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Charge fluctuations between Cu02 layers in high-temperature superconductors
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A simple model based on the phase transition between a Bose liquid and a Fermi gas is present-
ed. We show that under certain assumptions the long-range (distance greater than 3 A)
Coulomb forces favor charge Auctuations between neighboring Cu02 layers in high-temperature
superconductors, provided that the number n of Cu02 layers within a unit cell is 2 or greater
(with the convention that n= 1 for La 2:1:4and n=2 for Y 1:2:3,etc.). Qualitative discussion of
the variation of T, on n, and on the doping parameter, is given.

I. GENERAL DISCUSSION

A. Boson dissociation and energy gap

One of the striking features' of the high-temperature
superconductors is the smallness of the "coherent length"
(= 10 A, which is much less than the normal type-1 or
type-2 superconductors. The parameter g measures the
radius of the magnetic filament that penetrates the super-
conductor, whose flux is quantized in units of 2+he/2e.
This indicates a pairing mechanism between electrons or
holes that is reasonably well defined in the coordinate
space. Therefore, one may represent the pair state by a
phenomenological local boson field p(r) whose mass m is= 2m„and its elementary charge unit is + 2e, where m,
and e are the mass and (the magnitude of) charge of an
electron. The gap energy 6, has been observed, ' and is of
the order

(p/pH, ) (mH, /m ) x 2.2 K = 2000 K . (1.3)

Alternatively, one may set T& = T~ -10 K, then m
would be about 40m„which also seems to be unusually
large. [For bosons with an anisotropic inertia tensor of

~-kT;,
where T, is the critical temperature and k the Boltzmann
constant. The apparent localization of the pairing makes
it natural to explore the analogy"' with liquid helium (at
least as an alternative theoretical possibility, different
from the conventional BCS approach). However, there
are two major differences.

(i) Helium is electrically neutral, while a superconduc-
tor must have charged particles. One of the main con-
cerns of this paper is to examine the effects of the long-
range Coulomb forces of these charged particles.

(ii) The A transition of He is determined by the Bose-
Einstein transition, where the critical temperature T~ is
given by

(1.2)

with XT as the thermal wavelength and p as the num-
ber density. For He, Ta is 2.2 K. If one applies (1.2) to
the new high-temperature superconductors, then for
m 2me,

eigenvalues m„, m~, and m, ; the m in (1.2) and (1.3) is
(m, m~m, ) ' which, for m„=m~ =2m„would require
m, = 1.6 && 10 m, to have m =40m, .]

This difficulty may be circumvented by assuming the in-
dividual quantum (i.e. , the pair state) of the phenomeno-
logical boson field p to be unstable with

p~ 2 holes (or 2e) . (1.4)

We represent the condensate by a Bose liquid, made of a
macroscopic number of p quanta. Let 6 be the binding
energy per p quanta in the liquid phase, and m —2m, be
the mass diff'erence in (1.4). Under the assumption

A& (m —2m, )c &0 (1.5)

(with c= velocity of light), the macroscopic system can
be in either a Bose-liquid phase, or a Fermi-gas phase; the
latter is very different from liquid He I. The order of mag-
nitude of the critical temperature is then given by (1.1),
not (1.2). Thereby, the difficulty of (1.3) is avoided.

B. Bose-liquid and Fermi-gas model

At low temperature, the system is in the Bose-liquid
state, which is a three-dimensional superfluid (such as
liquid Hell). At high temperature, it is in a Fermi-gas
state; hence, the usual band theory of normal electrons (or
holes) in a conductor becomes applicable.

To overcome certain habitual associations with respect
to liquid helium which would be misleading here, we offer
the following mutilation of helium physics to make the
analogy closer. Imagine that the helium nucleus were un-
stable to fission into deuterium. But suppose the energy of
dissociation were less than the binding energy per atom of
liquid HeII. Then at absolute zero temperature HeII
would be the favored state, but as the temperature was
raised in a container of fixed volume, HeII would coexist
with deuterium gas in diminishing ratio until all the liquid
He would evaporate at some temperature T(p) that de-
pends on the total amount in the container, but which we
take to be much less than 2.2 K. This could be achieved
in our hypothetical case by near equality of the dissocia-
tion energy He 2D and the binding energy of the
liquid.
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In such a world, neither He gas nor liquid Her would
exist. Helium would form only at microtemperatures
from deuterium gas by direct condensation into liquid
He I t. It is this process that we propose as analog to the
high-temperature superconducting transition in ceramics.
(Here, the term "ceramics" is used even though its normal
state is a conductor. )

In this analogy, an electron hole corresponds to an atom
of deuterium. Since the composition of the ceramic deter-
mines the overall density of holes, the process of heating
the superconducting ceramic is indeed like that of heating
a liquid-gas mixture in a closed container. This diA'ers in
two important ways from the usual process of heating a
liquid at fixed pressure.

First, in closed-container heating one does not arrive at
the critical point, unless the fixed overall density was
properly chosen to be the critical density p, . For orienta-
tion purposes, assume that if the "liquid-gas" system in
ceramic superconductors has a critical point, the critical
density is greater than the hole density achievable in prac-
tice. In heating at fixed subcritical density, the liquid will

gradually evaporate and one is left with pure vapor at a
temperature less than critical.

Thus, the temperature T(p) at which all the liquid
disappears, which is customarily called T, for the super-
conductor, does not correspond to the liquid-gas critical
temperature; the latter only pertains to one special p =p, .
Rather, T(p) is that temperature for which the gas at
coexistence attains the given density p.

Second, away from the true critical point the liquid-gas
transition is first order. Yet in closed-container heating
one does not observe the expected discontinuities, for ex-
ample, in the total energy. These discontinuities exist be-
tween the two phases, but the system does not convert in

bulk at a sharp temperature from one phase to the other.
In other words, a confined liquid does not boil if heated
slowly. The pressure of the gas simply mounts along with
the vapor pressure of the liquid, until all the material has
smoothly evaporated.

