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We study within BCS theory the properties of an eff'ective Hamiltonian to describe conduction
by holes through an oxygen anion network. The Hamiltonian contains an on-site repulsive in-
teraction U~ and a modulated hopping interaction h, t that yields a larger hopping amplitude be-
tween sites when other holes are present on those sites. The superconducting state is found to be
s wave with an energy-dependent gap. Superconductivity is restricted to low hole densities and
the critical temperature increases with the hopping amplitude. The particular form of the in-
teraction allows for superconductivity even in the presence of large Coulomb repulsion, up to
Ur/ht =30. We discuss the behavior of the tunneling density of states, specific heat, gap ratio,
and coherence length as a function of hole density and parameters in the Hamiltonian, and the
relationship between our results and existing, as well as possible future, experimental results on
high-T, oxides. Our model provides a natural explanation for the spread in gap values observed
in diA'erent experiments, for the observed broadening of the resistive transition in a field, and for
the observed superconducting glass behavior.

I. INTRODUCTION

The superconductivity of the high-T, oxides has been
examined by a variety of experimental techniques in the
past two years. ' Although some important aspects have
remained controversial, a set of characteristic features has
been established. Superconductivity is found to occur at
low levels of hole doping only and with a short coherence
length (few lattice spacings). In many cases pressure is
found to have an unusually large effect in increasing the
transition temperature4 (in conventional superconductors
pressure more usually decreases T,). A Bardeen-Coop-
er-Schrieffer-type (BCS) peak has been reportedly ob-
served in the ' 0 NMR relaxation rate just below T„
with exponential decay at low temperatures. Several
other experimental observations, such as tunneling and
London penetration depth, point towards the existence of
a finite energy gap over the entire Fermi surface below T„
and the existence of Josephson tunneling between high-
T, oxides and conventional superconductors establishes
that the superconducting state has conventional s-wave
symmetry. These experimental results point to a super-
conducting state that has some peculiar features but is
otherwise not too different from what is found in conven-
tional superconductors. An excellent review of experi-
mental constraints on theories of high-T, superconductivi-
ty has recently been given by Little.

In this paper we study the properties of an effective
Hamiltonian recently derived to describe the supercon-
ductivity of the high-T, oxides. ' The Hamiltonian de-
scribes propagation of holes through an oxygen anion net-
work, with an interaction term that modulates the hop-
ping between nearest-neighbor sites if other holes are
present on those sites. This Hamiltonian was derived
from a more fundamental one describing the local interac-

tion of holes with the outer electronic shell in 0
anions. " Preliminary results for the effective Hamiltoni-
an ' showed that it displays s-wave superconductivity with
the following characteristic features: The critical temper-
ature increases rapidly as the hopping amplitude in-
creases, and it goes to zero if the number of holes becomes
too large. In addition, the energy gap was found to be of
comparable magnitude to the Fermi energy, which implies
a short coherence length. These properties are not found
in usual BCS superconductors but are, as mentioned
above, characteristic features of the high-T, oxides.

In this paper we examine the properties of the super-
conducting state that is obtained from the effective Ham-
iltonian within BCS theory, clarify the origin of the
features found in Ref. 10, and calculate various properties
that could be amenable to experimental confirmation.
Section II discusses the effective Hamiltonian and the
solution of the BCS equation. We examine the depen-
dence of T, on various parameters and discuss the specific
features that lead to superconductivity even in the pres-
ence of appreciable Coulomb repulsion. In Sec. III we
discuss the behavior of the tunneling density of states, the
gap ratio, specific heat, and coherence length, particularly
their dependence on hole density.

