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Recently it is been argued that the plasmon modes expected in the oxide superconductors
should be characteristic of a superlattice with a basis of several metallic sheets. We extend this
work by including the exchange-correlation eAects in a given CuO sheet via local-field corrections
(the generalized random-phase approximation). In addition, the effective interaction between

electrons in a given CuO sheet is worked out for a superlattice with a basis of several sheets,
separating out the eA'ects of the various kinds of plasmons. Numerical results are given for the
superlattice plasmon dispersion relations for two and three sheets/unit cell. If the spacing of the
sheets is small compared to the superlattice period (as it is in the 2:2:1:2and 2:2:2:3 superconduc-

tors), we find that the low-frequency plasmon branches (n —1 of them, where n is the number of
sheets/unit cell) are essentially identical to those of an isolated bilayer or trilayer.

I. INTRODUCTION

This paper is concerned with the plasmon spectrum
which should be characteristic of the Bi-Sr-Ca-Cu-0 and
Tl-Ba-Ca-Cu-0 high-temperature superconductors. As
the result of experimental work by many groups since the
original report of Maeda et a/. ,

' it is now known that
there is a whole class of oxide superconductors composed
of monolayer, bilayer, or trilayer Cu-perovskitelike units
separated by bilayer Bi-0 or Tl-0 units (see, for example,
Refs. 2-6). These superconductors can be described by
the formulas Bi2Sr2Ca„—iCu„04~2„and TlzBa2Ca„—i-
Cu„04+2„, where 2n is the number of Cu02 sheets in a
primitive lattice unit cell with a c-axis dimension cL, (n).
From several band-structure studies, the metallic
properties appear to be dominated by two-dimensional
(2D) bands associated with the Cu02 sheets and (possi-
bly) the Bi202 (T1202) bilayers, with not very significant
charge transfer between these subunits. The layers with
Ca and Sr(Ba) do not appear to exhibit metalliclike be-
havior. In this paper, in discussing the charge Auctuation
spectra of this class of materials, we treat them as a super-
lattice of stacked metallic sheets (2D electron gases), with
a superlattice unit cell with a c-axis period (along the z
axis) equal to one half of the crystal unit cell (c ct./2).
Each superlattice unit cell has one Bi-0(T1-0) bilayer
and n Cu02 sheets (n 1,2, 3, . . . ).

Starting with such a superlattice with a complex unit
cell composed of several metallic sheets, the dielectric
function e(q, co) was worked out in Refs. 10 and 11 within
the random-phase approximation (RPA) for a basis of up
to three sheets/unit cell. Extending earlier work' in
semiconductor superlattices with two sheets per unit cell,
for n metallic sheets per unit cell, one has n —j. low-
energy acoustic plasmon branches which separate off from
the high-energy plasmon branch characteristic' of a su-
perlattice with one sheet/unit cell.

In the present paper, we generalize our earlier work" in

several ways. First of all, we generalize the analysis of the
charge fiuctuations in a given sheet to include the
exchange-correlation effects via a static local-field approx-.

imation. ' That is, we extend our analysis to the general-
ized RPA (GRPA), albeit in a simple Hubbard-like ap-
proximation. ' As far as we are aware, the only previous
work on including exchange-correlation corrections to the
superlattice plasmon dispersion relation was limited' to
the long-wavelength limit. Second, we derive a general
expression for the effective Coulomb interaction between
electrons in a given Cu02 sheet, as induced by coupling
into the superlattice charge fluctuation spectrum. We
give a closed expression for the effective electron-electron
interaction in a given sheet in terms of separate contribu-
tions from the high- and low-frequency plasmon branches
co+ in a superlattice with two identical sheets/unit cell.
This makes use of the fact that the dielectric function can
be factorized into separate parts associated with the co~
plasmons, and generalizes an earlier study on superlattices
without a basis.

In addition, we present numerical results for the
plasmon dispersion relations in superlattices with two and
three sheets/unit cell. We find that as long as the spacing
d ~ of the sheets is much smaller than the period of the su-
perlattice c (as in the Bi and Tl superconductors), the
low-energy plasmons are almost identical to that of an iso-
lated bilayer or trilayer.

Direct observation of these superlattice plasmon modes
would be of great interest since their dispersion relations
depend on the spacing and metallic properties of the
sheets. Iri the oxide superconductors, the bulk plasmon
frequency is of order 1-2 eV. In addition, if the Bi202
and T1202 bilayers are metallic (as band-structure studies
suggest), they would give rise to an additional low-energy
acoustic plasmon branch. " Such superlattice plasmons
have been extensively studied in semiconductors (for a re-
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view, see Ref. 18) by inelastic scattering of light. In the
oxide superlattices, the ideal probe of the low-energy
plasmons would appear to be inelastic electron scattering
in the reffection mode.

In Sec. II, we work out the charge-Auctuation-induced
electron-electron interaction for the case of two
sheets/unit cell, within the RPA. In Sec. III, we general-
ize the analysis to the GRPA. In Sec. IV, ~orking in the
RPA and the long-wavelength limit, we discuss the
plasmon branches arising when the basis has one, two,
and three sheets. In Sec. V, we give numerical results for
the superlattice plasmon dispersion relations for two and
three sheets/unit cell, as well as the associated effective
electron interaction. In Sec. VI, we brieIIy discuss recent
work on Cooper pairing due to acoustic plasmons in a sin-
gle two-dimensional (2D) metallic sheet' as well as in an
isolated bilayer or trilayer. ' In a future paper, we hope
to use our present results to give a more definitive test of
plasmon-induced pairing in the oxide superconductors.