Therefore, following this analog, we may speak of the
superconducting transition in ceramics as first order,
even though no latent heat is observed because
calorimetry does not distinguish the two coexisting phases.

At zero temperature, the system is in the Bose-liquid
phase. As temperature rises, the evaporation into the
Fermi-gas phase forms a Fermi sea with a top kinetic en-
ergy which may be much greater than the energy gap 4,.
In Appendix A we discuss why such a Fermi sea does not
prohibit the continuing evaporation process with increas-
ing temperature.

One naturally pictures the coexisting liquid and gas as
occupying separate volumes. But there is another option:
In our hypothetical world, deuterium might exist as a
solute gas inside the liquid Herr. This would explain the
same phenomena, unless one looked inside the container
to see whether the two phases were separated.

C. Separation of phase and Coulomb energy

In ceramic superconductors, each boson or fermion car-
ries an electric charge 2e or e. The overall density is just

enough to balance the net negative density of fixed back-
ground charge. Therefore, it would seem impossible to
have two separate phases of diAerent density, as neither
phase would be electrically balanced and the Coulomb en-
ergy would be huge. By this reasoning, the Fermi gas
must be "dissolved" in the Bose liquid.

There is, however, a compromise option. Fermi gas and
Bose liquid might separate onto adjacent layers of Cu02.
They would then screen one another about as effectively
as the net positive charge on the Cu02 is screened by neg-
ative charges on the other layers.

The main purpose of our paper is to explore this 1atter
option in relation to the number and spacing of Cu02 lay-
ers. To this end, we separate the energy of the bosons into
a long-range Coulomb part, for which we can make de-
tailed calculations depending on the layer spacing, and a
short-range phenomenological part, whose form we can
only guess but which we assume to be unaA'ected by any-
thing outside a given Cu02 layer except its nearest-
neighbor atoms (see Sec. ID).

Our calculations in this paper will be restricted to zero
temperature, at which the Fermi gas is infinitely dilute.
Hence, "separation" simply means that the Bose liquid
occupies some layers and not others. We shall also use the
term "charge fluctuation" to denote this situation.

Phenomenologically, one may separate the interaction
energy U into a short-range U& and a long-range Coulomb
term U, :

U=Up+ U, ,

where U& can be written as

(1.6)

In a typical high-T, superconductor, the crystal struc-
ture is orthorhombic with the lengths of the two short axes
a and b in the neighborhood of 3.8 A; the long axis c is ap-
proximately given by

c -(n —1)c~.+c2,
where n is the number of Cu02 planes per unit cell, c ~ is
typically -3.2-3.3 A, and c2 varies from 6.59 A. in La
2:1:4 to 11.54 A in Tl 2:2:2:3. The distance between
nearest-neighboring Cu and 0 sites is 2 a =

2 b and that
between neighboring 0 sites is a/J2. Both are smaller
than 3 A. We assume that the pairing and the phenome-
nological local interaction function u (p) are due mainly to
all forces (Coulomb, spin-spin, and exchange) at these
small distances (d(=a b=3.8 A) in the same Cu02
plane. The long-range Coulomb term U, in (1.6) includes
all electrostatic forces between charged particles on
different Cu02 planes (spacing at cr or c2 from each oth-
er), as well as between those on the same Cu02 plane that
are at distances ~ d from each other.

Of course, there is some arbitrariness in the value d.
But since U& by its form is insensitive to density fluctua-
tions in lengths & d, we want d as small as possible pro-
vided that U& includes all non-Coulomb eiTects. This

U&= u(p)d r

with u as a local function of the charged boson-density

(1.8)
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u(p) (m —2m, )c'p as p 0, (1.12)

and in order to have d, & 0, u (p) must be negative (attrac-
tive) at some range of p. Let OL be tangent to u(p) with
0 denoting the origin (p =0) and L the tangent point on
u(p). If there were no long-range Coulomb interaction
(i.e., if U, =0), then at any density p & pl, , the density at
L, the system would separate into two phases: At zero
temperature the system condenses into a Bose liquid
which occupies only a fraction p/pL of the total volume Q.
This can be readily seen by considering any point
P(pp, up) on the line segment OL, and noting that, as
shown in Fig. 1,

u (pp) & up =uLpp/pt (1.13)

where uL = u (pL ) = —d„ the negative of the binding ener-

u{p)

0{@ )-
P

0 m=44

gives, as a lower bound d a or b.
The Bose liquid is composed of the p quantum. Each p

quantum is essentially two dimensional, with a linear size
of the same order as d, and these quanta hop from lattice
site to lattice site (in the three-dimensional space). Since,
as will be discussed in Sec. ID, each boson involves two
0 ions, we associate the bosons with their center-of-
mass positions, the Cu + sites. Let Q; be the charge-
density operator of the p field at the ith lattice site. The
purely bosonic part of the long-range Coulomb interaction
can be written as

(U, )b,.„=—1 g Q(QJ/r;~ . (1.10)
1 &J

The restriction i&j is equivalent to assuming that

d aorb.
As we shall see, a larger d means more charge fiuctuation
for the Bose liquid; therefore (1.11) also serves as a lower
bound for the estimation of charge fluctuation. Coulomb
interactions in the same Cu02 plane, but over distances
& d, are excluded here, since they are already included in

U&. In the Fermi-gas phase, we have the standard conduc-
tion electrons, whose density may be approximated by a
uniform one. The decomposition (1.6) of the interaction
energy U applies only when the system is either in a pure
Bose-liquid phase, or in the two-phase region.