There is another set of experimental findings that is
peculiar to the oxide superconductor materials but could
appear to be related not to intrinsic properties but to vari-
ous "dirt effects. " These include the broadening of the
resistive transition in a field, ' the superconducting glass
behavior' and low critical currents, '" and the spread in
gap values inferred from tunneling ' ' and infrared ' ex-
periments. As we discuss in the conclusion, all these
effects can be qualitatively understood within the model
discussed here. A quantitative understanding .will come
from a Ginzburg-Landau formulation and is deferred to a
future publication.
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II. HAMILTONIAN AND SOLUTION
OF BCS EQUATION

The eA'ective Hamiltonian is given by '

H= —
tt, g (c;~~, +H c )+. .Upon;tn;)

&ij& i

BCS equation '

~k XVkk'~k'[1 2f(+k')]/2Ek1

N k

Ek -4(sk —P)'+&~,

(S)

—At+ (c;t~g +H.c.)(n; +n, — ) —pgn;,

where i,j are nearest-neighbor sites on a two-dimensional
square lattice. It describes the direct hopping of holes
from 0 to nearest-neighbor 0 anion in a two-
dimensional Cu02 plane. This Hamiltonian arises from
elimination of a degree of freedom describing the defor-
mation of the outer 0 electronic shell by the presence
of the hole on that anion. " The on-site repulsion U~ and
the hopping I~ are renormalized from their bare values U
and t by elimination of this degree of freedom, which also
generates the interaction term h, t. This term represents an
increased ability for a hole to hop if another hole is
present at its own site or at the site where it is hopping to,
and its physical origin is enhanced quantum-mechanical
overlap of the background wave function in the presence
of other holes.

We propose the Hamiltonian Eq. (1) as containing the
essential physics of high-temperature superconductivity.
This is, of course, quite diA'erent from it containing all the
physics of high-T, oxides. In particular, the magnetic de-
grees of freedom associated with Cu d 2 y2 orbitals are
left out. Those orbitals will hybridize with 0 po. orbitals,
and their interplay will largely determine the magnetic
properties. The Hamiltonian [Eq. (1)] instead describes
0 orbitals that are predominantly hybridized to the same
orbitals on nearest-neighbor 0 sites; thus presumably of
px character. 0ur point of view does not even imply that
these are the only states close to the Fermi energy, merely
that it is conduction of holes through this band that drives
the superconductivity.

We estimate the bare direct hopping between oxygens
in the range O.S to 1 eV, ' and a renormalization
t~/t =0.1. ' ' The 0 on-site repulsion U~ has been estimat-
ed around 5 eV. ' The modulated hopping amplitude d, t
is found to be proportional to t and in the range At/t =0.3
to 0.4. ' We can only estimate these parameters approxi-
mately at this point and so we will examine the depen-
dence of the properties found on varying the various pa-
rameters in that range.

The parameters in the BCS reduced Hamiltonian

along with the constraint condition for the density of holes
n:

n =1-—g [1-2f(zk)],1 A
Nk Ek

with f(s) the Fermi distribution function. The form of
the interaction Vkk implies that the gap has a functional
form

cosk~ +cosky +e
2

and Eq. (S) yields the coupled equations

1 =K(l, +cl,),
c =K(I2+cli) —Up(li+clp),

with the density determined by

n =1+8t&I]+2pIO,

with

(9b)

(10)

cosk~ +cosky
I( =-

N k 2

1
—2f(Ek)

2Ek

At the critical temperature h, 0 and we obtain from Eq.
(9) the single equation

1 =K (Ipl2 —Ii ) —UpIp+2Kli (12)

to determine T,.
We have solved Eq. (12) numerically for different

values of the chemical potential p and other parameters in
the Hamiltonian. The hole density for each case at T,
was found from Eq. (10), or equivalently n =(2/N)pkf
x(sk —p); in Fig. 1 we show the dependence of n on
chemical potential for three values of the temperature for
future reference.

Figures 2-4 show the dependence of T, on hole density
for various cases. Parameters were chosen so that the
third curve is common to the three figures, with U~ =5 eV,

Hred g(sk P )Ck~ka+ g Vkk'Ck 1 C —kJC —k'JCk't
k, a. k, k'

are given in our model by

s'k = —2tt, (cosk +cosk~), (3)

Vkk = ——(cosk„+cosk~+ cosk„'+cosk» ) + U~,

with K=88,t. Superconductivity is determined by the
I"IG. 1. Hole density vs chemical potential for three values of

temperature.
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FIG. 2. Dependence of critical temperature on hole density
for various values of the hopping t (in eV). K 3.44t, U~ 5 eV.