II. PLASMON-INDUCED EFFECTIVE ELECTRON
INTERACTION IN A SUPKRLA I. l ICE WITH

A BASIS OF TWO SHEETS: RPA

In the present paper, we completely ignore any band-
structure effects in the CuOz and Bi202 (T1202) bilayers
and simply treat these as 2D electron gases (with diff'erent
densities and effective masses). We completely ignore
charge transfer between the sheets, which should be a
good assumption in view of the highly 2D nature ' of
the energy bands that cross (or are near) the Fermi ener-
gy. This simplifies the analysis considerably and should
be an appropriate first approximation to the extent that
the width of the electronic charge density in a given sheet
is much less than the c, the superlattice repeat distance.
This means that all the sheet form factors in our earlier
work" are set to unity [P,(q, ) 1].

Our starting point is the self-consistent RPA equation
for the effective electron-electron interaction (between
electrons in cells labeled by / and /')

v;; (/, /';qi, ro) =v~(/ —/';q~~)+ —g v~, (/ —/i, q~~)gl, (/-0;q~~, ~o)vj', ~(/&, /';q~~, co) .
C jl, ll

(2.1)

2

v;, (/ —/'q ) = ce
2ne — fz —z (2.2)

The indices i,j label the two metallic sheets (a and b) in
given unit cell. The bare Coulomb interaction is

I

where""

21M sinhq)(cc
coshq ~~c cosq, c

(2.6)

where ZI, =/c and ZI b =/c+dl. , / is an integer running
over the N unit cells in the superlattice. %e have assumed
that sheet a is at z, =0 and sheet b is at zb =d ~. The gen-
eral charge response function describing the correlation
between electrons in sheet i in unit cell l, and in sheet j in
unit cell /' would be denoted as g;1(/, /';q~~, co). For nonin-
teracting electrons, this response function is diagonal,
with Z, ;(/, /;q~~, ro)=g, (/'=0;q~~, co). From now on, we
shall drop the qi, co dependence of various functions to
simplify the notation. If we limit ourselves to a single
sheet/unit cell, (2.1) reduces to the self-consistent equa-
tion discussed in Ref. 17.

In solving (2.1), it is convenient to use Fourier trans-
forms with respect to l and I' to make use of the periodici-
ty in the z direction. For example, the Fourier transform
of (2.2) is (compare with Ref. 11)

sinhq ~t(c —d 1 ) +e ' "sinhq id |;qdv q ~ c e~Vz

coshq ~~c
—cosq, c

In the limit of qc&&1, one finds v(q) =v(q) 4' /q .
The Fourier-transform convention in this paper is slightly
different from Ref. 11. In particular, the transform of
Xaa(/, / ) is

—Z,', (q, ) = Z.'(/ —/' =0—) = Ng.'(q~~, ~)o,
1 p 1 p

(2.7)
where N, I/Ac is the number of unit cells per unit
volume and g, (qi, ro) is the Lindhard function of a 2D
electron gas. A is the area of a sheet. An overall phase
factor is corrected in (2.S) and (2.6).

Fourier transforming (2.1), we obtain

vg(q) -u(q)+N, g,'(q)), co)u(q)u, '~(q)

v,) (q, ) =pe"*"v;,(/) .
I

(2.3)

Here 6, is a reciprocal-lattice vector of the superlattice
(=n2n/c) Because of. the periodicity in the z direction,
q, is restricted to the first Brillouin zone ( —n/c & q,
& n/c). For later purposes, we note that the sum in (2.3)

can be carried out explicitly to give

4'
v (q) =vbb(q) =v(q) g 2 2, (2.4)

G, qf+(q +6 )
v.b(q) =vb'. (q) =u(q)

+N.gb'(qi, a))v(q) vb, (q),
ub, (q) -v*(q)+N, g, (qi, ro)v*(q)u,', (q)

+N, gb(q((, co)v(q)vb (q) .

This is a closed set of equations whose solution is

uaa
u(q) —(u'(q) —

~ u(q) ~']N, gb

e'er(q)
u*( )

(2.8a)

(2.8b)

(2.9)

4' —i(G, )d,

G.

qadi

+ (q, +G, ) ' (2.S)
where the superlattice dielectric function is given by

e= e.eb —
) v(q) [ 'N, g.'N, gb— (2.10)



39 PLASMON DISPERSION RELATIONS AND THE INDUCED. . . ll 505

and

e;
—= i —N, v(q)g, '(q)), ~o), i =a,b.

Analogous calculations give

v(q) —[v '(q) —
~ v(q) ~'lN, g.'

Vbb q

)r( ) "qu( )

(2.i i)

(2. i2)

as for 2D systems, ' and we refer the reader to this litera-
ture for further background on the GRPA.

Our key assumption is that in a superlattice, only the
intrasheet Coulomb interaction is renormalized by local-
field corrections:

U~J~
(I l;qll ) = vij (/ I;qll ) Gi (q)l )v 20(q)) )pl I p z . (3.1)

A simple Hubbard-like approximation to the 2D static
local-field correction which has the correct limits is ' '

We note that while u in (2.4) only depends on the Bravais
superlattice spacing c, v in (2.S) also depends on the struc-
ture of the basis. If we set v to zero, the above results de-
scribe two uncoupled arrays, with e =e, eb and '

e)r(q )
'qV( ) (2. i 3)

The charge-Auctuation spectrum is given by the zeros of
e in (2.10) and the resulting plasmon dispersion relations
will be discussed in Secs. IV and V. The effective interac-
tion between electrons in specific sheets is given by

(3.2)

vi (I,I') = v;~(1 —l')

G(q)l) =
[(2q)l) + (lrk2F ) ]

where k2F is the 2D Fermi momentum. This reduces to 2

for q)))) k2F and q))/xk2F for q)) «k2F. With reference to
the superlattice potentials in Sec. II, we note that v(q)
will be modified but u(q) will be unaffected since the
latter describes interactions between different sheets in the
basis. v2n has been defined after Eq. (2.17).