In Fig. 1, we give an example of the local energy density
function u(p) that appears in (1.7). Because of the insta-
bility (1.4) and the inequality (1.5),

gy per boson. Thus, if U, were zero, the liquid in the
two-phase region is represented by L. On the other hand,
since U, &0, such a large-scale density fluctuation between
the liquid and the gas also means a large charge fluctua-
tion. Of course, to minimize the Coulomb energy, each
unit cell would be electrically neutral. But within a cell,
there could still be charge fluctuation between neighbor-
ing Cu02 planes.

Other things being equal, one might first suppose that
the Coulomb energy would be minimized by distributing
charge evenly between two equivalent layers, and there-
fore that the separation of phases in layers would take
place only if the inequality (1.13) were stronger than the
Coulomb effect. Actually, we find that the Coulomb
effect may possibly favor separation. As we shall see, the
answer depends sensitively on the number of Cu02 layers
per cell and the ratios between lattice spacings a, b, c1,
and c2.

Consider two Cu02 planes at a spacing c~ -=3.2 A from
each other. The Coulomb energy of two neighboring p
quanta on different Cu02 planes can be as large as
(2e) /c~. However, if these two p quanta are placed on
the same Cu02 plane, their contribution to U, would be
~ (2e) /d. Because d=a & c~, the latter energy can be
smaller than the former. In this picture, the long-range
Coulomb interaction U, would favor charge fluctuations
between neighboring Cu02 planes.

It may be objected that if two quanta are on closely
neighboring planes they will simply avoid each other so as
not to incur the maximum energy (2e) /c&. But doing so
will cost a kinetic energy that may well be of the same or-
der. The (superfluid) Bose liquid must contain a substan-
tial zero-momentum component, which acts against such
an increase of kinetic energy. For simplicity, we assume
that kinetic "stiffness" dominates so that in evaluating U,
the charge distribution within each plane is uncorrelated
with the other. But any cost of exclusion of two quanta on
the same plane from a single site is already part of U&.

The detailed calculation of charge fiuctuation will be
given in Secs. II and III. For simplicity, take the temper-
ature to be zero. Hence, we have only the Bose liquid. Its
charge fluctuation produces a long-range Coulomb ener-

gy, since there is no Fermi gas (normal conduction elec-
trons) to screen the effect; the polarization due to other
material present only reduces the Coulomb potential by a
factor e, where e is the dielectric constant. As we shall
see, in La 2:1:4 (n= 1) the long-range Coulomb force is
against any charge fluctuation. Hence, the dependence of
6 on the doping parameter y reflects directly the function
u(p). On the other hand, in Y 1:2:3 (n =2) large charge
fluctuations can occur between neighboring CuO2 planes
within the same unit cell. The dependence of 6 on the
doping parameter x is then a convolution function of
u(p); the result is for d to acquire a "steplike" variation
versus x. A similar feature should also manifest itself in

Tc VS X.

FIG. l. A schematic drawing of the local energy density u(p)
vs the boson density p.

D. An example of pairing mechanism

The long-range Coulomb interaction is not sensitive to
the details of the pairing mechanism nor the the underly-
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ing basis of the local energy density u (p). Yet, for appli-
cations to superconductors such as

I
I

0 I I 0 I I
1L

I I Q I l 0
) I

(La I —«Sr» )2Cu04 and YBa2Cu306 54-„, (1.14)
Ii ~ It 0 ar ~ gi ~ is1' '1 I'

p 2 x y per Cu02 layer per cell. (1.1 5)

As shown in Figs. 2(c) and 2(d), there is also the possi-
bility of the clustering of four 0 or six 0, each of
which carries no frustrated bond, thus further decreasing
the magnetic energy (though increasing the Coulomb en-
ergy). We hypothesize that the gain in the antiferromag-
netic energy etl overcomes the Coulomb repulsion. (This
requires the short-range Coulomb energy to have a large

a concrete model might be useful; it would help one,
among other things, to relate the boson density p to the
doping parameters x and y. In the following, we give a
highly simplified model in which the pairing mechanism
is an adaptation of the ideas of Aharony et al. , Bir-
geneau, Kastner, and Aharony, and Uemura. ' This
model is not a necessary premise for the calculations to
follow, but it may render our ideas about the function
u (p) plausible.

It is well known that, e.g. , La 2:1:4is antiferromagnetic
when y 0. Superconductivity"' appears when y is ap-
proximately greater than or equal to 0.025, and it disap-
pears when y is -0.15. Because La La3+, Sr=Sr2+,
Ba=Ba +, and Cu=Cu +, when y 0, all 0 are 0
When y is greater than 0, some 0 turn into 0 . Phe-
nomenologically, one may give the interpretation 0
creates antiferromagnetism in the Cu + spins on a Cu02
plane, while 0 destroys antiferromagnetism and induces
superconductivity. Likewise, in Y 1:2:3,when x 0 we
have Y=Y +, Ba=Ba +, Cu=Cu +, 0=0, and the
substance is antiferromagnetic. Superconductivity '

arises only for x & 0 when some 0 become 0
Take the covalent-bond picture. In a linear Cu +—

