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Crystallographic thermal expansion and elasticity across the superconducting
transition in YSa2Cu307 —g
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A thermodynamic treatment for a second-order superconducting phase transformation has been
developed which incorporates crystallographic effects. The temperature dependence of x-ray-
measured lattice constants in polycrystalline YBa2Cu307 —& has been used to determine the ortho-
rhombic, crystallographic thermal-expansion coefficient matrix. The principal thermal strains
were curvefit above and below the superconducting transition temperature to deduce the thermal-
expansion jumps at the phase boundary. The thermodynamic arguments show that the three elas-
tic shear stiffness elements do not contribute to the superconducting specific-heat jump. Also, the
three independent shear stresses at the superconducting transition point are zero. The specific-
heat jump is, however, related to the three normal stresses at the phase boundary. The experi-
mental thermal-expansion data suggest that a compressive stress aligned with the oxygen-deficient

A

crystallographic a axis changes the transition temperature by 0.3 K/kbar; the 1 axis stress is 0.07
K/kbar, while the c is 0. 1 K/kbar, and all stresses are in compression. The isothermal elastic
compliance jumps can be predicted by assuming. zero jumps in the adiabatic elastic compliances.
The specific-heat jump is calculated from this assumption and crystallographic thermodynamics.

INTRODUCTION

The macroscopic physical properties of the new ceramic
superconductors will provide thermodynamic evidence for
possible microscopic mechanism(s) of superconductivity
(as they did in BCS theory). Further, the pressure depen-
dence of the transition temperature played an important
role in finding the YBa2Cu307 —s system from the
La2Cu04. The new ceramic superconductors have re-
ceived early attention with respect to the thermodynamics
of second-order phase transformations. ' The specific-
heats

—io and the bulk modulus»
—|3 changes were report-

ed across the superconducting transformation tempera-
ture. The change in the volume-expansion coefficient
across the superconducting transformation temperature
has also received preliminary attention. ' ' The temper-
ature dependence of the lattice spacings, which is the sub-
ject of this paper, gives crystallographic information as
part of the crystal's thermodynamic response across the
normal to superconducting phase transformation bound-
ary.

The relative difficult of obtaining high-quality, large,
single crystals of YBa2Cu307 —~ that superconduct, but do
not contain twins, has restricted obtaining crystallograph-
ic thermodynamic data. The Bi-Sr-Cu-0 and the Tl-Ba-
Ca-Cu-0 systems contain incommensurate lattices (su-
perlattices) and, therefore, give less than ideal crystallo-
graphic data. In fact, there are very few reports of crys-
tallographic thermodynamic data even though it is now
well accepted that the superconductivity is planar and
most properties are strongly anisotropic.

In this paper, the thermodynamic response for a crystal
is investigated, in anticipation of the measurements of
crystallographic elastic constants. The measurement of
the crystallographic thermal-expansion matrix is found.

The crystal's response is found if we assume that the su-
perconducting to normal transformation has no latent
heat, i.e., that the crystal's entropy is continuous, and that
the crystallographic lattice spacings are continuous. This
assumption is identical to considering the transformation
to be second order. Using this frame work, the deter-
mination of the crystallographic thermal-expansion ma-
trix is then undertaken.

X-ray measurements of the temperature dependence of
YBa2Cu307 —& lattice dimensions have previously been re-
ported by Horn et a/. ' The values found in this paper are
in basic agreement with the neutron-diffraction data of
David et al. ' but disagree in detail. It should be noted
that the data of Horn et a/. reduce error bars when com-
pared to the data of David et al. Both data sets are, how-
ever, at variance with Prokhvatilov eI, al. ,

' who report
what appears to be a third-order phase transformation
and also at variation with Srinivasan et al. ,

' who report-
ed an apparent first-order phase transformation. The su-
perconducting phase change is generally considered as a
second-order phase change at the critical point, so only
the higher-resolution, second-order data of Horn et al.
will be considered here.

Ideally, we would like crystallographic data from dila-
tometer measurements on large, high-quality, supercon-
ducting, single crystals. Ho~ever, the linear thermal-
expansion coefficient of polycrystalline YBa2Cu307 b ma-
terial has been measured using high-resolution dilato-
meters' ' and these measurements are in basic agree-
ment with the Horn eI, al. thermal-expansion data used in
this paper.