The effective interaction is now given by

+ g...', (—I t, )~,', (I—=0).;,',0, , I')—,
&i I.I I

(3.3)

(2.14)
where q, is restricted to the first BZ of the superlattice
(the spacing between the q, wave vectors is 2xjL, where
L =Nc). In the continuum limit, the intrasheet effective
electron-electron interaction is

~ x/c

v,'~(l I' =0;q c)))o= — dq, v ', (q), (2. i S)

while the effective interaction between electrons in dif-
ferent sheets in the same unit cell is

r x/c
UP(I —I'=0;q)), co) = dq, vb. (q) . (2.i6)

U -U2o, v(d)) -v20e (2. i7)

where viD=2xe c/q)). The effective potentials in (2.9)
and (2.12) then reduce to those recently obtained by
Mahan and Wu ' for the case of an isolated bilayer. For
a single sheet, (2.1S) gives the standard RPA results (see,
for example, Ref. 19).

In Appendix A, we briefly discuss the generalization of
the results in this section for a superlattice basis of three
sheets.

III. INCLUSION OF EXCHANGE AND
CORRELATION: GRPA

If we consider the c ~ limit, the difTerent cells are un-
coupled and our results in (2.9)-(2.12) then describe an
isolated bilayer. In this limit, the potentials in (2.6)
are 11,23

+—g u;J, (l —I ) )gj, (l =0)v~', J(I ),I') .
l

C J
(3.4)

The lowest-order term in (3.3) is the bare or unscreened
Coulomb potential while the higher-order terms involve
v;J. Fourier transforming (3.4), one finds u,', and ub,
satisfy a set of equations identical to (2.8) except that
v(q) is replaced by

v,'(q) =v(q) —U2o(q)))G, (qll)

in (2.8a) and by vb(q) in (2.8b). The solutions are

v.'(q) eb+ I v(q) I' N.gb
Vaa q I

with

.)r( )
u*(q)

Vba q g 9

E
(3.6)

e =eaeb I v(q) I N, g, N, gb,

and

(3.7)

/(eq, co) =1 —[v(q) —G;U2o)N, g, (q)), ro), i =a,b. (3.8)

Turning to (3.3), the Fourier transform is

vg(q) = v(q)+N, g.'(q)))v.'(q)u.'~(q)

+N, gb (q))) u (q) vb, (q),

where u;J is defined in (3.1) and u' satisfies the self-
consistent equation

v, (I,l') = v J (l —l')

We now proceed to generalize the RPA results of Sec.
II to include exchange and correlation effects through the
use of static-local-field corrections in describing the
Coulomb interactions in a given sheet. This has been dis-
cussed extensively in bulk 3D metallic systems, ' as well

vb (q) v (q)+N g (qll)v*(q)v' (q)

+Ng gb (ql) )Vb (q )Vba ('q )

Making use of (3.6) in (3.9), we obtain

(3.9)
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u' (q cv) =u(q) + [N.g (v ') +N.gI I
v I +N g N.gbvo'(

I
v

I
v 'vb) ~/ e'. (3.io)

For one sheet/unit cell, this simplifies to
I

For completeness, we note that

Ngga (qadi, cv)
u:. (q, cv) =v(q)+(u.')'

va 'q Nsga qll, cv
(3.i i) vb, (q, cv) = V—

(3.20)

If we ignore the local-field correction G, (q~~), this in turn
reduces to v/e, as in (2.13).

For the special case of two identical sheets, we note that
we can write the dielectric function in (3.7) as a product
of two factors e' =a+ e'—,where we have defined

As we shall see later, this leads to an effective interaction
between electrons in different sheets in a given cell which
is quite different from the intrasheet-induced interaction
as determined by (3.18).

with

e~ =1 —v'~N, g (qadi, cv), (3.i2) IV. PLASMON BRANCHES IN SUPERLA i I ICES:
LONG-WA VELENGTH LIMIT

v'~ —=u'~ Iu I
=u~ —G(q~~)»o (3.i 3)

In this case of two identical sheets, (3.6) simplifies to

v' —(v —
I v I )N, g

vaa
E

+ U
'——2U+v '—Nsg

26+ E'—

U+6 —+ U —E'+

26+ 6—

V+ V—+
25+ 2E—

(3.i4)

ub, (q, cv) =
2 I v IN, g' e+

Using (3.13) and (3.14) in (3.9), we find

(3.i S)

v:.'(q, ~) = u+, [N.X'(u') '+
I

u
I
(I+N.Z'u') ~

25+

+, [N,g (v') —
i v

i (I +N, g u') j .
2E'—

(3.16)

Splitting up the first term as

E'+
U V

2
] e-+ V
2

(3.i7)

one is finally able to reduce (3.16) to

1
u,', (q, co) = [v+ —v+G(qll)u2DN, g I

2E'+

+ [v —v' G(q(~) v2nN, g'1 .
1

25—
(3.18)

We emphasize that, within our GRPA, this is an exact re-
sult. No plasmon pole approximation has been made. In
the RPA, where G(q~~) is set to zero, (3.18) reduces to

2(1 —v+N, g')
V—

2(1 —v -N, g )
(3.i9)

This neatly separates the effect of the two kinds of
plasmons co'+ (zeros of e~) on v,', . Similarly, one may
show

In this section, working mainly in the long-wavelength
limit, we examine the new kinds of superlattice plasmons
which arise when we have two and three sheets/unit cell.
For simplicity, we shall work with the RPA formulas of
Sec. II.

For a single sheet/unit cell the dispersion relation is
given by (2.11). The structure of (2.11) has been studied
extensively in the semiconductor literature, usually with
the high-frequency approximation

N'q
~~

Z2(qadi, ~) =
m *co

(4.i)

where N' is the number of electrons in a sheet. In the
Iong-wavelength limit (v =u), the zeros of (2.11) are
given by

N+ =CO&~ (4.2)
q~~ +q

where cv~~=4xnee /m and ne=N'/Ac is the effe ticve

bulk charge density. This plasmon spectrum is acoustic
for q, e0, with an effective velocity given by (co~1/q, ).