0 —Cu chain, the extra (2p) electron in 0 likes to
spread out its wave function toward both Cu + in order to
decrease its kinetic energy (and also increase the Coulomb
attraction). This is possible if its spin is antiparallel to the
hole spin in each Cu + (3d ), making the two Cu + spins
parallel. On the other hand, in a Cu + —0 —Cu2+
chain, since the spins of the two extra e in 0 are anti-
parallel, each of which is, in turn, antiparallel to the hole
spin of one of the neighboring Cu +, the two Cu + spins
are also antiparallel. Because the latter is through a
high-order (superexchange' ) process, its energy prefer-
ential et~ is much smaller than the former et~. En the
Cu02 plane of, say, YBa2Cu3065~„, when x=0 all
neighboring Cu spins are antiparallel; the system is there-
fore antiferromagnetic. When x &0, the appearance of
0 destroys the antiferromagnetism. From Figs. 2(a)
and 2(b), we see that an isolated 0 forces three pairs of
Cu spins in the Cu + —0 —Cu + bond to be parallel
(called "frustrated" bond), whereas a pairing of two 0
produces only two frustrated bonds, ' instead of six
frustrated bonds if unpaired. Thus, there is a tendency to
pair 0 . Each 0 (being 2p ) carries a hole; the Bloch
wave of the oxygen-hole pair can then be represented by a
boson field ItI. When all 0 are paired to form p on the
Cu02 planes, we have the (maximum) boson density

Q II O II I I 0 II 0 II

(a) (b)

O It 0

O &1 0

o ~ 0
4k 4L sk~ I&

yi ~ &l ~ 1l
1r 1P

0

II 0 II 0 II

0 0
gk Jk
I I Q 1 I 0 I I

FIG. 2. Filled squares are Cu +, filled circles are 0, and
open circles are 0 . Each 0 forces its two neighboring Cu
spins to be parallel to each other. (a) shows that an isolated 0
can cause three three pairs of Cu spins in the linear Cu —0
Cu chain to be parallel, thus creating three "frustrated" bonds.
In (b) a pairing of two 0 produces a net of only two frustrated
bonds, which may serve as a candidate for the bosonic field p.
(c) and (d) show clusterings of four 0 and six 0; these
configurations do not produce any frustrated bonds of Cu spins.
(c) and (d) Inay provide nonlinear attractive interactions for p.

E. Exiraplanar oxygen

It is generally agreed that superconductivity takes place
in the Cu02 planes which are the one feature common to
all the high-T, ceramics. Since these planes have always
the same structure, it seems difticult to account for the
marked diA'erence in T, among La 2:1:4,Y 1:2:3,etc. Al-
though the proximity of two such planes in Y 1:2:3may
lead (as we shall show) to concentration of charge on one
layer, that would still not make Y 1:2:3far more favorable

reduction factor due to polarization and screening. ) Fig-
ure 2(c) suggests that the coefficients of p in u(p) may
be negative, which can be the origin of the attractive in-
teraction. From Fig. 2(c), one sees that it is not possible
to cram six 0 into a unit lattice square; this makes the
coefficient p in u(p) positive. [Figure 2(d) may lead to
an additional, but nonlocal, small attractive p interac-
tion. l Because of stability due to Coulomb repulsion at
very close distances, u(p)~ ~ as p~ ~. In Figs. 2(c)
or 2(d), since the gain in etl is approximately a few
x10 ' eV, after its cancellation with the Coulomb ener-
gy, the net gain might be approximately x 10 eV, which
determines the gap energy h„and is consistent with a
Tc —10 K
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to superconductivity than La 2:1:4, if the function u(p)
within a layer were the same for both.

We are therefore led to compare the immediate neigh-
borhoods of Cu02 layers in different ceramics. In La
2:1:4,the neighboring plane on each side contains an 0
corresponding to each Cu + site in the superconducting
layer, so that the Cu + is really surrounded not by four
but by six oxygen sites forming an octahedron. But in Y
1:2:3,only one neighboring plane provides an 0 so that
each Cu + is surrounded by only five oxygen atoms mak-
ing a square pyramid. The diagonal of the square base is—3.8 A, while the height of the pyramid (i.e., the half-
length of the octahedron) is only —2.4 A. It seems natu-
ral then to speculate that the extraplanar oxygen neigh-
bors weaken the pairing mechanism in the plane so as to
account for the higher T, in Y 1:2:3 (which has only one
such extraplanar oxygen) than in La 2:1:4 (which has
two). This appears reasonable since we are interested
only in a small change of energy =10 eV. The idea
draws support, if the pairing mechanism depends on the
frustration of antiferromagnetism, from the fact that Neel
temperatures are also about twice as high in Y 1:2:3as in
La 2:1:4compounds.

In the n & 2 compounds, the outer two layers are "py-
ramidal" while the inner one(s) are "planar" —the Cu +

ions have only four oxygen neighbors. Let uggt(p),
u~„,(p), and u~~(p) be, respectively, the local energy den-
sity function u(p) when the Cu +02 square in Fig. 2(c)
is the midplane of an octahedron (as in La 2:1:4), is the
square base of a single pyramid (as in Y 1:2:3),and is on
an isolated Cu02 plane (the middle plane in Tl 2:2:2:3or
Bi 2:2:2:3). We expect the minimum of these three func-
tions, labeled by —6, t, —Apy„and Apf to satisfy the
inequality

~~t & ~pyr & ~p~

Schematic drawings of these three u(p) are given in Fig.
3. As will also be speculated on in Sec. III, the critical
temperature T, for n 1, 2, and 3 reflects the diA'erent
values A~t Apy and h, p~, which makes T, rise with in-
creasing n for n ~ 3. However, T, for n 4 may turn out
to be less than T, for n 3.

High-temperature superconductivity is a rapidly grow-
ing field. Yet, its underlying mechanism is still not under-
stood. Many of the model-dependent statements made in

I

u(p)

C'
O

O

~O

FIG. 3. Schematic drawings of u(p) when the Cu2+02
square in Fig. 2(c) is the midplane of an octahedron (as in La
2:1:4),is the square base of a single pyramid (as in Y 1:2:3),and
is on an isolated Cu02 plane (as the middle plane in Tl 2:2:2:3).

this paper are conjecture. Nevertheless, since the long-
range Coulomb force is known exactly and is not sensitive
to the model at small distances, an examination of its role
should be of some value.