I2 (1 —n) Ip—

respectively. Note that we obtain a set of quasiuniversal
curves as a function of hole density, particularly for the
cases where superconductivity is restricted to very low
density. In particular, there is a definite relation between
the point where T, peaks and the point where it goes to
zero. T, is enhanced by increasing t or K/t, and sup-
pressed by increasing U~. In particular, T, vs n is approx-
imately constant if U~ and K are varied so that the ratio
U~/K remains constant. This is easy to understand from
Eq. (12) if the first two terms on the right-hand side dom-
inate, which is found to be the case at low densities.

To further understand these dependences, we have used
a simple model to solve Eq. (12) analytically. We take
the density of states g to be constant throughout the band.
Then the occupation is given simply by n = 1+p/4t~ (for
sufficiently low temperatures). With the same approxi-
mations, I ~ and I2 are readily determined in terms of Io.

li (1 n)—Ip— 1 (i4a)
Stp

1 —3n+ (jn '/2)

8'
tp 0.1t,
K-8ht.

(i3a)

(i3b)

Figures 2-4 show the effect of varying t, U~, and K/t,

Finally, Io is given by

Io 1 n[ 453P, t vn(2 —n)l.1

8t

The approximate T, equation then becomes

(is)

T, =4.53tpdn(2 —n) exp
f1+k(i —n)]'

kk+2 1 n+ —kn 2 —u

where k—=gK and u gU~ (g 1/St~). Equation (16)
displays clearly the qualitative trends that arise from the
interaction Eq. (4). T, rises initially as a function of hole
density, n, since the Fermi energy is proportional to the
hole density. However, Eq. (16) also indicates that there

[

will be a maximum, and T, will eventually decrease as a
function of hole concentration. In particular, the condi-
tion for T, 0 is given by

(kn, „)'k(k+2)(1 —n,„)+ u .
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FIG. 3. Dependence of critical temperature on hole density
for various values of the on-site repulsion U~ (in eV). t 0.65
eV, K 3.44t.
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FIG. 4. Dependence of critical temperature on hole density
for various values of the hopping interaction K. t=0.65 eV,
Up 5 eV.



11 518 J. E. HIRSCH AND F. MARSIGLIO 39

0.20

Up =2.

'(eV)

0.10—
Up=5

0.05—
Up=7.

0.5 1.0

/'Tc

FIG. 5. Dependence of gap on temperature. d is the prefac-
torinEq. (8). K 3 44r,. t 0.65eV, n=0125. U isgivenin
eV, and the critical temperatures are T, =845, 298, and 58.2 K
for U~ =2.5, 5, and 7.5 eV, respectively. The values of c for
these cases at T/T, =0.95 and T/T, =0.1 are 0.061, 0.051;
—0.200, —0.207; —0.432, —0.434 for U~ =2.5, 5, and 7.5 eV,
respectively.

dent. Figure 5 shows ~, [the prefactor in Eq. (8)] vs T for
three values of U~ for the parameters of Fig. 3 with
n 0.125. Thevaluesofcat T, found forthesecasesare
c 0.06, —0.20, and —0.43 for U =2.5, 5.0, and 7.5, re-
spectively. That is, with increasing U~ the gap is
suppressed and c becomes iricreasingly negative. The
values of c are found to be only weakly dependent on hole
density and essentially independent of temperature. In
Fig. 6(a) we show c vs Uz for n 0.125 and the parame-
ters of Fig. 3, and Fig. 6(b) shows the dependence of c on
density for Uz 2.5, 5, and 7.5 eV.

At this point we may wonder how it is possible to obtain
superconductivity in the presence of such large on-site
repulsion. The reason turns out to be twofold: the energy
dependence of the attractive part of the interaction, and
the large multiplicative factor arising in the attractive
part of the interaction that can be understood from
phase-space arguments. We discuss these two points sep-
arately in what follows.

OA

For K/t~ 34.4, U~=5 eV, and t~=0.065 eV, for exam-
ple, Fig. 2 indicates that n „„=0.6 while Eq. (17) gives
0.96. The discrepancy is due to the fact that the actual
density of states is not constant.