The minimum velocity (i.e., the lowest-energy acoustic
plasmon) corresponds to a charge Auctuation of opposite
sign in alternate sheets. ' In this case, the low-q result
(4.2) is not valid and we must start with (2.11). For
q ~~c (& 1, calculation gives

(4.3)

Since the 2D Fermi velocity is related to the density by
vqF =2xn/(m*), we conclude that

(4 4)
ply 2c

2
V2F

U2

where ao=1/(me ) =0.52 4 is the Bohr radius. In the
high-T, oxide superconductors, one has typically
c = 10-15 A and thus we conclude that v2F « v. That is
to say, the lowest-energy acoustic plasmon in a superlat-
tice with a single sheet/unit cell is still far above the
particle-hole continuum, which starts at v2Fq~~. We con-
clude that while the q, &0 modes form a band of acoustic
plasmons, they are of comparatively high energy.

We next turn to the case of two sheets/unit cell and dis-
cuss the zeros of e as given by (2.10). As we noted in ear-
lier sections for the case of two identical sheets, the two
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1
Nsg2 (qll CO+ )

v+ (q)
1, , -N, g2(qll, CO ).

v —&qg

(4.s)

(4.6)

kinds of plasmons co+ are given by the zeros of e+.
These correspond to the solutions of

These are obvious generalizations of the case for one
sheet/unit cell. These modes reduce to the ones given in
the literature' when one uses the high-frequency approxi-
mation (4.1) for g2. Especially for the co —solution, it is
better to use a more accurate approximation for the 20
Lindhard function. In the long-wavelength limit q «kF,
this is given by

—Regz~((qllico) = '1

N
N2F(i) 2 2 2,l

—1, CO & v2F(i)qll,
CO V2F l

N2F(l) CO & V2F(l)qll

(4.7)

CON2F(i), 2 2 2 i&2, CO & v2F(i)qll,—img2O;(qll, co) = [V2F l qll CO

0, CO &' V 2F (l)q ll .
(4.S)

1. , =N, gz(qll, ~) .
)

(4.9)

Since v —(q) 0 in the long-wavelength limit, it is clear
that co —(q) will be close to v2Fqll. In contrast, the co+
solution of (4.S) is shifted to higher energies, approaching
the plasmon branch given by (4.2) in the q 0 limit (ex-
cept that ne is now 2N/Ac, since there is now two
sheets/unit cell).

Working out the full-density-response function" for
two identical sheets, we find

Here N2F(i) is the density of states at the 2D Fermi sur-
face of sheet i and v2F(i) is the associated Fermi velocity.
In a 2D free electron gas, we recall that N2(eF) =m*/x
and n =kF/2x, where n is the electronic surface density
N'/A. In this long-wavelength limit, the particle-hole con-
tinuum extends to v2Fq~~.

A graphical solution of (4.6) using (4.7) shows that the
co — solution is pulled down in energy compared to the
solution of (2.11) which for small q reduces to

must reduce to those of a superlattice of reduced spacing
c/2. Calculation shows v is real for dl =c/2 and thus
g„„(q) is once again given by (4.11) but now for arbitrary
q, . That is, the co —(q, ) mode (zero of e —) exactly can-
cels out of g„„(q). However, we recall that the allowed
values of q, are determined by the Brillouin zone and
hence the G, spectrum. One may show that

v+(q) -2g'
a, qll + (q, +6, )

(4.i2)

where the sum is now restricted to 6, =(even)2x/c. We
see that effectively the reciprocal-lattice vectors are given
by n2x/dl Thus .the BZ for the co+(q, ) mode is now ex-
panded from x/c to x/d l and this accounts for the "miss-
ing" co —modes when d l c/2.

The preceding results are general in that no specific ap-
proximation for g2 was really needed. For illustrative
purposes, we now consider the co~ branches using the
long-wavelength limit given by (4.7). The solutions of
(4.S) and (4.6) are found to be given by

g«(q) = li —N, g2o(v —Rev)] .
2%spa

(4. io)
, (1+a~)2

co+ =v2Fq~~ 1+2a+ (4. i 3)

For q, -0, v is real and the e —factor in the denominator
on the right-hand side of (4.10) cancels a similar factor in
the numerator, leaving

where a ~ = v ~ m /nc. For q llc && 1, one finds

v+=2v(q), v =2xe dl(c —dl). (4.i4)

( )
2Nsg20

e+(qll, q, =O) (4.11)
The expression for v is valid for q, =0 and q, =x/c. For
the cases of interest, a ~ && 1 and we obtain from (4.13)

That is, for q, 0, only the co+(q, =0) mode is a pole of
the full-density-response function. The co —(q, =0) mode
cancels out completely. This result is valid for arbitrary
values of d l (such that 0 & d l & c) and for any qll.

Further insight into the two-plasmon mode solutions
co ~ of (4.S) and (4.6) is obtained by considering the spe-
cial limit when dl~c/2. In this case, ' the plasmons

2
qll

CO~ (q) 2COFI
q~~ +q,

(4.is)

(C —dl)co' (q) =v2Fql~ m*e'dl (4. i6)

We see that the m —branch occurs at a much lower fre-
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quency than the co+ branch. Numerical calculations in
Sec. V for arbitrary values of q~~ and q, show that in fact
the co-(q) branch is almost independent of q, for d~ &&c

and is essentially identical to the acoustic plasmon co

mode of an isolated bilayer. This corresponds to the
c ~ limit (in which case, only the q, =0 mode remains)
of our superlattice model. We refer to Sec. V for further

discussion.
We next turn to the case of a trilayer unit cell composed

of two identical outer sheets (at z, =0 and z, =2d~) and a
diA'erent sheet at zb =d I. Apparently such a trilayer basis
has never been studied in the semiconductor superlattice
literature. The trilayer superlattice RPA dielectric func-
tion e(q, co) derived in Ref. 11 reduces to

e(q, co) =1 —N,-v(2gz, +gzb)+(Ng2, ) [v —
~
v(2d~) ~']+2(N, g2, )(N,g2b)[v —

~ v(d)) ~']