A. A single plane of charged square lattice

Consider first a two-dimensional square lattice that lies
on the z =0 plane in a Cartesian three-dimensional space.
The lattice sites are located at

rn eon &d+e~n2d (2.1)

where e„and e~ are unit vectors parallel to the x and y
axes, d is the lattice spacing, and n ~ and n2 are integers.
On each site we place a charge of the same value q. To
avoid the technical difhculty of the long-range r
Coulomb potential, we introduce the Yukawa potential
V(r) at a point outside the lattice (r~r„):

II. CHARGED SQUARE-LA't I'ICE LAYERS

In order to evaluate the long-range Coulomb energy
(1.10), it is useful to have on hand the solutions to the fol-
lowing problems in electrostatics.

goo f+oo oo

V(r) q J dx' J dy' g g b(x' n~d)b'(y' —n2d)—
n —~nI 2 R (2.2)

where p is a small positive parameter (p ~ 0 in the end),

(2.3)

with

where r„= ) r„~, and the sum extends over all lattice sites
r„~0.

Next, replace the discrete charge distribution by a uni-
form surface charge density

r=(x,y, z) and r'=(x', y', 0) . (2.4) o -q/d' (2.6)

When r coincides with the lattice point, say r =0, define
Vo to be the Yukawa potential due to all other charges:

on the same z 0 plane. The corresponding Yukawa po-
tential is

Vo—=q g e "'"/r„
r„eo

(2.5)
woo moo —pR

V(r) =o dx' dy' (2.7)
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In the limit p 0, V and V become the Coulomb poten-
tials; both are divergent but the difference is finite. Define

Q

and

v(r) =—lim [V(r) —V(r)]
p 0

vp= lim [Vp —V(0)] .

(2.S)

(2.9)

C)

Cp

It will be shown in Appendix 8 that

a' 4x
UO +

d 3
(2.10) (b)

where

3x
m sinii (xm)

8
—xm

m sinh(arm )
0.2885 (2.i i)

FIG. 4. Examples of (a) the unit cell of an N 2 tetragonal
lattice and (b) that of a modified N 2 tetragonal lattice.

and, for zWO, v(r) is

v(x,y, z) qP (md) 'exp[2x(imix+im2~ —m ( z ( )/dj

V(P P Z ) ~q g (md)
—

I&
—2am [z I/d (2.i3)

and

(2.i2)

with m (mi +m2) '/ and the sum g' extends over all
integral values of m i, m2 except m i m2 0 (these nota-
tions will be used throughout the paper).

In the following, we shall frequently encounter the
value of v(r) at two particular positions, r~(p, p, z) and
r ( —,

' d, —,
' d, z) with zWO:

starting from an N 2 tetragonal lattice, keeping its even
layers fixed, but moving all odd lattice sites parallel to the
squares along the diagonal direction, changing from
corners to centers (of the original squares), as illustrated
in Fig. 4(b).

The Coulomb energy of the entire lattice is given by

2JVQz = 2 g q(q&/p;/,
l&J

(2.i6)

where JV is the total number of unit dx d x (ci+c2) cells,
i and j run separately over all lattice sites (with i&j), and

q; q or —
q depending on whether i is on the even or odd

layers. Thus, 2u, is the Coulomb energy per unit cell, and
u, is that per unit square of each layer. By using
(2.8)-(2.14), we derive

v(-,' d —,
' d, z) -qg (md) '( —1) ' 'e

(2.i4)

C1C2
uc 2x

2d (c i +c2)d
2 I+x-+g iv, (2.17)

m

The difference between the Coulomb energy per unit
area of the above discrete and uniform charge distribu-
tions is

+ x —1.9501o d, (2.15)
1 qUO 1 q2 4~2d2d3

which, as expected, 0 as d 0 (at a fixed-surface
charge density cr).

where rc is given by (2.11)and

(I e
—2zmc/d) —i [2e

—2amc/d ( ~ 1)~&+~z
Ptl

—2zmc~/d+ —2zmcz/d) j

(2.is)

in which the upper sign is for the N 2 tetragonal lattice,
the lower sign for the modified one, and

C C~+C2. (2.i9)
8. N 2 tetragonal lattice with alternate

layers of opposite charges

Define an "N 2" tetragonal lattice to be one whose
unit cell consists of two parallel layers of d x d square lat-
tice, placed at a distance ci or c2 from each other so that
from the lattice site of one layer we can reach that of the
other by a displacement of c& or c2, perpendicular to the
layer (analogous to the two Cu02 planes in Y 1:2:3).The
volume per cell (ci+c2)d . As illustrated in Fig. 4(a),
diNerent lattice sites on the same layer carry identical
charges, +q or —q, with the sign switching back and
forth from layer to layer. %'e call those with +q "even
layers, "and those with —q "odd layers. "

Next, define a modified N 2 tetragonal lattice by

In (2.17), the first term in the square brackets gives a con-
tribution

2
KC ~C2

uc
(c i+c2)d'

(2.20)

to u, . This is the Coulomb energy if the discrete charges
are replaced by alternate layers of uniform surface charge
densities +o and —cz, where rr q/d The Coulom. b en-
ergy u, for the continuum is always positive; its minimum
is-when cr 0. If we identify + q as the charge fluctua-
tion, this means that the continuum energy u, is always
against charge fluctuations between layers.

