tl' —if dt e " ' Ve "'+(—i) f dt f dt2e

0 0 0

O(
—1) tHOt1 2 t 1 tHot2 ]HO(t1 t2 IHO(t —t1)e' =e +i dt e Ve +i dt dt e Ve Ve

1
0

1
0

2

(12a)

(12b)

Equations (1 la) and (1 lc) represent a single polariton
propagation which is described by a retarded Green's
function

G "(co„K,. )

= —i f dre ' ((co,K, e ' '~cp,'K', )+)
0

G "(cop, Kp)

i f dr e—'
& (copKp~e

' '~copKp) ~ &

1 6,6
cop

—co(Kp) —X(Kp, cop) "o~o ~o~o (13a)

1 6,6
co, —rp ( K, )

—X(K„rp, )
(13b)

where the self-energy X(K,co) is evaluated to the lowest
order in the concentration n, of the elastic scattering
centers as shown by the diagram of Fig. 2(a). A Fourier

(a)

—k, '
l

/
/

h

Ks K) Ks

K3

V
I

X
I

A

Kp K3

Y
I

XI

I

A

K2

Y
I

X
I

A

—K)+k K2

+ 0 ~ ~

(C) I c

K, k K& Ks
T-X- X -X- + 0 ~ ~

K3 K)+K3—k K2 K)+K3—k Kp

FIG. 2. (a) Diagram describing the lowest-order contribution to the self-energy of polariton K. The cross and dotted lines mean a
scattering center and elastic scatterings of polariton. (b) Ladderlike scatterings of the leftward and rightward polaritons. (c) The
maximally crossed scattering mechanism of polaritons at impurity centers.
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transform of a scattering potential at a single site R; is

expressed as

V(r —R )e' "dr= V (K—K')e

(14)

where 0 is a volume of the crystal. The second-order
scattering shown in Fig. 2(a) gives the lowest-order con-
tribution as realized by taking the ensemble average of
products of impurity scattering potentials Eq. (14) over
uniform distribution of scatterers. Then the result is

X(K,co)= —iqrN(03)n, f I Vo(K —K')I
4m

i AN (0—3)n, I
V(0)

I

2

Here N(cu) is the state density of the polariton and the
integral means an angle average over a sphere. The po-
lariton is electrically neutral and has long wavelength so
that impurity potential V(r —R; ) is considered to be of a
short-range and wave-vector dependence of V(3(K —K')
which was neglected in Eq. (15). This constant is abbrevi-
ated as V(0) here and hereafter.

A vertex part = of Eq. (11b) describes formation of
population grating of polaritons and generation of
phase-conjugated wave for the time interval (tz, t3).
Coherent effects in the elastic multiple scatterings of po-
laritons are taken into account. It is shown that con-
structive interference between time-reversed paths of the
polariton results in enhanced generation of the phase-
conjugated wave. The vertex part is calculated in two
steps in the following. First, perturbation expansions of
Eqs. (12a) and (12b) are inserted in the expression of:- in

Eq. (11b):

:-(~&—co; )

"(r2)dr2

dte'"0 "' K e-'"'&0K. + K e'"' 0-Ko—
0

i[duo cu,
—cu—(K0. )+co(K,. )]i

l

n=O m=0
I

x f 'dr( f 'dr, f "
'dr„ f 'drI f 'dt,' . f 'dt' g

qn —l ql qm —l

(16a)

i[M(K ) M(Kp)](1 1 ) i[CO(ql ) rd(Kp)](1 12 ) i[M(q l
) rd(KO)](1 l

1 )

K,.q l qn lKp K q

m —
1 i m —

1 m V . . . V e 0 i 1 )
i [cu(q )

—~(K. )](t —t ) i[co( —K )
—co(K,- )](t —t )

qm —lqm --2 ql
—Kp

f d
'[ o; o)+ (K )+ 'yo]'y

n=O m=O 0
qn —l q

x( i)"i-f—"dr) f "dr, f "dr„f "drI f "dr', f "dr'

x( s 0 0 )V 1 0 0 2V 2 0 0 3
—i[co(K )