+(N~g2a) (Ng2b) [2v ( v(d~)
~

+v ( v(2d~) )
—v —2Re[v(2di)v (di)v (d~)]j. (4.17)

In discussing the three plasmon zeros of e(q, co), for
simplicity we consider the c ~ limit. In actual fact, we
shall see that two of these modes involve charge fluctua-
tions which are weakly coupled to those in other cells and
thus they are essentially identical (assuming d~ &&c) to
those of an isolated trilayer. In this limit, (4.17) can be
reduced to [using (2.17)]

e(q, co) = 1
—2x. +xb+x,'(1 —e

' "")

+2x,xb(1 —e ' "")—x.'xb(1 —e '""")',
(4.18)

e(q, co ) = eg —(eg + xb eg —),
where e, + is defined in (3.12) with

v+ =v2o(l+'e ' ").2d lq

(4.19)

(4.20)

The first factor in (4.19) corresponds to a plasmon mode
in which the two outer sheets have out-of-phase charge
fluctuations while the center sheet is undisturbed. We
shall denote this as the co —plasmon mode, in analogy with
the mode which occurs in a bilayer. In the long-
wavelength limit d~q~t&&1, the dispersion relation of this
m —mode is given by

1
X = or co' =v22Fq~21(m*e'21)),

2q ~id i

(4.21)

exactly the same as the co —mode in the case of two layers
separated by 2d~ [see (4.16)].

The second factor on the right-hand side of (4.19) has
two zeros. They are easily found in the q~~d& &&1 limit if
we assume all three sheets are identical. One corresponds
to

where we have defined x; =—N, gz;(qi, co)vqo(qi). This can
be written in the form given by Mahan and Wu '

I

dramatically renormalizes this mode. In the long-wave-
length limit, the true m+ mode is given by the solution of
(v =v =v)

e(q, co) =1 —3N, giov(q) . (4.23)

The solution of this is identical to (4.2) except the
eAective charge density is not multiplied by 3. This
plasmon corresponds to a charge fluctuation in all three
sheets which are in-phase. The other zero of the second
factor in (4.19) given by

3X=
2d]q~~

or co3 v2Fq~f(
—', m*e d&). (4.24)

This mode corresponds to charge fiuctuations on the mid-
dle sheet oscillating out-of-phase with those of the two
side sheets.

It is these low-energy acoustic plasmons co — and co3

which are the new feature of a superlattice with a basis of
three sheets/unit cell. When the spacing between the
sheets (d~) is much less than the superlattice period c,
they are well approximated by the analogous modes of a
single trilayer. These features will be in evidence in the
numerical results we present in Sec. V. In contrast, the
high-energy plasmon branch' e+ is strongly renormal-
ized by the Coulomb coupling between neighboring cells
in the superlattice. We also note that the three plasmon
bands will merge into one as d ~

~ c/3.
As discussed in Ref. 11, Eq. (4.17) can be used to dis-

cuss the plasmons in Y-Ba-Cu-0 by taking the middle b
layer to be a plane of 1D metallic chains (along y axis).
In that case Ng 2(bq, ic)oN, g~(q~, co), where g~ is the
Lindhard response function for a 10 electron gas and N,
is the number of chains/unit volume. There is always a
mode corresponding to out-of-phase charge fluctuations in
the outer sheets, uncoupled from the middle layer. ' In
Ref. 10, we only discussed the long-wavelength plasmon
modes given by the zeros of

X= 3
1

2zn, e
or co+ =3

Ul
(4.22) e =1 —(2N, ~,'.+N, ~,')v(q) . (4.25)

This is the m+ plasmon mode of a trilayer in which the
charge fluctuations in all three sheets are in-phase. In ac-
tual fact, the coupling of the unit cell in a superlattice

In the case of an isolated trilayer ' described by (4.19),
this means we did not discuss the acoustic plasmon zero of
e„—but only the zeros of the second factor [which reduces
to (4.25) in the long-wavelength limit].
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V. PLASMON DISPERSION RELATIONS AND KFFECTIUE ELECTRON INTERACTION: NUMERICAL RESULTS

In this section, we present some numerical results for the zeros of e(q, ro) for the case of two and three metallic
sheets/unit cell. In the GRPA using the approximation discussed in Sec. III, the dielectric function for a superlattice
with three sheets at (z, -0, zb d ~, and z, di) is given by

e3(q, ro) = e,'(8 eb N g N, gb I v(d() I ) —eIN, g, N, g, I v(d2) I

—e,'N, g, N, gb I v(d2 —di) I

N, g—,N, gbN, g, 2Re[v (d2) v *(d
~ )v *(d2 —d ~ )], (5.1)

5.0

4.0—

BASIS: 2 SHEETS
O

c = l5A

where e is defined in (3.8). This is a natural generaliza-
tion of the RPA result given in Sec. IV. For tivo sheets (a
and b), it reduces to the result given in (3.7), which we
will denote by e2. In our calculations, we use the exact ex-
pression for the Lindhard function of a 2D electron gas.
In addition, the charge density is chosen to be the same in
each sheet, n, 1.5x10'"/cm . This is the sort of value
appropriate to oxide superconductors.

Figure 1 shows the zeros of the real part of e2 for two
identical sheets separated by d~ =3 A and a superlattice
period of c =15 A, using the RPA. One has two plasinon
branches co~ (qi, q, ) corresponding to the zeros of e+
—= 1 —

U ~N, g . For a given wave vector qII, there are N
plasmon modes in each branch labeled by q, ( —ir/c & q,
& x/c). In fact, one finds that the ro —(qi, q, ) mode are

essentially degenerate, with almost no dependence on q, .
This is because the co mode involves out-of-phase charge
fluctuations in the two sheets in a given unit cell. As a re-
sult, there is essentially no net charge fluctuation which
can couple into the other superlattice unit cells. This be-
comes more pronounced as the separation d ~ becomes
much smaller than c/2, as it is in the oxide superconduc-
tors. As d~ increases towards c/2, in contrast, the ro-
branch broadens into a band and the "energy gap" be-
tween the r0+ and co —branches disappears (see also Ref.
12).