In the discrete case, when q 0, u, is 0. However, de-
pending on the ratios ci/d and c2/d, u, may be (0, in
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which case the Coulomb interaction would favor charge
fluctuations between even and odd layers. For example,
when c~ =c2 d, according to (2.17) and (2.18) u, is neg-
ative. This may appear strange, since the electric forces
are attractive between charges on neighboring layers but
repulsive between charges on the same layer; the former
holds only in one direction, say along the z-axis perpendic-
ular to the layer, while the latter holds in two directions,
along both x and y. Note that for any given charge,
among its six nearest neighbors, two are attractive and
four are repulsive, giving a net positive Coulomb energy.
On the other hand, among its twelve next nearest neigh-
bors, eight are attractive and only four repulsive, which
gives a net negative Coulomb energy, etc. The total
Coulomb energy summing over all charges is (2.17),
which converges rapidly and is negative in this example.

o „-q„/d'. (2.25)

Correspondingly, let the z-component electric field be-
tween the vth and the (v+ 1)th layers be

E,=—( —1)"E„ (2.26)

where the z axis is perpendicular to the layers. Hence,

EP+E ] 4xcr~, E ~
+E2 —4ma2,

Ew —
1 +EN ( 1 ) 4rrrrlv

(2.27)

total charge fluctuation
N

Nq =gq„. (2.24)
1

The solution can be derived in two steps.
(i) Consider a related problem in which each layer of

discrete charges is replaced by a uniform charge density

C. 1V-layer tetragonal lattice

Generalize the problem to a tetragonal lattice whose
unit cell now contains N layers of d xd squares, as illus-
trated in Fig. 5(a) for N 4. The volume per unit cell is

d x d x [(N —1)ci+c2], (2.21)

where c~ is the spacing between nearest-neighboring lay-
ers in the same cell, and c2 & c~. Label these layers con-
secutively by

Ep ( —1) Ejv . (2.29)

The Coulomb energy per unit cell for the continuum case
is

with Ep as the electric field along the z direction above the
first layer, as shown in Fig. 5(b). From (2.27), we have

4rr g rr„Ep
—( —1) E~ . (2.28)

1

Hence, (2.23) gives the boundary condition for each cell:

v=1,2, . . . ,N. (2.22)
N —

1¹,= c& g E, +c2Eg
Sx (2.30)

gq„=o (2.23)

so that q„represents charge fluctuation. Our problem is to
find the minimum of Coulomb energy keeping jinxed the

Diff'erent lattice sites on the same layer carry the same
charge q„with The constraint (2.24) becomes

Prr„=Nrr N(q/d ) (2.3 1)
I

being kept fixed. The minimum of u, can be obtained by
setting, when N is odd,

Ep Ea 0,
. -&/2

E, 4+a 1+cos VX
sin (2.32)

Qp"
Cq

C)

Cp

(a)

Eo

) E,

Eo= Eo

j E,

o ~( 1)v+1 JP ' ( / )
N

tan(8/2)
sin8+N ' sin(N8)

cos[( —,
' N —v) 8],

(2.34)
&/2

o„-(-1)"+'a 2sin8
sin 8+N ' sin (N8)

L

The corresponding Coulomb energy per unit d & d square
per layer is, on account of (2.31),

(2.33)
[1+cos(x/N)]d

When N is even, the minimum u, configuration is
i/2

FIG. 5. (a) The unit cell for an N=4 tetragonal lattice. (b)
Distributions of surface charges a and the electric fields be-
tween surfaces.

icos N+1
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where 8 is an angle between 0 and x/N, determined by (2.32) we find

tan( —,
' 8)tan( —,

' N8) -(c2/c~) —1. (2.3s)
1V

+ex„o if Nw3.
I

(2.39)

The corresponding minimum Coulomb energy (per unit
d x d square per layer) is

When N 3,

a ~.a2.a3 —1:2:—1; (2.4o)

Xg C&

(1+cos8) d
(2.36)

In these solutions, +Pa„o by constructian. From
(2.32) and (2.33), we see that

av ( 1) ~iv+1 —v (2.37)

N N

-o
1 ]

(2.3S)

For N odd, these sums are not all zero; e.g. , by using
I

Therefore, for N even, the sum of all odd powers of a, is
zero:

—' +.+g' . ,
3 m

where u, is given by (2.33) or (2.36), x 0.2885,

this gives QPcz„3cr /W2 T. hus, for problems in which
the energy is sensitive to the cubic power of charge fiuc-
tuations, the N 3 case may play a special role.

When c2 ~, the angle 8 in (2.35) becomes x/N;
hence, (2.34) and (2.36) (for N even) become (2.32) and
(2.33) (for N odd).

(ii) Return to the discrete case. We set q„oQ as
determined by the continuum solution. By using
(2.10)-(2.13), we find the Coulomb energy per unit
square per layer to be

2

u, -u, + q (2.41)
2d

(1 —e ' ") ' 2e '1 +—g (q„q„/q )[exp( —2+m f
v' —v[c&/d)+exp[ —2+m(c —

f
v' —v(c&)/d)1N1 N v'~v

(2.42)

and c (N —1)c~+c2.
The following remarks should be noted.
(i) When N is odd, we may combine two neighboring

d x d x c tetragons (that share a common d x d square) to
be the new unit cell. Label the squares consecutively by
[instead of (2.22)]

I

screening effect. However, in order to take into account
the polarization of other material present, we divide the
energies (2.16), (2.17), and (2.41) by a dielectric constant

I

III. APPLICATIONS
v 1, . . . ,N N+1, . . . ,2N, (2.43)

and replace the constraint (2.23) by
2N

gq„-o.
1

(2.44)

One can readily verify that the minimum u, for the con-
tinuum case is now given by the same expression (2.36),
which was valid previously only for N even. Correspond-
ingly, E„and a„are given by (2.34), with v now running
from 1 to 2N. We see that (for 1V odd), in contrast to
(2.29), Ep+ E~ W 0, but

ci c2 6.5916 A

and (as a lower bound)

(3.1)

A. La 2:1:4(n 1)

Although La 2:1:4belongs to the n 1 family where n is
the number of Cu02 layers per cell, actually its geometry
is more similar to the modified N 2 tetragonal lattice
discussed in Sec. IIB but with "tetragonal" replaced by
"orthorhombic. " For the application of (2.17) and
(2.18), set