Equation (16) does not exhibit a perfect scaling relation
for T /t~ as a function of n Howev. er, for large K, for ex-
ample, it predicts that T, vs n remains constant for
U~/K -const, as Figs. 3 and 4 verify. For smaller K
values, Eq. (16) gives a scaling relation for low densities:

(1+k)
k(k+2) —u

Equation (18) is remarkably accurate over the entire pa-
rameter range exhibited in Figs. 3 and 4. For example,
for K/t~ =27.2, 31.2, and 3S.6 (see Fig. 4), Eq. (18) pre-
dicts that the same T, vs n can be approximately obtained
using K/t~ 34.4 and U~ =7.49, 5.94, and 4.05 eV, re-
spectively. The actual values used are 7.5, 6.0, and 4.0
eV, respectively. Thus, while Eq. (16) disagrees with
Figs. 3 and 4 in absolute magnitude, it gives the scaling
relation very accurately.

The reason that superconductivity is confined to low
densities is that the attractive part of the interaction Eq.
(4) is largest for k=k' 0. Thus, the attractive part of
the interaction at the Fermi surface decreases steadily as
we add more holes, while the repulsive part of the interac-
tion remains constant. This is seen in the analytical solu-
tion Eq. (16) above in the n dependence of the terms in-
volving the attractive part of the interaction K in the ex-
ponent. Because the cutoA' in the integrals is given on one
side by the Fermi energy, T, first incieases with hole con-
centration [prefactor in Eq. (16)] and then decreases as
the reduction in the attractive interaction becomes dom-
inant.

Below T„wesolve Eqs. (9) and (10) for d„c,and p. It
is found that 4 follows the usual behavior as a function of
temperature, while c is essentially temperature indepen-

0.2
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0.2 0.4 0.6 0.8

-0.1
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Up=7. 5

FIG. 6. (a) Dependence of c on U. K=3 44r, r =0.65 eV. ,
n=0. 125. (h) Dependence of c on density. K=3 44r, t 0.65.
eV, Up 2.5 5 and 7.5 eV.
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Because the energy dispersion relation Eq. (3) has the same k dependence as the interaction we can eliminate every-
where the k dependence in favor of energy dependence. The gap is given from Eq. (8) by

a(s) -a — +c
4'

and the interaction from Eq. (4)
r

4t
(20)

The T, equation is

8 +c -a dh'g(c') —K (a+ s')

4' 4 4tI

e' + 1 —2f(s' —p)
4tp 2(s' —p)

(21)

with g(e) the density of states. Figure 7 shows the energy
dependence of the gap for three values of U~. As Up in-
creases c decreases and the gap changes sign for lower en-

ergy, and hence lower values of the density. In Fig. 8 we
show the net effective interaction versus energy for these
cases, where we have set one value of the energy to the
lower cutoff:

V,s =V( —4tp, e) —K 1 — + Up .
4'

(22)

Note that for U~ 5 and U~ 7.5, V,s is always repulsive,
and yet there is a region where the T, equation (21) can
be satisfied, as seen in Fig. 3. The reason is, of course,
identical to the one that gives the Coulomb renormaliza-
tion in the usual electron-phonon case: because the at-
tractive part of the interaction is energy dependent while
the repulsive part is not, the gap can adjust its sign to take
advantage of the large repulsion at high energies, or
equivalently to reduce the effective Coulomb repulsion in

the low-energy region where the attractive part is largest.
Note that even with the relatively small energy depen-
dence of the effective interaction in our case this effect is

significant, because of the fact that the interactions are
much larger than the hopping. Thus, we find that at low
densities the energy dependence allows for 6nite T, for
cases where U~ is up to about a factor of 2 larger than the
maximum value of the attractive interaction at the bottom
of the band in the parameter range of interest.

The second reason for being able to overcome the on-
site repulsion is the "phase-space factor" associated with
the modulated hopping interaction. At the bottom of the
band, we have from Eqs. (20) and (13b)

V( —4tp, —4tp ) 16ht + Up, (23)

that is, we get a factor of 16 in the modulated hopping
term. This factor can be written as

(24)

2

16 4x spin xd .