As one example which might be relevant to Y-Ba-Cu-0

superconductors, ' if we ignore effect of the CuO chains
(see, however, Ref. 11),one has two Cu02 sheets separat-
ed by d =3.4 A in a superlattice unit cell with c =11.7 A.
To the extent that we can ignore charge fluctuations in the
BiO and T10 bilayers, the 2:2:1:2materials may also be
viewed as superlattices with two Cu02 sheets/unit cell. In
Bi 2:2:1:2, we have c 15.4 A and d~ -3.2 A; in Tl
2:2:1:2,c 14.7 A and d~ 3.16 A. Thus in both cases,
we have d ~/c —1/5 [as in Fig. 1]. In the first paper in Ref.
12, numerical plots are given for the co+ plasmon
branches [for dt/c 1/3, see Fig. 3; for d~/c 1/4, see
Fig. 5; for these ratios, the r0 (qt~, q, ) modes form a band
of finite width].

In Fig. 2, we show the plasmon-dispersion dispersion re-
lations as given by the GRPA dielectric function (3.7) in
conjunction with (3.2). As expected, both plasmon
branches ni+ disappear into the particle-hole continuum
at a much lower value of the wave vector qII.

We next turn to three equally spaced identical
sheets/unit cell (d2 2d~) with d~ 3 A and c 18 A.
These numbers are appropriate as a model for the 2:2:2:3
superconductors. As shown in Fig. 3, there are now three
plasmon branches. Again, because d~&&c, the two low-
frequency plasmon branches are well separated off from
the high-frequency co+ band and are essentially indepen-
dent of q, . The higher branch is the analogue of the co-
mode in Fig. 1. The new branch (which we label by co3) is
lower than the ni plasmon. —In Fig. 4, we show the analo-
gous modes in the hypothetical case where c 40 A. The
ro3 mode is unchanged while the co band sharpens up and
loses all dependence on q, as expected.

In Fig. 5, we plot the real part of e2(q, co) as a function
of ro for two identical sheets (as in Fig. 1). The fact that

2.0

I .0

0 0.2 0.4

q„(A ')
0.6

5.0

4.0—

5.0
O

2.0

BAS I S: 2 SHE ET S
0

c= l5A

FIG. 1. Plasmon modes co ~ (q~~uq, ) as a function of the wave
vector quoin for a superlattice (period c 15 A) with a basis of two
identical sheets (separated by d~ =3 A). In all figures, the sheet
density of electrons is n, 1.5x IO' /cm2. In Figs. 1-4, we plot
the plasmon modes for both q, 0 and z, =x/c. The r0 —modes
have almost negligible dependence on q, . These results are
based on the RPA results in (4.5) and (4.6) and should describe
the CuO2 planes in 2:2:1:2:superconductors.

I.O

0 0.2 0.4

q, (A '}
0.6 0.8

FIG. 2. Plasmon frequencies as a function of the wave vector
qi. Same as in Fig. 1 except that GRPA is used [see (3.7)].
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4.0

BASIS: 5 SHEETS
O

c= 18A

IO

z 7frc

TS

5.0

2.0

3
CT'

CP

I .0

'0 p4
q„{a )

0.6 0.8
-2

0.75 I.25
o) {eV)

I.50 I .75 2.00

FIG. 3. Three plasmon branches as a function of the wave

vector q)), for a superlattice (period c 18 A) with a basis of
three identical sheets (separated by d) =3 A). These results are
based on the RPA dielectric function (4.17). The plasmon
modes for 0 &q, & n/c form a band. These results should de-

scribe the Cu02 planes in 2:2:2:3superconductors.

r

v+ +
2 E'+

(s.2)

In Fig. 7, we plot this potential (normalized to u). It is
attractive for frequencies just below co+ and below co —,in
spite of the behavior of Ree2 in Fig. 5. By way of contrast,
vb, given by (2.9) in the RPA limit is quite different.

).2 is only negative between co and co+ is easily under-
stood using the factorized form e2=c+e —,where e~ is
defined by (3.12) and u ~ v+

I v I. A similar plot of the
real part of ).3(q, co) for three identical sheets (as in Fig.
3) is shown in Fig. 6. In both figures, the particle-hole
spectrum (for q)) z/c) starts at 0.67 eV.

In the RPA, the eA'ective interaction in a superlattice
with a basis of two identical sheets are given in (2.9),

v —(v —Iv I )Ng
u.'~(q, co) =

FIG. 5. The real part of the dielectric function e(q, r0) for the
superlat tice described in Fig. 1. In Figs. 5-7, we take
q)) =q, -m/c.

2 slnhq IIc
V2D

—G(q)))
coshq IIe

—cosq, c
(s.3)

From Fig. 5, we see that it will be only attractive in the re-
gion m —& co & co+.

The preceding numerical results suggest that because
the spacing between the Cu02 sheets is so much less than
the superlattice period c, the low-frequency plasmon
branches are essentially identical to those of an isolated
bilayer (see, for example, Ref. 22) or trilayer. In contrast,
the high-frequency plasmon branch ni+ can be treated as
if the spacing of the sheets in a unit cell was effectively
zero. That is, the co+ plasmon branch is the same as for a
superlattice with only one sheet/unit cell but with a
charge density either two (bilayer) or three (trilayer)
times larger.