2W

Ep
—E21v 4m+ cr, 0, (2.4s)

d —,
' (a+b) 3.7725 A. (3.2)

where, as before, o„q„/d . Because 8 in (2.35) is
& n/1V, this new u, given by (2.36) is smaller than that

given previously by (2.33).
(ii) For applications, we are interested in the energy

difference between q, 0 (no charge fluctuation) and
q,ao (charge fluctuation between neighboring Cu02
planes). Both configurations have the same average
charge density. At zero temperature, the system is as-
sumed to be entirely in the Bose-liquid phase. As re-
marked before, the absence of the Fermi gas (normal con-
duction electron) makes it unnecessary to examine its

By using the lower sign in (2.18), we find the lang-range
Coulomb energy per CuOi square due to charge fluctua-
tions to be

u, -0.7944&q'/ed )0, (3.3)

Q=—w-'g&Q, & (3.4)

which shows that the long-range Coulomb force is against
charge fluctuation between neighboring Cu02 planes.

To justify the use of (2.17) and (2.18), let Q; be the
charge-density operator of the p field at the ith lattice site,
as in (1.10). Define (Q;) to be its expectation value
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Tc Fig. 6(a). (At very small value of y ~ 0.025, before su-
perconductivity sets in, La 2:1:4has a complicated phase
diagram, which lies outside the simple Fermi-gas model
discussed here. )

(a) B. Y l:2:3 (n 2)

For Y 1:2:3,we use the upper sign in (2.18). Set as in
(3.2)

0 = 2 d=
& (a+b) =3.863 K,

c~ =3.332K and cq=8.334K.

Equation (2.17) gives

u, = —0.02388xq /ed &0.

(3.8)

(3.9)

(3.iO)

(b)
X

FIG. 6. (a) For (La~ &, Sr~),Cu04 (n 1), the absence of
charge fluctuations makes T, vs the doping parameter y a
smooth function. (b) For Y BaqC uqO s5+„(n 2), T, vs the
doping parameter x has a "steplike" shape because of charge
fluctuations between neighboring CuOq planes. U(p) = —,

' [&u(p+o.)&+(u(p —o)&], (3.i i)

Hence, the long-range Coulomb forces have a slight
preference for charge fluctuations between neighboring
CuOq planes.

Define &u(p)) to be the total energy density when the
boson density p is uniform, as in (3.7). For Y 1:2:3,it has
the same form as Qpy in Fig. 3. Because of charge fluc-
tuation, the actual energy density is given by

and

(3.5)

which is not a smooth function of p. For p not too small,
we may take the simple example of &u(p)) = bp +cp-
with both b and c positive. The minimum of (3.11) is
given by a fluctuating boson density

U, =U, (p)+u, (3.6)

where JV is the total number of lattice sites. Consider a
fluctuation distribution in which the average of q; is +q
on any even CuOz layer and —

q on any odd CuOq layer;
otherwise, assume (i) q; distributes randomly. In addi-
tion, as mentioned before, the constraint iej in (1.10) is
equivalent to assuming (ii) d a or b, which becomes
(3.2) since a =-b.

From (1.10), (3.4), and (3.5), it follows that U, is a
quadratic function of q. The linear term vanishes because
of the symmetry in interchanging the even and odd layers.
By using assumptions (i) and (ii), one sees that U, can be
written as

0 if p&pl, (3.i2)

where pI =b/3c is the point inflection of &u(p)&, and that
gives

2cp (2p —3pI) if p&pI,
U(p) =

,cp (p 3pr) lf p )pr .
(3.i3)

Setting kT, ——U(p) and p ——,
' x in accordance with

(1.15), the typical variation of T, versus the doping pa-
rameter x for the n =2 family is illustrated in Fig. 6(b),
consistent with experimental result. '

&u(p)& =u(p)+ n 'U, (p) . (3.7)

where u, is given by (3.3) and U, (p) is the long-range
Coulomb energy when the boson density p is a uniform
one. The minimum of (1.6) is q=0 and U Q&u(p)&
where the total energy density is

C. Tl 2:2:2:3(n 3)

For Tl 2:2:2:3, the Coulomb energy u, per unit square
per CuOp layer due to charge fluctuation is given by a
modified version of (2.41) with N=3:

Schematically (u (p)) for La 2:1:4has the same form as
u„t in Fig. 3. Superconductivity occurs only along the
segment ACB on the curve, when &u (p)) is & 0 and there-
fore the Bose liquid is stable. Since kT, is approximately—&u(p)) and p =y in accordance with (1.15), the typical
variation of T, vs y for n = 1 is a smooth one, illustrated in

q 4~ c~

28d 3 d
—

1 +Ic+g w (3.i4)

where x.=0.2885, q is determined by (2.24), w is given
by [instead of (2.42)]
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(2/3m)(i e
—4~me/d) —) i3

—4~me/d 2(
—2mmci/d+ 2—xm(2c —c, )/d)

4~mC I/d, —4am(c I+e2)/di i . ~ m I +m2 —2+~~/d+2 e +e 3& 1j e

, qm~+m~c q
—2am(3c~+cq)/d, —2am(c~+c2)/di i i —2xmc2/d+ —2am(2c —

c2)/d)~il4 L.e +e f —
2 'Le +e

(3.is)

and c =2c)+c2. Setting d= —,
' (a+b) =3.8503 A,

c) =3.2 A., and c2 11.54 A, we have

u, = —0.2251 xq /ed (3.i6)

which is in favor of charge fluctuation, with the fluctuat-
ing charge distribution on the three Cu02 layers given by
(2.40).