Finally, the measured thermal-expansion coefficient
matrix jumps will be incorporated into the thermodynam-
ic analysis. This analysis gives the temperature depen-
dence of the stress tensor across the normal to supercon-
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ducting phase boundary. Conceptually, the stress tensor
describes how the orthorhombic cell of YBa2Cu307 —$
must be expanded and contracted to satisfy the second-
order, thermodynamic energy balance, across the phase-
transformation boundary. An assumption that there are
no jumps in the adiabatic elastic compliance matrix is
shown to be consistent with some experimental wave prop-
agation data and to predict the specific-heat jump.

CRYSTALLOGRAPHIC THERMODYNAMICS

A second-order, isostructural phase transformation
such as the onset of superconductivity, shows continuity of
the entropy and each crystallographic cell dimension
across the phase boundary. The extensive variables of the
crystal are continuous between the normal and supercon-
ducting states while the derivatives of these variables have
a jump. The incremental internal energy dU of a crystal
per unit mass is changed by the incremental addition of
heat and mechanical work:

6=U —Ts —Q;Jcr;q . (2)

From the definition of 0;J and Eqs. (1) and (2), it follows
that

dG = sdT —0;Jdcr;J .—

T and a;~ are chosen as the independent intensive vari-
ables in Eq. (3). The complete crystallographic, thermo-
dynamic description is given below and in the Appendix.
This description is based on orthorhombic symmetry
operations as described in Ref. 20 while the Voigt nota-
tion is used for converting tensor elements to matrix ele-
ments. See the Appendix for details.

A first-order phase change has G continuous across the
phase boundary so

dG (norinal) —dG (superconducting) d(hG) 0.

A second-order phase change has d (dG) =0 across the
phase boundary. This condition implies that the second-
order components in the h.G expansion have positive and
negative terms so that one phase is not always at a lower
energy. The second-order components of hG are formed
from the derivatives of s and the six components of the
strain volume. Each of these variables is assumed con-
tinuous across the phase boundary implying that no state
variable contributes a first-order term. Each component
of AG is zero in this expansion so the sum of the com-
ponents is also zero. This specifies the phase boundary.
The jump conditions on the physical properties are found
from this statement of continuity with the aid of the Ap-
pendix. First, consider s to be continuous so

s (normal) —s (superconducting)» =0.

dU Tds+ vo;, de;, .

s is the entropy per unit mass, v is the volume per unit
mass, cr;J is'the applied stress, and de;J is the incremental
strain tensor. The incremental strain volume is defined as
d 0;J'—vde;~. The Gibbs free energy of the crystal is

Or

8(») dT+ 8(») d + 8(») d + 8(») d

8(») 8(») 8(»)

Similarly, 02 and 03 give

0 -&a22d T+&S ) 2do )+&S22do2+ &S23dcr3,

0 ha33dT+BS~3do~+&S23do2+dS33do3.

(7)

Finally, the transformation is isostructural with the shear
components of A;~ being zero on both sides of the phase
boundary. The changes in 0;J due to shears across the
boundary are also zero. The YBa2Cu307 —b crystals in
both the normal and superconducting phases are reported
as orthorhombic, so these equations will have zeros for the
nondiagonal expansion coefficient matrix elements. Thus,
04, Q5, and 06 give

0 BS44do4,

0 AS55da5,

0 -as66do6 .

(9)

(lo)

These last equations are, to our knowledge, not in the
literature and are a direct result of the entropy's stress
dependence only appearing in the principal stresses and
not on the shear stresses, as seen from the Maxwell rela-
tions for shear stress. If a very large residual shear stress
were applied to the crystal of YBa2Cu307 —b, there could
be a smail off-diagonal thermal-expansion coefficient that
is nonzero. Such off-diagonal terms might give small dT
contributions in Eqs. (9)-(11). The implication is that
the residual shear stress for this case is so large that the
orthorhombic crystal cell has become triclinic. In the con-
text of this paper such terms are ignored.

The three independent shear stresses o4, o5, and o6 are
eigenvectors for Eqs. (9)-(11). The jumps in the elastic,
shear stiffnesses AS44, AS55, and AS66 must be zero across
the superconducting to normal phase transformation or
else da4, do5, and da6 are zero. If the shear stiffnesses are
zero, the result is unexpected since two phonons in three
correspond to shear modes and most of the specific heat
will be unaffected across the transformation. The inter-
pretation that da for shear is zero is reasonable and is as
follows: Consider the application of a shear stress, h.o6, as
shown in Fig. 1. Assume, furthermore, that this positive
shear stress increases the transition temperature by h, T„
also a positive value. Now, note that the crystal may be
rotated about the b axis by 180, a twofold rotation. The

Reading across the inatrix in the Appendix, dividing by v,
letting h, refer to normal less superconducting properties,
and noting that d(») =0 gives

wC.
0 dT+&a~ ~do~+&a22do2+&a33dcr3.