The factor of 4 arises from the fact that ht acts in hopping
from and to a given site, and both when the hole of oppo-
site spin is at the site the other hole is hopping to or from.
The factor of spin ( 2) is obvious, and the dimensionali-

ty factor d ( 2 in this case) comes from the fact that ht
acts in hopping from a site in all possible directions. Thus,
the combination of this phase-space factor and the energy
dependence of the interaction is what allows us to obtain
superconductivity up to approximately U~/At-30 in the
range of parameters studied. For example, U~ 7.5 eV
and dt 0.28 eV yields a maximum T, of 67 K (Fig. 3).
Note that, everything else being equal, the situation would
be even more favorable in three dimensions as the attrac-
tive part of the interaction is further enhanced by a factor
3

FIG. 7. Energy dependence of the gap, Eq. (14). K 3.44t,
t 0.65 eV, n 0.125. U~ given in eV.

FIG. 8. Energy dependence of the effective interaction equa-
tion (17) ~ith one energy argument set at the bottom of the
band. K 3.44t, t 0.65 eV, n=0. 125. U~ given in eV.
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FIG. 9. Pair wave function normalized to I at the origin [Eq.
(25)] vs R (in the x direction). K =3.44t, t =0.65 eV, n 0.125.
U~ given in eV, a nearest-neighbor distance.
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Finally, it is interesting to examine what the pair wave
function looks like in real space. %'e plot in Fig. 9 0.2 04 0.6

I

0.8

with

f(R) (cg
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&/&cpicpt &,

I —2f(Ek),.„.
„(c~icot& =—gAk

N k 2Ek

(25) FIG. 10. T, vs hoie density for three values of hopping t (in
eV). K 3 44t, U~ . 5 eV.

at T-0.5T, for three values of U~: 2.5, 5, and 7.5 eV,
with transition temperatures T, =845, 298, and 58 K, re-
spectively. f(R) is peaked at the nearest-neighbor site, as
one would expect. As U~ increases, the amplitude at
R=O is depressed relative to the one at the nearest-
neighbor site but remains appreciable. That is, the pair
wave function is unable to avoid the on-site Coulomb
repulsion because of its symmetry and thus T, is
depressed. f(R) decays more slowly as U~ increases be-
cause T, decreases and the coherence length becomes
larger. The behavior of the coherence length is discussed
in the next section.

III. DENSITY OF STATES, GAP RATIO,
SPECIFIC HEAT, AND COHERENCE LENGTH

The formulation of the BCS equation (5) difFers from
the usual approach in two respects: There is no cutoff'
about the Fermi level, so that the finite bandwidth will
play a role, particularly for low hole densities, and the po-
tential is energy dependent (Fig. 8), leading to a strongly
energy-dependent gap (Fig. 7). In this section we exam-
ine some of the consequences of these features on several
superconducting properties.

T, as a function of hole concentration is replotted in
Fig. 10 with t varying from 0.55 to 0.75 eV. As discussed
in the previous section, an increase in t has a similar effect
as an increase in K/t or a decrease in U~, so we confine
our presentation to the first variation alone. One of the
most crucial superconducting properties is the gap ratio
2t5p/kqT, ; the standard BCS result is 3.53, and it is well
known that small anisotropy tends to reduce the average
gap, whereas strong-coupling (retardation) effects in-
crease the gap ratio. We define the gap edge as the energy
at which the tunneling density of states is nonzero. To
compute this property, recall that the normal-state density

of states for this model is given by

Nlv(e) 2 Kp I—1 8
2x~tp 4'

2

(27)

Ng (Cp) g[Qk b(rp Ek )+ vk b(c+pEk )], (28)
N p

where ttk = —,
' [1+(ek p)/Ekl and—Uk = —,

' [1 —(sk —p)/
Ek]. The special form of the gap function given in Eq.
(19) allows the integration of Eq. (28) to be carried out
analytically. The results are illustrated in Fig. 11(a)
[dI/dV is proportional to N, (co) at T 0] for a typical set
of parameters (see figure caption). Essentially, the BCS
square-root singularity is superposed on the normal-state
density of states. Structure occurs artificially because of
the sharp cutoff in the normal-state density of states.
However, the monotonic energy dependence of the gap
(Fig. 7) also gives rise to an inherent asymmetry in the
I-V characteristic [see Figs. 11(a)-11(c)]. This asym-
metry is not due to the asymmetry in the normal-state
density of states; it remains even if a constant normal-
state density of states is used. For higher energies, the
rapid rise in the normal-state density of states causes an
additional asymmetry. The gap edge is then given by the
minimum of E(c) [s +A (s)] 't, which is