—co(K )
—iy ]~ i[~(q ) ~(K ) iy ]7. i[~(q ) ~(K ) iy ]&

K,q,
e

qlq2

—i[au qn —l
cu( 0

—i yp]~n

qm —l

t [co(q l ) —m(K, )+&$0]rm & [ru(q ) —co(K )+&QO]~m —l

qm —lqm —2

i [cu(qt )
—cu(K,. )+iyo]rI i[au( —K())—m(K, . )+iyo]7(

)
ql

—Kp

(16b)

(16c)

X X X
n Om 0 ql

Ko —K, , K0+K,
qn —l q, q

X(1 1
V

(K())—03(K, )+iyo ' ' co(K ) — (q, )+iy

X 1
V K V

1

2)( Kp() Cc)(q„( ) +i yo qu —
1 o Ki qm —

1 02( K. )
—02( q ( )

—( yo

XV
qm —lqm —2

1 1

02(K, )
—co(qI) iyo q( ()2(—K; )

—co( —KI))—iyo
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Here two points are discussed. First the polariton amplitude decays with a decay rate yo through surface transmission
and/or inelastic scatterings, e.g. , by phonons. This effect is taken into account by replacing e ' ' and e' ' in Eq. (16a)—i (H —iy0)t i (H Wi y0jt
by e ' and e, respectively, and cv(Ko) and cv(K, ) by to(Ko)+iyo and cv(K, )

—iyo, respectively. In-
tegration in t in Eq. (16c) gives a factor (2yo) in Eq. (16d) taking into account the fact that coo=tv(Ko) and
cv; =co(K, ). This comes from the fact that our system of polaritons is a quasistationary state far from the thermal equi-
librium and that a polariton once scattered inelastically cannot contribute again to generation of phase-conjugated
wave. This is in contrast to the Anderson localization in metals in thermal equilibrium. Second, we take an ensemble
average over a uniform spatial distribution of scattering centers, so that an ensemble average of products of V matrix
elements is divided into products of the ensemble average of a pair of Vs. Here note that

I I

( Vee, V„„.) = (g e ' V(q —q') g e ' V(k —k'))
I J

=n,
l V(q —q')l'5 (17)

It is also easily understood from these facts that an en-
semble average of odd-number products of Vs vanishes.
First the ensemble averages of scatterings within the left-
ward propagation of a polariton (on the upper lines in all
the diagrams of Fig. 1) and within the rightward one [on
the lower lines of the diagrams of Figs. 1(c) and 1(d)] in
the density matrix are described, respectively, by the re-
tarded and advanced Green's functions:

described by Fig. 2(a) is taken into account in each propa-
gator in the diagrams of Figs. 2(b) and 2(c). Then the ver-
tex part =(coo —cv;) is written in terms of contributions
from the ladder diagram I I [Fig. 2(b)] and the maximally
crossed diagram I, [Fig. 2(c)] as

:-(too —
~v, ) = 1 (I,+I, )

2yo cv(Ko) —cv(K, )+ i(yo+ y)

G (~vo, q)= 1

rv(Ko) —tv(q)+ i(yo+ y ) tv(K, )
—Iv( —Ko) —i(y()+ y )

(18)

1
G "(cv, , q') =

cv(K, )
—cv(q') —i (y +oy )

Diagrams of Figs. 2(b) and 2(c) are shown to have singu-
larly dominating contributions to the vertex part =. Only
the terms with n = m in Eq. (16d) remain finite for the di-
agrams of Figs. 2(b) and 2(c) after the ensemble average
with respects to impurity sites. Note that the self-energy

I

&0r, =
1 —UOX

where Uo = n, l
V(0)

l
and

(19)

The ladderlike contribution of Fig. 2(b), which is charac-
teristic of a diA'usive motion of polariton, is summed up
as

X=+ G (too, q)G "(cv;,K; —K()+q)
q

ede 1

o 2 co(Ko) —cv(q)+i(yo+y) cv(K;) —tv(q+K; —K„)—i(yo+y)
sinO 1= 2~iN(too)

~

~

dO
2 too —(v, —(K, —K ). og+v2i(y +yo)

(20)