Using this simplification in the case of two sheets/unit
cell, we can easily derive an analytic expression for the
effective intrasheet electron-electron interaction v,', using
(3.16) and (2.15). For the e+ pole, we use the d~ 0 ap-
proximation, in which case

v+ 2u(q) —G(q)))v2D

5.0

4.0

BASIS:3 SHEETS
c =40 A

qII= rc;q, =~rc
THRE E SHEE TS

I.O

3
tCr p

CL

0
0 0.2 04

O
0.6 0.8

FIG. 4. Plasmon modes in a superlattice with a period of 40
A and a basis of three identical sheets (d) 3 A). In compar-
ison with Fig. 3, the plasmon bands are much more narrow, as
expected.

0.75 I.OO I.25 I.50 I .75 2.00 2.25

~{eV)

FIG. 6. The real part of c(q, co) for the superlattice described
in Fig. 3.
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while for the e'—pole, we use the c ee approximation and
hence

u' -u20[1 —e v'"' —G(qr)] .

One finds after some calculation that the contribution of
the e+ branch to u,', (i —i' 0) is given by

u 2D sinhq ~~c sgn (Reb')

4b'2 —1

1 (u2DG) N, g 5.5
2 1+v2DGW, g

where

IO

P)

3 0

I

I

I

I

I

I

I

T
QJ+

I

I

I

I

I

I

I

I

I

2u2DNsg'(qll ru)stnhqllcb—:cosh/ IIc
1+u2DG(qr)N, g (qr, tu)

(5.6)
—IO

0.5 I.O I.5

m(eV)

2.0 2.5

This reduces to the RPA result obtained in Ref. 17 when
we set G(qr) 0. We note that the region —1 &b'&1
corresponds to the to~ plasmon band (b' 1 corresponds
to q, 0 and b' —1 corresponds to q, n/c). In (5.5),
we have a negative-square-root singularity for b'& —1

and thus an effective interaction which is attractive for
tu & r0+(q(i, q, rr/c).

The analogous contribution of the e' pole in (3.18)
based on (5.4) is given by

FIG. 7. The effective RPA interaction Rev,'o in (5.2) be-
tween electrons, as a function of the frequency, for the superlat-
tice described in Fig. 1. The results are normalized with respect
to i (q) given in (2.6), the value it would have without any cou-
pling to charge Auctuations. Rev,', is very small but positive for
m~0. 5 eV.

u20(1 —e " ')+N, g (u20) [1 —e " ' —G(q~~)]
u —(/ I 0qr, c0)

1 u2D[l e ' ' G(qr)]N g
(5.7)

This is identical to the contribution of the low-frequency
ru' plasmon of an isolated bilayer in the GRPA. We note
that u' is negative (attractive) for ru & cu'—(q~~).

Of course, rather than using the approximate analytic
forms (5.5) and (5.7), one can always use the full GRPA
expression given in (3.18) and carry out the q, integration
in (2.15) numerically.

Similar results can be obtained, using (3.15) in (2.16),
for the contribution of the ru'~ plasmons to the induced in-
teraction between electrons in different sheets of the same
unit cell.

VI. CONCLUDING REMARKS

In this paper, we have given a detailed discussion of the
plasmon modes in a superlattice with a basis of two or
three metallic sheets. As we argued in an earlier paper, "
this model seems appropriate for the oxide superconduc-
tors. In the present work, we have gone past the usual
RPA and have included local-Geld effects due to exchange
and correlation (in a simple Hubbard approximation).
More generally, we have emphasized that if one has n me-
tallic sheets/unit cell, one will have n —1 low-energy
(essentially acoustic) plasmon branches for a given wave
vector q. These are in addition to the high-energy
plasmon branch, ' which involves strong coupling between
neighboring cells in the superlattice. Our numerical stud-
ies show very dramatically that if the spacing between the

sheets (d~) is much smaller than the superlattice period
(c), the n —1 low-energy plasmon modes involve charge
fluctuations in a given cell which are only weakly coupled
to other cells. Thus they can be described using an isolat-
ed cell of n layers (such as a bilayer or trilayer).

Clearly our treatment of the band structure of the elec-
trons in a given CuOq sheet needs improvement. Howev-
er, the physics we have tried to emphasize is that arising
from the Coulomb coupling of charge Auctuations in
different sheets. When a better theory of the charge fluc-
tuations in a given CuOq sheet becomes available, it ean
be incorporated into our analysis. " One can easily gen-
eralize our results to metallic sheets with two components
or bands (see Fetter in Ref. 13).

The most relevant previous work on the plasmon-
induced electron-electron interaction worked strictly
within the RPA and was concerned with either a superlat-
tiee with a single sheet/unit cell, ' an isolated bilayer, o or
an isolated trilayer. ' Our work reduces to the results of
Refs. 17 and 21 in the appropriate limits.

The direct observation of the acoustic plasmon branches
we have predicted (by high-resolution inelastic electron
scattering or some other technique' ) would be a useful
way of confirming the metallic properties of the Cu02
sheets. In addition, if the Bi202 or T1202 bilayers are me-
tallic (as suggested by band-structure calculations ),
they would give rise to an additional low-energy plasmon
mode (see Appendix 8 for further discussion).

In future work, we hope to use results such as (5.5) and
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(5.7) to see how effective superlattice plasmons are for
Cooper pairing in the oxide superconductors. In conclud-
ing, therefore, we brieAy review the current status of
plasmon-induced pairing studies. In bulk metals (both 3D
and 2D), it is well known that the simple exchange of
RPA plasmons by an electron can lead to anomalously
large pairing. ' Indeed, it was found that the method
used by Takada [the Kirzhnits-Maksimov-Khomskii
(KMK) approach to solving Eliashberg's integral equa-
tions] gave rise to a considerable underestimate of T, .
However, when one includes vertex corrections in the elec-
tron self-energy and goes past the RPA, plasmons are
found to be much less effective as a pairing mechanism.
In the case of a single 20 metallic sheet, similar results
have been recently reported by Canright and Vignale. '

In particular they found that within the RPA, one ob-
tained strong pairing in the low-density limit, but that this
was not the case when one worked with an effectiv
electron-electron interaction given by the GRPA [Eq.
(3.11) With V v20(1 —G)].