4tpc —p
4t f1 + (6/4t, ) '] '" (29)

We use Eq. (29) to define the finite temperature gap,
Ap(T). Ap(T) is very BCS-like in appearance, exhibit-
ing a divergent slope at T, . Plots are shown in Figs.

where ECO is the complete elliptic integral of the first kind.
In the real system the logarithmic singularity at e 0 will,
of course, be rounded due to coupling to the third dimen-
sion, but it plays no role heie anyway, as we are interested
in low hole densities. The superconducting density of
states is given by '
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FIG. 11. dl/dV vs V+@ (units of tt, ) for (a) T 0, (b)
T/T, 0.2, and (c) T/T, 0.4. The units of dI/dV are arbi-
trary. In (a), however, the ordinate is the superconducting den-
sity of states, /V, (V), in units of I/tp. k 3.44t, U~ 5 eV,
n =0.1.

FIG. 12. Plot of normalized gap edge, tip(T)/ktIT„and su-

perconducting (solid line) and normal-state (dashed line)
specific heat as a function of reduced temperature T/T„ for
hole densities, (a) n 0.05, (b) n =0.20, and (c) n =0.55.
K 3.44t, U~ 5 eV, and t =0.65 eV.

12(a)-12(c) for the parameters of Fig. 3 with U~ 5 eV
at three hole densities. Figure 13 illustrates the zero-
temperature values of 2ho/kttT, versus hole density for
three different hopping parameters. Values slightly above
the BCS value are achieved at low densities, but 2do/ktt T,
is lower than the BCS value 3.5 over a large concentration
range. Infrared measurements on oxides' have tended to

give values of 2ho/ktIT, lower than the BCS value, which
is very unusual in conventional superconductors. In our
model, the origin is easily understood from the energy
dependence of the gap (Fig. 7). As n increases the chemi-
cal potential increases and the gap edge Eq. (29), which is
approximately A(e Itt), decreases. On the other hand,
the value of T, is determined by t), (s) over the entire ener-



11 522 J. E. HIRSCH AND F. MARSIGLIO 39

26o
kBTc

2.0—

0.75

1.0—

I

0.2
I

0.4
I

0.6
I

0.8

FIG. 13. Zero-
[i

Zero-temperature gap ratio, 260/ktt T„vshole den-
sity n for various values of hopping T (in eV). K =3.44,t, Up=5

I, =C I"
sn

—Cng &s(s)~f(G) —f(G+ V)]de, (30)
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states of e ua

emen etween
equal energy in the two materials and the d

of states at the F
s an e ensity

e Fermi level of the normal metal. In Fi .

=0.4 for t ical a
11 we plot dI/dV vs V at T 0, T/T =0. ,

or typical parameters (see figure caption). Note
the asymmetry in the dI/dV curves due to the ener

e va ues o the gap found in
point-contact tunneling experiments ' have

will discuss a likely origin of this in the next section.
nother property which has traditionally yielded infor-

mation about the superconducting state is the e
a, C, . In the superconducting state, it is given

the band m
gy range and the contribution from e near th b t fe otomo

mark
and makes T, decrease less rapidl 1i y, resu ting in the

mar ed decrease of 2ho/ktt T, shown in Fig. 13.
Tun nelin ch
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g aracteristics have been calculated usin
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t 22
r a normal-superconducting junc-

QRf '(R)R'f (R)
QRf*(R)f(R)

(32)

is the mean-square radius of a hole pair. f(R) is h

p given in Eq. (25). The numerical factor is used
is t e pair

g (04~
so that go reduces to the usual BCS h
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FIG. 14. Specific-heat jump diC(Tei/Csn(Tc) vs n for three
values of t (in eV). K=3.44t, Un =5 eV.
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FIG. 15. Coherence length at T=O, g(0) (measured in lat-
tice spacings) vs n for three values of t (in eV). %=3 44t, .
Up =5 eV.

is manifested in f(R) as an increased amplitude at further
than nearest neighbor sites.