Here summation over q was replaced by an integral in en-
ergy with a state density N(too). We introduced the
group velocity of the polariton at the energy coq = coo as

vg Vq&q
0

~N(too) ( dz too to IK Kol vizL= 1 — +
yo+ y —) 2 2i (yo+ y ) 2i(yo+ y )

lK —K l'v'z'
i 0 g

8(yo+y)
and 0 is an angle between a group velocity v and
K; —Ko. We are interested in the degenerate or nearly
degenerate cases so that

~N(too) i (too —cv; )1+
yo+y 2(yo+y)

lK, —K, l'v,' t

12(yo+ y )'

2(y, +y)» ltvo
—

~v; l

Therefore, the energy denominator in Eq. (20) is expand-
ed as follows:

Inserting this result into Eq. (19),

2(yo+y)Uo
I I(K; —Ko) =:

2yo —i(too tv, )+D lK, —K—
()
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Here we used the fact y &&yG and a dift'usion constant

2
Vg

6(yp+y )

Next we evaluate a contribution I", from the series of
maximally crossed diagrams of Fig. 2(c). This is done
very similarly to the case of I

&
and is expressed as

UGYI,=
1 —

UG Y

where Y=g G (cop, q)G "(cop, Kp —Kp —q). Then we
have

2(yp+y»p1,(Kp —Kp) =:

2yp —i (cop —cop)+D
I Kp —Kp I'

Here we used the fact Up Y=:1 as 2(yp+y))) lcop copl

and DlKp Kpl an—d denoted the backward pump polari-
ton as (cop, —Kp). As a result we can conclude that the
strongest singularity comes from the maximally crossed
diagram for small 2yG under the usual case
(cop=cop, Kp=Kp) while the ladder contribution is finite

as Kp&K, for the generation of the phase-conjugated
wave. However, this can also contribute singularly to the
backscattering of polariton for a case such as the forward
and probe fields being coincident with each other, i.e.,
KG=K, and coG=co, , and a signal polariton propagates in

the direction K, = —K, .

V. GRATING FORMATION
WITHOUT SINGULARITIES

In this section, we will discuss the formation of the
population grating and generation of a phase-conjugated
wave due to the processes described by the diagrams of
Figs. 1(a) and 1(b). Then it will be shown that those pro-
cesses have no singularities obtained in Sec. IV for the
processes of Figs. 1(c) and 1(d), but that these bring about
a conventional phase-conjugation amplitude without any
of the singular enhancements discussed in the last sec-
tion.

We evaluate first the signal amplitude (cK (co, )) for
5

the diagrams of Fig. 1(a) with a combination of input
lights given by case IIIa of Table I, i.e. , coi =(cop Kp),
co2=(cop, —Kp), and co3=(co;,K;). It is obtained by pro-
cedures similar to those in Sec. III as

(cK (co, )), =( i ) f —dt e ' f dt3 f dt2 f dti((cK H'(K;, t3)H'( Kp, t2)H'—(Kp, ti)pp))

dte ' ' G, v)d&3 =' w2dw2 Gf &] dw) . (22)

Here 3 is the same as Eq. (9a), G, (r3) and Gf(r, ) are given by Eqs. (1 la) and (1lc), respectively, but

:-'(r)= —ie ' ((co,K, le
' 'lcopKp)+(co;K;le ' 'lcop —Kp)+ ) . (23a)

This vertex part describes formation of the population grating and generation of phase-conjugated polariton due to the
processes of Figs. 1(a) and 1(b). This is also expanded in the interaction V between polariton and scatterers using Eq.
(12a). Here also H is replaced by H i to —take account of the eff'ect from inelastic scatterings and leakage of the po-

Xp

lariton to outside the crystal. A product of the first-order expansions in the two propagators in Eq. (23a) shown by the
diagram of Fig. 3(a) gives the following result:

1 1

p 2yp co(Kp) —co(K, )+i (yp+y ) co( —Kp) —co(K; )+i(yp+y )
:-'(r2)diaz = (23b)

Here the higher-order scatterings within each propagator were taken into account according to the diagram of Fig. 2(a)
as already introduced in Sec. III. Next we will show that the higher-order ladder [Fig. 3(b)] and mostly crossed dia-
grams [Fig. 3(c)] give negligible contribution to the generation of the phase-conjugated wave. The second-order and
higher-order ladder and maximally crossed diagrams contain the following integrals:

1 1

co(Kp) co(k)+i(y—p+y ) co( —Kp) —co( —k)+i(yp+y)

=:N(cop) dco
1 1

co( Kp) —co+ i ( y, +y ) co( —Kp )
—co+ i ( y, +y )

and

Y'= 1 1

co(Kp) —co(k)+i(yp+y ) co( —Kp) —co(k+K; Kp)+i(yp+y —
)

=:N(cop) dco
1 1

co(Kp) co+i(yp+y —
) co( —Kp) —co —(K, —Kp).v +i(y p+y )
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Ks

K3

I

I

A

K) Ks

K3

Y

X
I

I

K2+Kt —k K2

Ks

(c) X. ..X
K3 K,—K, +k K2

FIG. 3. (a) The lowest-order scattering mechanism of two polaritons which are leftward propagating in the density matrix. (b)
Ladderlike scatterings of these two polaritons. (c) Maximally crossed scatterings of these two polaritons by impurities.

These integrals vanish as long as the state density of po-
lariton is approximated as a constant N(coo). This will be
justified if ~p is far from the polariton bottleneck, and
will be discussed in Sec. VII. The polaritons obey Bose
statistics so that the Green's function is

D(co, K) = 1

CO 60K+16

3(b) and 3(c) are negligible. The contribution of Fig. 1(b)
is obtained by replacing Gf(ri) in Eq. (22) with G ( br).
Contributions from the cases of IIIa and IIIb in Table I
with Kp and —Kp exchanged are also obtained by ex-
changing Kp and —Kp in the above results. This gives
the same value beside the factor A of Eq. (19) as long as
ro( —Ko) = co( Ko).

However, it was simplified into the form of Eqs. (13a) and
(13b) under the rotating-wave approximation, neglecting
a contribution from —1/(co+roK+i5). Taking off this
approximation, we have a small contribution of the order
of (y/o~o) from Figs. 3(b) and 3(c) to the vertex part.
However, we may neglect these contributions safely in
comparison to those discussed in Secs. III and IV. There-
fore, contributions from higher-order scatterings of Figs.

I

VI. GENERATION OF A PHASE-CONJUGATED
WAVE

The amplitude of the signal wave (oi„K, ) through the
phase-conjugation process is obtained by summing up all
contributions of Fig. 1, which were derived in the preced-
ing two sections. The sum of contributions from cases Ic
and Id in Table I are also shown as follows:

1
( c~ (co, ) ),+ d

=2~ A 6(co, —2coo+ co, )6

1

coo —r(oKo) +i(yo+y)
1

coo —co( —Ko) i (yo+ y)—
X

2j Q

(r, +r, )
co(K )

—ro(K, )+i(yo+y) co(K ) —co( —K') —i(y +y)
(24)

where

2(yo+y»o
I (=

2yo i (coo oi, )+D—(K, ——Ko)'
(24a)

combined with (2yo) ' and some factors of A and I
&

and
I „describe the formation of the population grating due
to K; and —Kp polaritons as

(p.EK )(p E ~, )

2(yo+y ) Uor, =
2yo —i (ohio

—coo)+D(Ko —Ko)
(24b)

Taking account of Dirac's and Kronecker's delta func-
tions describing conservation laws of energy and wave-
number vectors, the last two propagators in Eq. (24),

N =
2/p

2(yo+y)
[co(K, ) —oi( —Kt)] +(yo+y)

On the other hand, the remaining factors of I"I and I „
s.e.,
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and

Uo

2yp i—(pip —co; )+D(K; —Kp)

represents a coherent superposition of forward- and
backward-propagating polaritons, reflecting a time-
reversal invariance of the system.

VII. DISCUSSION AND CONCLUSION
Uo

2yp —i(rpp r—pp)+D(Kp —Kp)

Uo

2yp i(—2 rpup~;——p~, )+D(K, +K;)

describe the reflection of polaritons Ko into the direction
K, due to the population grating. The factor 2&o in the
denominators in Eqs. (24a) and (24b) means a cutoff fre-
quency within which the reflection works effectively. The
other contribution to the generation of the phase-
conjugated wave comes from Figs. 1(a) and 1(b) with
combinations of input waves IIIa and IIIb in Table I.
These are summed up into the same form as Eq. (24) but
a sum of I

&
and I, is replaced by Uo. Therefore, these

give the conventional expression for generation of a
phase-conjugated wave. This contribution is smaller by a
factor of (yp+ y )/yp than those of Ic and Id in Table I.