TU

Second, 0 ~ (the tensor element 0 ~ i) is continuous across
the boundary so

0 tt a~~dT+&S~~do~+&S~2do2+hS~3dcr3.



39 CRYSTALLOGRAPHIC THERMAL EXPANSION AND. . . 11 459

thermal-expansion coefficient, diagonal tensor elements,
a;; for an orthorhombic crystal with a, b, and c lattice
spacings are

1 Ba 1 8b 1 Bca]](T); — =a22(T); — =a33(T) .
a 8T b aT ' c aT

(i4)
The crystallographic thermal strains e;; are found by in-
tegration of Eq. (14) and assigning an arbitrary reference
state for zero strain. For example, a reference length a*
at a temperature T gives

e]] -in[a(T)/a ] =J .a]](T')dT'. (is)
= Oxygen

Vacancy Site

FIG. l. A crystal of YBa2Cu307 —& with the shear stress o6
shown. The relative size of the stress components needed for the
same change in the transition temperature is from the text for
calculating the stress dependence of the phase boundaries.

shear stress in the rotated crystal is now a negative value,
but h, T, is still the same positive value. Thus, h, T, is in-
creased by both positive and negative shears. It follows
that dT, /dcr6=0 when cr6=0. At the critical transition
point all the shear stresses are zero and do not couple into
the transition temperature. This result is, of course, gen-
eral and only restricted to being able to change the sign of
the shear stress without changing the atomic crystal basis
using a twofold rotation axis. The transition temperature
is an extremum with all applied shear stresses at zero at
the critical point.

Equations (5)-(8) can, at this time, not be solved ex-
actly since the isothermal elastic stiffness jumps for the
remaining six elastic stiffnesses have to our knowledge not
been measured. However, these equations may be put in
matrix form as

Figure 2 is a plot of the measured a(T) lattice constant
reported as a true thermal strain versus temperature in the
superconductor YBa2Cu307 —s. The data were obtained
from a powder sample. Pellets of mixtures of BaCO3,
CuO, and Y203 were fired at 950'C for 16 h and slowly
cooled to 400 C in oxygen. The relatively sharp super-
conducting transition is at 91 K and about 1 K wide.
High-resolution x-ray scattering in a Bragg geometry us-
ing a rotating anode tube was used to obtain the cell di-
mensions. The CuK a~ —a2 splitting was fitted by the
sum of two Lorentzians. Details are in the original work
by Horn et a/. ' The data in numerical form were sup-
plied by Held and Keane (see Ref. 14). The reference
temperature and lengths have been taken at the lowest
temperature for which data were obtained. The slope of
each curve in Figs. 2-4 gives a;;. The orthorhombic crys-
tal has no off-diagonal thermal-expansion terms provided
the coordinate system aligns with the crystallographic
coordinates.

The thermal strains are relative values and are accurate
to about ~ 2S microstrain units. The choice of reference
state will change the strain differences between crystal.
axes but not the thermal-expansion coefficients. The
thermal strains on the i axis and c axis show a minimum
at low temperatures. This trend is characteristic of type-
IV elements and III-V compounds and is seen in other
studies of YBa2Cu307 —~.

Mdx =0,
&C /vT, ha] ha2 ha3 dT

ha] BS]] AS]2 AS/3 d0]
h, a2 h,S|2 hS22 AS23 QQ2

4a3 4S]3 AS23 +S33 GQ3

(i2)
—5

100-

Z'

CC

50-
UJ

CC

The phase boundary is the nontrivial solution of (13) that
gives an eigenvector for each zero in the determinant of
the matrix M.

THERMAL STRAINS

0-
-60 60

Having established a self-consistent crystallographic
thermodynamic treatment we will now examine some
specific experimental data and its implications. The true

(T —Tc) (K)

FIG. 2. The thermal strain vs temperature on the a axis. The
solid line is a double parabola curve fit. Note the slope
difference at the transition.
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x so-5 TABLE 1. Thermal strains e;.; e'P;+ C;,'hT+ CP(d T) .

z
CC

(0 50-
UJ

CC

~0

H2
t-'33

0

Cl 1

C22

C33

AT) 0
Normal

0.948 x 10 /K
0.223 x 10 /K
1.113x 10 ~/K

10.8 x 10
18.9 x 10
28.4 x 10

aT&0
Superconducting

0.618x 10 ~/K

0.407 x 10 /K
0.989 x 10 /K

60

(T —Tc) (K)
A

FIG. 3. The thermal strain vs temperature on the b axis. The
thermal-expansion coefficient jump is negative.