IV. CONCLUSIONS

We have studied the properties of an effective Hamil-
tonian to describe propagation of holes through an oxygen
anion network within BCS theory. The characteristic
feature of our Hamiltonian is that the interaction has the
same momentum dependence as the kinetic energy. This
is because the interaction term describes a modulation of
the hopping process by the presence of other particles.
This implies that the gap obtained in BCS theory can be
considered a function of energy rather than momentum.
Note that although we have considered only nearest-
neighbor hopping here this feature would survive in a
more general case with longer-range hoppings.

The superconductivity in our effective Hamiltonian has
extended s-wave character with the following characteris-
tic features.

(1) The energy gap has a strong energy dependence.
(2) T, increases first as a function of number of holes,

reaches a maximum and then decreases to zero; for most
of the parameter range it is restricted to low densities.

(3) T, increases with hopping r and hence with pres-
sure.

(4) Because of the combined effect of an energy-
dependent interaction and phase-space factors associated
with the modulated hopping interaction, superconductivi-
ty can exist with a repulsive interaction substantially
larger than the modulated hopping interaction, up to a
factor of 30 in the parameter range considered.

(5) The pair wave function has largest amplitude at
nearest-neighbor sites, so that the superconductivity can
be roughly described as condensation of nearest-neighbor
singlet pairs.

(6) The tunneling density of states exhibits the same
square-root singularity as the usual BCS case. However,
an inherent asymmetry arises due to the energy depen-
dence of the gap.

(7) The gap ratio 2ho/kcT, varies strongly with densi-
ty, being higher than the BCS value 3.5 at very low densi-
ties and lower at higher densities.

(8) The specific-heat jump hC/C is larger than the
BCS value 1.43 at very low densities and decreases sub-
stantially below it as the density increases.

(9) The coherence length is very short at low hole densi-
ty (few lattice spacings) and increases drastically for den-
sities beyond the maximum T,.

(10) Other features, like the temperature dependence
of the gap and specific heat at low temperatures, are indis-
tinguishable from the usual BCS behavior.

These features are necessary consequences of BCS
theory applied to our effective Hamiltonian Eq. (1). We
may ask which of these could be substantially changed by
strong-coupling effects. It is clear that (1) to (6) are like-
ly to survive at least qualitatively unchanged as they are
direct consequences of the form of the interaction. We
believe the density dependence found in (7) to (9) is also
likely to survive strong-coupling effects although there
could be important quantitative changes; for example,
2ho/kc T, could be enhanced by fiuctuations depressing T,
more rapidly than hp. Corrections to BCS theory are
clearly worth future investigation.

We may next ask whether experimental observations on
oxides to date provide support for the correctness of our
model. As mentioned in the Introduction, we believe
several clearly do: the density and pressure dependence of
T„and the evidence for s-wave superconductivity, and a
gap over the entire Fermi surface. In addition, some ob-
servations of tunneling density of states suggest an
asymmetry consistent with the one found in our model.
The specific-heat jump at T, is difficult to estimate accu-
rately, but has been found to be close but somewhat lower
than the BCS value, which is not inconsistent with our
findings.

Our treatment has assumed an infinite, perfectly homo-
geneous medium. However, real materials always have
impurities, defects, and boundaries. It is clear that the en-
ergy dependence of the gap in our model [Eq. (19), Fig. 7]
will bring about important effects in the presence of these
perturbations. Consider the generalization of Eq. (19) in
the presence of spatially dependent potentials:

a(c,r) =a(r) c—co(r) +c(r)4' (33)

The dominant effect will be the variations in the local
Madelung energy co(r) The gap valu. e at the Fermi ener-

gy will then move up and down on the line in Fig. 7 in the
presence of spatially varying potentials [to a first approxi-
mation one can neglect the variations in h(r) and c(r)].
Note that large changes will occur on a scale of t~ which
we estimate at —65 meV.