We will discuss the relative importance among these
contributions to the phase conjugation of the polariton.
For usual experimental conditions, the diagram of Figs.
1(c) and 1(d) with a combination of input polaritons Ic
and Id in Table I has the dominating contribution to the
generation of the phase-conjugated wave. Usually a
phase-conjugated wave is induced by the degenerate
four-wave mixing of (pip, Kp), (cop, —Kp), and ( pi;
= cop, K, ). Therefore, the energy denominator of Eq.
(24b) becomes 2yp for the mostly crossed diagram of
Figs. 1(c) and 1(d). Contribution from the ladderlike dia-
gram for the process of Figs. 1(c) and 1(d) has a finite
denominator as K, &Kp for observation of the phase-
conjugated wave as shown by Eq. (24a). A value of
D(K, —Kp) is usually much larger than 2yp, e.g. , for ex-
citon polaritons in CuCl. The vertex part of Figs. 1(a)
and 1(b) has Up instead of I i and I, . Therefore, these
contributions to (c& (cop)) are smaller by a factor of

S

yp/(yp+y) «1 than those of Figs. 1(c) and 1(d), as al-
ready mentioned. Therefore, we may conclude that the
diagrams of Figs. 1(c) and 1(d) with the combinations of
input polariton Ic and Id in Table I have the dominant
contribution to generation of the phase-conjugated wave.
The expression of Eq. (24) is simplified by taking account
of the fact that cop=co(Kp)=co( —Kp), ~p, =co(K, ), and
pi, =~; =pip or

l pip ~, I l~p pi
I &&2y,

=:2'A6(co, —2cop+cp; )

1 2Uo
X

3 a 2yp(yp+ y ) 2yp —i (cop pp)iD+(K pKp)

This comes from the maximally crossed diagrams given
by Fig. 2(c) through the four-wave mixing shown in Figs.
1(c) and 1(d). Note that the maximally crossed diagram

Effects of the weak localization were clearly demon-
strated in the dc resistance of thin disordered metallic
films and metal-oxide-semiconductor (MOS) inversion
layers as a function of temperature. ' ' These linear
responses could pick up the singularity at co=0 and q=0
of the time-reversal collective modes ("cooperons"). '

The linear optical response, however, is insensitive to
these collective modes even though the exciton polaritons
suffer from weak localization. On the other hand, the
weak localization of polaritons has been shown in this pa-
per to play a key role in nonlinear optical responses, espe-
cially in generation of the phase-conjugated wave. This is
because we can control the difference of the two input
frequencies, coo —co, , and a combination of the two wave
vectors near the singular point of the collective excita-
tions, i.e., coo —co, =0 and q=Ko —Ko=0 as shown in
Sec. III. Cogeneration of the phase-conjugated wave,
which is time-reversal propagation of the probe light, has
been shown to actually originate from the singularity due
to coherent superposition of the forward- and backward-
propagating waves of polaritons under elastic multiple
scatterings at impurities, reflecting the time-reversal sym-
metry of the system.

We will list some characteristics of the phase-
conjugated wave generated by the present mechanism.
Observation of these characteristics will also serve to
check the present theory. The phase-conjugated wave is
generated dominantly by the maximally crossed diagram
of Fig. 1(c). Here the vertex part I, in Eq. (24b) de-
scribes the microscopic process of phase conjugation.
Therefore, let us study first the characteristics of I, . The
phase conjugation was observed already near the
exciton-frequency region of CuC1 (Ref. 22 ) and the polar-
itons of this material have been studied very well, so we
will especially study the case of CuC1. The group veloci-
ty v of the polariton ranges from AK/M-1. 2X10
cm/sec to c/(e„)' =1.3X10'" cm/sec. As far as the
incident frequency is limited below the upper polariton
and above the polariton bottleneck, the group velocity
changes from 0.2X10 to 3.0X 10 cm/sec. The value
of iri(yp+y) dePends also on the incident frequency as
well as the samples, e.g. , the concentration of impurities.
This is observed as the spectrum half-width at half max-
imum of the intensity of the hyper-Raman scattering
leaving the polariton in the final state. It ranges from
iri(yp+y) =0.05 to 2.0 meV. The inelastic scattering rate
yo was observed as a function of temperature and yo may
almost be determined by the polariton transmission
through surfaces and nonradiative decay below 40 K.
The lifetime rp=(2yp) is tentatively set to be of the or-
der of a nanosecond, i.e., Ayo-0. 03 meV. Therefore,
D —= u /6( yp+ y ) is estimated to be of the order of 1