C(~
C)2
C/3

—2.66 x 1P /(K) '
1.66 x 10-'/(K) '
6.20x 10 /(K)

2 P9x IP-'/(K)2
8.51 x 10 /(K)'

The thermal strains have been curve fitted to a double
parabola that assumes continuity of the thermal strain,
i.e., a second-order phase transformation. This piecewise
continuous function is used to describe a jump in a;;
should it exist. A first-order transformation would have a
jump in the thermal strain values. The form of the
thermal strain is found using

e;; =e,;+C;,'hT+C" (AT)

The temperature d T is measured relative to the supercon-
ducting transition temperature at T 91 K. Equation
(16) has been used as a piecewise continuous function
with c;;, C~,'(+ ), C;,'( —), C;;(+ ), and C;; ( —) chosen so
that the diA'erence between the experimental data and the
values in Eq. (16) are a minimum. The thermal strain e,;
is from data over the entire temperature range. In the
normal state, the data for /3. T & 0 are fitted and reported
as CJ (+ ), the superconducting state are reported as
C/~( —). The values of the constants C(; for /3. T&0,
hT &0, and t. ,; have been optimized from the thermal
strain data assuming the statistical noise is in the thermal

strain, not in the temperature. Finally, the thermal-
expansion coefficient jump of normal less superconducting
at the transition is just Aa;; C;,'(+) —

C~,'( —). These
jumps are found using Eqs. (16), (15), and (14), respec-
tively. The complete set of C~ s are reported in Table I
for each crystal axis.

RESULTS

The thermal-expansion coefficient matrix YBa2cu3-
07 —b has been represented by a simple power series near
the superconducting transition temperature. The jumps in

a;; at the transition have the a and c axis with positive
values while the 1 axis is negative. The volume thermal-
expansion coefficient jurnp is positive since the sum of a' s
is positive. Recall

1 t)v |)
P - ln [v(T)/vo) =aI I + a22+ a33 ',

v 8T, . 8T
(i7)

P is plotted in Fig. 5 by adding the numerical values from
Table I. Note in Fig. 5 that there is no attempt to force
the thermal expansion coefficients to zero as T~ O. Al-
though, it is realized that this is a requirement of the third
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O
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FIG. 4. The thermal strain vs temperature on the c axis. The
thermal-expansion coefficient jump is positive but a smaller per-
centage than either i or b.

TEMPERATURE (K)

FIG. 5. The curve fit data for showing the contributions to
the volumetric thermal-expansion coefficient jump.
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and

120 MPa/K, 4 MPa/K,
C Tc

law of thermodynamics. The possibility of low-tem-
perature ferroelectric or antiferromagnetic phase changes
would make extrapolations to T 0 meaningless. Further,
the numerical values for h, a;; are not within the scatter
bars for the results of David et al. even though their
values have very large scatter. In fact, the sign on all the
crystal axes is opposite to that obtained here using the
data of Horn et al. The reasons for this are unclear but
may involve differences in sample preparation, chemistry,
or microstructure such as twins. (In addition, we are not
certain whether the data of David et al. was curve fitted to
give optimum parabolas as done here. ) In this paper we
will continue to use the more precise Horn et al. data. As-
sume that As~~ AS22 AS33 and AS~2 As/3 AS23—vAS~~ with v 0.3. Equation (13) has the following
solution using the numerical values: ' AC /v T,—480 Pa/(K); Aa~ ~ 3.3 x 10 /K; Aa22 —1.84
x 10 /K; and Aa33 1.24x 10 /K. Setting the deter-
minate of M equal to zero gives As«- —3.4xlo "/
Pa. Then, Eq. (13) yields the phase boundary as

Q22 Q33

The thermal-expansion jumps are much larger percen-
tages than the predicted elastic stiffness jump and the
specific-heat jump. This has implications between iso-
thermal and adiabatic values of the physical, thermo-
dynamic properties as is considered below.

For example, the observation is that the crystallograph-
ic wave speeds seem to have no jumps or have jumps that
are smaller than can be measured. 2' The jumps in the
adiabatic elastic constants, therefore, are also very small.
The density is, of course, continuous across the transfor-
mation. It will be assumed below that h,S;~ adiabatic elas-
tic compliances are zero. The isothermal jumps can now
be found from the small difference between isothermal
and adiabatic compliances:

da~ and do3 are expansions of the a and c axis with
compressive strains on the 1 axis due to Poisson's effect.