The consequence of this is that small changes in the lo-
cal potential will bring about large changes in A(cF, r)
leading to weak links and nonsuperconducting regions,
which would explain the superconducting glass behavior
observed' as well as the low critical currents. ' This will
also lead to a wide distribution of "local coherence
lengths" g(r) —hvF/h(cF, r) which would explain the
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broadening of the resistive transition observed in a mag-
netic field:' the critical field H, , -go/2trg would now
span a range of values at given temperature. Finally, this
would also explain the range in values of the gap mea-
sured. Infrared experiments ' as well as break-junction
tunneling experiments' measure a bulk gap and the ratio
2'/kT, should be around and possibly even substantially
smaller than BCS, as seen in Fig. 13. On the other hand,
as we approach the surface the local Madelung potential
will decrease on the average moving us to the left in Fig. 7
and increasing the value of the local gap [Eq. (29) with p
shifted by the local Madelung potential]. This would ac-
count for the larger gap observed usually in point-contact
tunneling experiments' and for the large variations found
in these experiments due to local variations in the surface
Madelung potential. Note that without the energy depen-
dence of the gap, one would expect the gap at the surface
to be smaller rather than larger than the bulk gap. ' Al-
though the amplitude of the gap t), (r) in Eq. (33) may be
smaller at the surface than on the bulk this effect will be
superceded by the larger effect due to the energy depen-
dence.

These considerations imply, if our model is correct, that
these observed "dirt effects" are intrinsic to the supercon-
ductivity mechanism discussed here. Figure 7 suggests
that the way to reduce them (besides better samples) is to
increase the hopping energy s~ or to decrease the on-site
repulsion U~ (thus increasing c). The first could be ac-
complished in structures with closer packing of oxygen,
the second (and possibly also the first) with other anions
instead of oxygen, like sulphur. In addition, working with
low hole density should make these effects smaller (Fig.
7). Still, this feature of the mechanism discussed here
may well turn out to be the most important one in its im-
plications for practical applications of these materials.

We may next ask which future experiments could prove
or disprove our model. First, our model was derived as-
suming hole conduction through an anion network. ' "If
a recent Japanese report' on electron superconductivity
in oxides is confirmed in that conduction in the planes oc-
curred through electrons rather than holes it would cast
serious doubts on the validity of our model. We speculate
that future measurements on single crystals will show pos-
itive Hall coefficient with field perpendicular to the plane
and negative one with field parallel to the plane, consistent
with the reported overall negative coe%cient in the poly-
crystalline sample studied and with our model of hole
conduction in the planes.

Various experiments involving what are surely difficult
measurements as functions of hole density could clearly
lend support for our model. For example, the set of quasi-
universal curves for T, found indicates that applying pres-

sure should both increase the maximum T, and the densi-
ty where T, goes to zero. In that respect it would be use-
ful to be able to differentiate between pressure applied
parallel and perpendicular to the planes as our prediction
would specifically apply to the former. The density depen-
dence of the specific-heat jump, gap ratio, and coherence
length could be directly compared with the predictions of
our model.

We have only treated here a two-dimensional model,
and to understand the role of the third dimension is im-
portant, particularly since, strictly speaking, there is no
true superconducting long-range order at finite tempera-
tures in two dimensions. Thus it is important to under-
stand how conduction occurs in the third direction. If
conduction occurred dominantly through oxygen holes,
the Hamiltonian Eq. (I) would be extended to include a
hopping t~ and interaction h, t' in the third direction, with
&t'/tt, '

&t/tt, . In that case all our conclusions remain
qualitatively unchanged and the range of parameters
where superconductivity occurs is enlarged [see discus-
sions after Eq. (24)]. This indicates that approaching
three dimensionality will give better conditions for high
T,. Unfortunately, as discussed elsewhere, " a three-
dimensional arrangement is not compatible with the close
packing of oxygen found in the Cu-0 planes.

Measurements of the Hall effect with magnetic field
parallel to the planes suggest, however, that conduction in
the third direction is electron rather than holelike. In
that case we should add to our Hamiltonian Eq. (I) a
hopping in the third direction without a corresponding
modulated hopping interaction. Within BCS theory this
term will depress T, as it reduces the density of states.
However, for sufficiently small third-dimensional cou-
pling, it is physically obvious that such a term will
enhance T, . This question is subtle and will be further in-
vestigated in the future.

The generalization of the theory to account for spatially
dependent fields and order parameter will allow for quan-
titative comparison with a wide variety of experimental
observations. There is also a set of other quantities, not
discussed here, that can be calculated and compared with
experiment, like ultrasonic attenuation, NMR relaxation
rate, and electrodynamic properties. These issues will also
be considered in the future.
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