In addition, the internal energy u(p) is u~) for the mid-
Cu02 layer, which is expected to be lower than u~„, for
the two outer layers. Thus, u(p) and u, together like to
concentrate as many superconducting carriers as possible
into the midlayer. Because of (1.16), we expect the max-
imum T, for different n to satisfy

the third dimension. ) In each Cu02 plane, the hole densi-
ty n can be ——,

'
per unit lattice square (area a x b) for Y

1:2:3;the corresponding top Fermi kinetic energy kF/2m,
is then -0.7 eV, as determined by (i2 1)

n kF/2n . (A2)

Because this energy is much greater than h„a natural
question is whether the Fermi sea would inhibit the eva-
poration of the Bose liquid. The following simple example
illustrates why this may not be the case.

The average density of kinetic energy of the Fermi gas
1s

T, (n= 1)& T, (n =2) & T, (n =3) . (3.i7)
T -nkF2/4m, . (A3)

0).02.cr3.a = —1:J2+ 1:—J2 —1:1 (3.is)

In contrast, for n=4, the optimal fluctuating charge
distribution is, according to (2.34) and (2.35) for c2»c),

Between the fermions (holes), there must be a strong
binary attractive potential to form the boson pair state.
This gives for the Fermi-gas system an average potential-
energy density V proportional to the pair density n . We
may write

Hence, it is not possible to concentrate all the supercon-
ducting carriers in the two midplanes (i.e., the second and
third layers), and that suggests

V- —(gn) '/m,

where g is O(1) and dimensionless. Hence

(A4)

T, (n =2) & T, (n =4) & T, (n 3) . (3.i9)
V 2 (As)
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APPENDIX A

In the Bose-liquid and Fermi-gas model, each individu-
al boson by itself, is unstable:

2 holes. (Ai)

In accordance with (1.4) and (1.5), the mass difference is
&3,, approximately a few X10 eV. As the tempera-

ture rises from zero, the gas systems form a two-
dimensional Fermi sea of holes. (The average spacing be-
tween Cu02 planes is quite wide, —7 A»a or b. Also,
the effective mass in the direction perpendicular to the
Cu02 plane is expected to be much larger than the paral-
lel direction; hence, as an approxirnat~on, we may neglect

I

at any density of the Fermi gas. Therefore, once the bo-
son becomes unstable at small kF, the same holds at large
kF. The instability (Al) can then be viewed as the kF =0
limit. This feature is true in two dimensions, or approxi-
mately in three dimensions if the Fermi surface is an ellip-
soid of very large oblateness (as in the present problem).

The gap energy 6, of the Bose liquid is due to an attrac-
tive p term in u(p), introduced in (1.7). Translating to
fermions, this means a nearly local attractive four-fermion
interaction. Its effect on the Fermi gas may be neglected,
since there is a reduction factor (nl ), where l is its
range.

APPENDIX B

To establish (2.10)-(2.14), we follow the method
developed by Madelung is Benson i9 and others 20 Sub-
stitute

OO n OO
2 1

8(x —n)d)b(y —n2d) =d g g exp[i2n(m)x+m2y)/d]
m —~m2 1

(Bi)
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into (2.2), and derive for (2.8), r = (o,o,z),

v(o, o,z) = lim (q/d')g h (z),
p~O m

(B2)

where, as in (2.12), I=(ttti +m2) 'l and g' sums over
all integral m t and m2, except m I m2 =0. On the other
hand, Yo is also given by

where the sum g' extends over all m ~, mz except
m] m2=0, and

h (z)= dxdyr 'exp[ pr—+2tri(mix+m2y)/d].

Yp qd g'r„(n~ +n2+n3)e

-6q g (z/d)'g(z),
n3 1

(B9)

Yp=qg e """/r„, (B4)

(B3)

Because |) h (z)/8z tc h (z) with tc p +(2tr/d)
x(m~+m2), we have h (z) h (0)e " ' . It can be
readily verified that as p~o, h (0) =d/(m1+m2)'l .
Thus, we establish (2.13), and likewise also (2.12) and
(2.14).

Next, consider the hypothetical problem of a simple cu-
bic lattice of lattice spacing d, with a charge q on each lat-
tice site. The Yukawa potential at r 0 is

where z n 3d as before, and g (z) =d g„,„,r„e
which, on account of (Bl), can be written as

g(z) gp(z)+g g (z), (Blo)

with

gp(z) dxdyr e (Bl 1)

g (z) „Idx dy r exp[ pr+2—tri (I~x+m2y)/dl,

(B12)

where r„=(nj +2n +22n)32'l d and the sum g„' extends
over all integral n&, n2, and n3, except n~ =n2=n3 0. At
any given n3, replace the discrete planar charge distribu-
tion by a uniform surface charge density q/d; the corre-
sponding Yukawa potential at r =0 is

r =(x +y +z ) . Letting r=r/z, we have
gp(z) =(2n/z) fr" e ""dr"and therefore

f+ OO Q

Z n3gp(n3d) =2trp& 2 du . (813)
n3=] u 2(1 —e ")

Y(O) = g (q/d')„d»y e ""/»,
= —OO

(as) Furthermore, at p =0, g (z) =(2tr/z)e 2 ' d. This plus
(B6) and (B13)give, for (B7),

where r =(x +y +z )'l and z=nsd Carrying . out the
integration and the summation, we have yp=(4trq/d) —

—,
' +3+ e '~~(I —e ~ ) -z

Y(0) =2trq pd tanh
2

Define, similar to vp in (2.9),

yp=—lim [Yp —Y(0)],.
@~0

By using (2.13), we see that

yp
—vp =2q g (trtd) '(e' —1)

(B6)

(B8)

on account of

4& . '" du= 11IYl a 3pd
u sinh ( —, u)

2

pd tanh( —,
' pd)

Combining (B8) with (B14),we prove (2.10).

(B14)
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