It should be noted that the jumps are

BS11 WC. ha11
0.8%; 3%; =40%

S11 Ce Q11

h, a22 h, a33= —60%, and = 10% .

74 MPa/K.
C

The pressure versus temperature slope is from p
x(a, +a2+a3),

S,, (T) -S,, (s)+
C

or

Qg
AS;, (T) -AS,, (s)+ ' ' ' +

a QJ C~

(i8)

(i9)

—66 MPa/K
~C

which seems too small45 and of the wrong sign for
YBa2Cu307 —s. The strains associated with the stresses

AS;J(T) in Eq. (19) may be substituted into Eq. (13) and
then rearranged to be in a nondimensional form, M'dx'.
This is done below in anticipation of high precision AS;J
values:

aa1
a1

aC.
C

ha1

a1
aS( )(s) Aa)+

AQ2

Q2

AS)2(s) Aa)+

h, a3

Q3

As(3(s) Aa( AC+
a) C

a)da)

Q2

aC.
C

AS))(s) Aa2+
az

AS22(s) Aa2 AC+
a2 C

AS/3(s) Aa2+ aC.
C

Q2d&2

-o (2o)

h.a3

Q3

WC.

C
AS/3(s) Aa3+ AS23 (s) A, a3+ AS33 (s) Aa3+ AC

C
a 3 do'3

with gj a;ajvT/C and dx' C /vTdT, atda~, a2do2,
and a3do3. This nondimensional form shows that the
thermal-expansion matrix entries are important for con-
verting measurements of AS;J (s) into the slopes of
da;/dT, values. Finally, the assumption that AS;J(s) 0
gives numerical values for AS;~(T). The values used in
Eq. (19) are ' C /v T, 15.2 kPa/(K), AC /C—0.031S; the thermal-expansion data already found in
this paper are a& 7.83 x 10 lK, Aa)/a) 0.421; a2
~3.15 x 10 6/K; Aa2/a2 —0.584; a3 ~10.51 x 10 /K,
Aa3/a3 0.118; so As) ) -35.2; AS22 —7.42; AS33

19.4; hS12 —2.1; hS13 30.9; hS23 —9.5 all in

units of 10 ' /Pa. Substituting AS;~ and Aa; values into
the determinate of M 0 gives AC /v7", = —477 pa/(K)
(see measured value above) with da, /dT —31Q
MPa/K; da2ldT, —1360 MPa/K; and da3/dT, —810
MPa/K; so dp/dT, 826 MPa/K or the inverse is Q. 12
K/kbar. These stresses are shown in Fig. 1. This last
value is in reasonable agreement with the measured pres-
sure dependence of the transition temperature. '

The assumption that the adiabatic elastic compliances
do not contribute to the isothermal elastic compliance
jumps predicts -the jump in the specific heat, the pressure
dependence of the transformation, and preliminary data
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on the absence of wave-speed jumps in these crystals. '

Finally, it should be noted that the "correction" from iso-
thermal to adiabatic elastic compliances is typically
several percent. The jumps in the isothermal compliances
are less than 1% while the thermal-expansion jumps are a
much larger percentage. Thus, it seems that the large
percentage of the small number is the major contributor
to the thermodynamic jumps.

The conclusion to be drawn if hS;J (s) does, indeed, not
directly contribute to the transition is simple: The
mechanical part of the lattice represented by S;~ is not

directly participating in the superconductivity.
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APPENDIX

The following are definitions using the Gibbs function
in Eq. (2):

T —=C specific heat at constant stress .S

dT;

80 iJ' 8 e&'J'

v 8T (y,.i 8T Q;~
=thermal expansion coef5cient .

8Q(i.

~ a ~

re(1'
S;Jl,i =isothermal elastic compliance (tensor element) .

|)okl T,aki

All tensor elements are reduced to matrix elements using 11 1; 22 2; 33 3; 23, 32 4; 13,31 5; and 12,21 6.
The matrix S „ is assumed to show orthorhombic symmetry.

6
S
Q)
A2
03
A4
A5
n6

c /T
VQ& &

UQ22

VQ33

0
0
0

0)
vQi i

US]3
0
0
0

—Q2
vQ22

VSi2
vS22
vS23

0
0
0

—Q3
VQ33

VS|3
vS23
VS33

0
0
0

—A4
0
0
0
0

vS44
0
0

t)O'5 T ~i

—Q5
0
0
0
0
0

US55
0

t) rr6

—Q6
0
0
0
0
0
0

vS66

This matrix is symmetric because the second derivatives of the Gibbs free energy are independent of the order in which
the derivatives are taken, Maxwell's relations.
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