cm'/sec so that D(Kp —Kp) is much larger than 2yp as
long as the deviation of the angle between Ko and —Ko
from ~ is larger than 2.2X 10 rad.
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(1) The first characteristic of the present theory is the
singular dependence of (c& (co, ) ) through I, on coo —coo

S

and Ko —Ko. For the degenerate four-wave mixing
coo=co; =co„ the intensity l(cK (co, )) l

of the phase-

conjugated wave is very sensitive to an angle (sr —8) be-
tween the two pump fields Ko and —Ko. As far as
8)2.2X10 rad, the signal intensity is proportional to
(1—cos8) =:40

(2) On the other hand, when we use nongenerate four-
wave mixing, we will be able to determine the dispersion
of the collective mode from the dependence

l ~c& (co, ) ~ l'~ I(coo —coo)'+[2yo+D(Ko —Ko)']'I

(26)

(3) The diffusion constant D —= v l6( yo+ y ) can be
varied by changing the input frequency coo over several
orders of magnitude as the group velocity U depends sen-
sitively on the input frequency over the polariton disper-
sion. This brings about the incident frequency depen-
dence of the phase-conjugated wave intensity even for the
degenerate case with the fixed 0.

(4) The cutoff' frequency 2yo in Eq. (26) is sensitive to
the lattice temperature T )40 K.

(5) The signal depends also on the polarizations of
three input fields as shown in Table I. This comes from
the expression A in Eq. (9a). These dependences were al-
ready observed by Mizutani and Nagasawa.

As to the characteristics (3), the approximation of a
constant density of states will become poor around the
bottleneck on the polariton dispersion. Elaborate calcu-
lation is also being done taking into account the change
of the density of states to clarify the mobility edge as a
function of impurity concentration. Phase conjugation
associated with two-photon excitation of an excitonic
molecule has already been observed. The signal ampli-
tude due to this process is calculated by the diagrams of
Figs. 1(a) and 1(b) taking account of the exciton-exciton
attractive interaction. This is skipped here as it is not
directly related to the Anderson localization of polari-

tons. As the vertex part I, shows, the formation of po-
lariton gratings and reflection of one pump wave into the
conjugated wave are enhanced in proportion to the
square of impurity concentration n, through 2(yo+y) Uo.
However, the intensity of the phase-conjugated wave de-
pends reversely on the impurity concentration n, for the
case of y ))yo as follows:

(cK (co, )) —n, for D(Ko —Ko) «2yo

—n;
' for D(Ko —Ko) ))2yo .

(27a)

(27b)
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This is because the propagation of the input as well as the
signal polaritons is incoherently scattered by impurities,
although the grating formation as well as the reflection
due to the grating are enhanced by the impurity scatter-
ings through I, . Note that we cannot extrapolate the re-
sults of Eq. (27) to the limit n, ~0 as these are restricted
to the case y—:srN(coo)n, l

V(0)
l
))yo. Of course,

(ez (co, ) ) vanishes in the limit of n, l
V(0)l —= UO~O, as

Eq. (25) shows.
The present theory has clarified microscopic mecha-

nisms of the phase-conjugation processes, in which the
weak localization of polaritons plays important roles. It
is also capable of clarifying the problem of polariton dy-
namics as observed by Kuwata and Nagasawa. They
observed the generation of backward-propagating polari-
tons under pumping by the forward wave, and the strong
coupling among the forward and backward polaritons.
This can also be understood by the weak localization of
polaritons presented in this paper.
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