The question which still remains is whether the situa-
tion in superlattices is more conductive to pairing. Com-
paring the situation with that in conventional supercon-
ductors, one can think of the first term in (3.18) as the
analog of the dynamically screened Coulomb interaction
while the second term is the analog of the lattice phonon-
induced interaction. The characteristic frequencies are
set by co+ and co —,respectively. We expect that the
high-energy m+ plasmon branch ' will not be an
effective-pairing mechanism when one goes past the RPA.
Whether the low-energy co — plasmon branch is more
robust requires more study. At present, two relevant RPA
calculations have been reported but the situation is some-
what unclear. Giuliani has discussed plasmon-induced
pairing in an isolated bilayer but since he made use of the
KM K approximation, the results are not definitive.
Mahan and Wu ' have given a detailed discussion for a
trilayer (two outer Cu02 sheets with a middle layer of
parallel CuO chains) such as occurs in Y-Ba-Cu-0 ma-
terials. ' However they found no pairing in their RPA
analysis and, moreover, gave various arguments why onc
would not expect it in a BCS-plasmon exchange model.
This is puzzling since it appears to be in sharp conOict
with all of the literature on this topic. ' 6 Moreover,

I

Mahan and Wu ' do not give any convincing arguments
why the effect of short-wavelength plasmons should be
any different than long-wavelength plasmons.

We feel that the GRPA results of the present paper will
be useful in extending the calculations of Canright and
Vignale, ' and hopefully help to settle the question wheth-
er the low-energy acoustic plasmons which occur in super-
lattices with a basis are responsible for the high supercon-
ducting transition temperatures in the oxides. We note
that T, increases with the number of metallic
layers/unit cell, as does the number of acoustic plasmons
which might give rise to pairing.
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APPENDIX A

In the case of a superlattice with a basis of three equally
spaced metallic sheets (z, =0, zb d~, and z, =2d~), one
finds the effective electron interactions satisfy the coupled
RPA equations

(Al)

These are the equivalent to Eq. (2.8) for a bilayer basis,
and similar notation is used. Solving these coupled equa-
tions, one finds, for example,

v,', (q, cv) [v N, gb[v —
)
v(d—&) ( ] —N, g, [v —

) v(2d&) ( ]

+N, xboN, Z'[v ' 21 v(d i) I—'v —
I v(2d i) I

'v+2 Rev(2d i)v*(di) v *(di)]&/~3, (A2)

where e3 is the RPA superlattice dielectric function for
this system. For the special case of g, g„ t..3 reduces to
the expression given in (4.17). If we further work in thec~ ~ limit (i.e., the trilayers are isolated), v and v are
given by (2.17). In this case, (A2) can be shown to sim-
plify to the expression S22 given by Mahan and Wu. '

APPENDIX B

Let us consider a superlattice model for the 2:2:1:2-Bi
superconductor where the superlattice unit cell is viewed

I

as having a single Bi202 metallic bilayer and two Cu02
sheets. To the extent that we work in the long-wavelength
limit, the dielectric function simplifies to the first two
terms on the right-hand side of (4.17). Generalizing to n
Cu02 sheets/unit cell for Bi2Sr2Ca„—~04+2„, the zeros of
e are given by the solutions of (qc « 1)

N [ngcuo(qadi, ~)+@Bio(qadi, co)],1

v q

where, for example, gc„~ is the 2D Lindhard function
describing the relavant Landau quasiparticles of a Cu02
sheet.
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vzF(CuO)qadi & co3 & v2F(BtO)q((. (B2)

It is clear from (4.7) that there are only two solutions of
(Bl), one low-energy superlattice plasmon mode and the
usual high energy superlattice plasmon. That is, (Bl)
does not exhibit the expected n —1 additional low-energy
plasmon modes. One has to keep the higher-order terms
in (B1 ) to pick up these, as we discussed in Sec. IV for the
case of three Cu02 sheets.

The low-frequency plasmon solution of (Bl) will be
denoted here by cu3(q). From available band-structure
studies, we have UqF(CuO)«v2F(BiO) and thus the
m3 plasmon will occur in the windo~

and

q '+ 4ne InN2F (CuO) +N2F (BiO)]/c
q, n

4tre nN2F(CuO)/c

N, (BiO)=1+
nN2F (CuO)

(B6)

The last line assumes we are working in the limit
q &&qI=T, where qFT is eA'ectively the Fermi-Thomas wave
vector in this problem. We note f(q, n) decreases as n in-
creases and thus S(n) increases with n Of course, since
c03(q) is in the window (B2), we must have

1 1
nN 2F (CuO) —1

v(q) c [ru' —
U2F (CuO) q(~

1'l'

—N2F(BiO) (B3)

The solution of this is given by

cu3(q) -S(q, n )U2F (CuO)q ~~, (B4)

where

f2
(BS)

It is useful to make a graphical plot of the right-hand side
of (Bl). Making use of (4.7), we have for co in the win-
dow given by (B2)

U2F(BiO)
S(q, n) &

V2F UO
(B7)

We also remark that the c03(q) acoustic plasmon in (B4)
is only damped due to coupling with the BiO bil.ayer
particle-hole excitations (i.e., it would be independent of
n)

The question of whether the Bi202 bilayer is metallic is
still controversial. The observation of an additional
acoustic plasmon branch whose frequency varied with the
number of Cu02 sheets in a unit cell as predicted by
(B4)-(B7) is one way of answering this question . In this
connection, we note band-structure studies suggest that
the Bi202 bilayer is not metallic in Bi 2:2:0:1but is metal-
lic in Bi 2:2:1:2and 2:2:2:3. In connection with a pairing
mechanism due to low-energy plasmons, this gives a nat-
ural explanation of why T, is so low in Bi 2:2:0:1 (10 K)
as compared with Bi 2:2:1:2(85 K) and 2:2:2:3(110K).
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