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It is shown that several di6'erent order parameters can be used to characterize a type of P- and T-

violating state for spin systems, that we call chiral-spin states. There is a closely related, precise no-

tion of chiral-spin-liquid states. We construct soluble models, based on P- and T-symmetric local-

spin Hamiltonians, with chiral-spin ground states. Mean-field theories leading to chiral spin liquids

are proposed. Frustration is essential in stabilizing these states. The quantum numbers of quasipar-

ticles around the chiral spin liquids are analyzed. They generally obey fractional statistics. Based

on these ideas, it is speculated that superconducting states with unusual values of the Aux quantum

may exist.

INTRODUCTION

In two spatial dimensions new possibilities arise for
quantum statistics. Indeed, it has gradually emerged that
fractional statistics, ' and the related phenomena of sta-
tistical transmutation, are rather common features of
quantum field theories in two space dimensions. They
can occur in o. models with Hopf terms, or in gauge
theories with Chem-Simons terms. They also appear
naturally in a variety of efFective-field theories resulting
from integrating out massive two-component fer-
mions, for example in (2+1)-dimensional quantum
electrodynamics.

The general idea of fractiona1 statistics, and the canon-
ical construction of their description in local-field theory,
have been given a firm mathematical basis recently in
beautiful work by Frolich and Marchetti. The relevant
field theories can be fully regulated, and even realized on
a lattice.

Given all this, one cannot help wondering whether Na-
ture has chosen to make use of the new theoretical possi-
bilities in real materials. Actually, there is already com-
pelling (though indirect) evidence that quasiparticle exci-
tations around fractional quantum Hall effect (FQHE)
states do obey fractional statistics. ' But there is an im-
portant factor which constrains the possible applications.
That is, the existence of fractional statistics generically
requires violation of the discrete symmetries P and T.
This is because under a P or T transformation a particle
with 0 statistics must transform into one with —0 statis-
tics. Generically, there will not be such a particle in the
theory. Exceptions occur only if the statistical parameter
is equal to zero modulo n. (bosons or fermions); or if there
is a doubling of t:he spectrum, with each particle having a
partner of the opposite statistics. There is no convict be-
tween this observation and the appearance of fractional
statistics in the FQHE, because the FQHF occurs in the
presence of a strong external magnetic field, which of
course violates P and T.

Nevertheless, there has been much speculation recently
that similar ideas apply also to the metallic oxide layers,

that play a crucial role in the dynamics of high-
temperature superconductors. "' Such speculation has
taken various forms. One suggestion is that there is
transmutation of the hole statistics, which turn these
quasiparticles into bosons. Superconductivity is then
pictured as a Bose condensation. Another suggestion is
based on approximate mappings of spin Hamiltonians
onto the Hamiltonian of the quantized Hall effect. '

Then much of the theory of the latter effect, including
fractional statistics, carries over to spin systems. This
idea, and closely related ideas concerning possible "Aux
phases"' ' in the Hubbard model, will be elaborated and
sharpened below. Yet another suggestion is that at cer-
tain densities a lattice of quasiho1es forms, and induces
diamagnetic currents whose effect mimics that of a
Chem-Simons interaction. '

A common feature of several of these proposals, is that
they escape the constraint mentioned above by invoking
(implicity or explicitly) spontaneous macroscopic viola-
tion of the discrete symmetries P and T, but in such a
way that PT symmetry remains unbroken. ' ' There are
prospects for direct experimental tests of this symmetry
pattern.

In this paper we do three things. First, we characterize
the common essence of the proposed P- and T-violating
states, which we call generically chiraI spin states, in a
precise way. We do this, by defining a local order param-
eter. We shall also be able, within this framework, to
give one precise meaning to the notion of a spin
liquid. ' Basically, a spin liquid is a chiral spin state
that supports a nonlocal extension of the order parame-
ter.

Second, we construct a family of spin Hamiltonians
whose ground state may be found exactly, and is a chiral
spin state. Our Hamiltonians, although local and simple
in structure, are rather contrived. Nevertheless our con-
struction provides an existence proof for chiral spin
states. In the course of constructing our model ground
states we shall learn some interesting lessons about the
sorts of states that support chiral spin order, and derive
some intuition about when such states are likely to be en-
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ergetically favorable. Unfortunately, the simple chiral
spin states that diagonalize our toy Hamiltonians are not
spin liquids.

So, third, we formulate some models that are not exact-
ly soluble but do plausibly seem to have chiral spin-liquid
ground states. These models contain a parameter n, such
that for n=2 they are frustrated-spin models, while for
large n they are tractable, in the sense that a mean-field
theory description is accurate. In the mean-field approxi-
mation, we find chiral spin-liquid states are energetically
favorable for a wide range of couplings. We construct an
effective-field theory for the low-energy excitations
around a specific chiral spin-liquid state, and characterize
the charge, spin, and statistics of the quasiparticles.
Spin- —, neutral particles carrying half-fermion statistics
are found, in agreement with Laughlin's arguments.

We conclude with some remarks on the possible rela-
tionship between chiral spin liquids and superconductivi-
ty, and put forward a speculation that fIows naturally
from this circle of ideas, and if true would have dramatic
experimental consequences.

CHARACTERIZATION OF CHIRAL SPIN STATES

Part .of the reason that the recent literature on possible
dynamical realizations of fractiona1 statistics often ap-
pears so diffuse and confusing, is that the essential char-
acter of the proposed states can be stated in several ap-
parently different ways. Here are four possibilities, ap-
propriate to the context of Hubbard models.

(i) As a straightforward spin ordering, consider, in a
model of spins —,', the expectation value

E123:( cr 1 ( cr 2 X 0 3 ) )

where 1,2,3 label lattice sites. P symmetry would force
E,23 to vanish (or depend on the position of 1,2,3 in the
latice —see below) because it reverses the orientation of
the circuit 1-2-3, which changes the sign of the triple
product. (In two-dimensional space, parity is of course
just reliection in one of the two spatial axes. ) T symmetry
would force E&23 to vanish. But a nonzero value of E&23,
necessarily real because it is the expectation value of an
Hermitian operator, is consistent with PT symmetry. A
nonvanishing, real expectation value E&&3, correlated
with the size and orientation of the triangle 123 but not
its position on the lattice, is one characterization of chiral
spin states.

(ii) Let us introduce electron creation operators c; on
site i, spin 0, and the operators

These g operators have proved very convenient in the
mean-Geld theory of Aux phases, and we shall use them in
this way below. But first, we wish to consider a more
abstract use of them, in formulating an order parameter.

Under a local gauge transformation, whereby an elec-
i0.

tron at site j acquires the phase e ', we have
i(0.—0. )I JX/g~e '

X&g .

In the half-filled Hubbard model at infinite U, exactly one

or

+/1234 ~ X12X23X34X41 )

where the g's circle a closed triangle or plaquette. And
indeed, an expectation value of the latter type has been
used to characterize the fiux phase. Are these plaquette
order parameters related to the spin expectation values
E? In fact simple calculations show that they are.
Specifically, we have

'P/)32 = Eiz3
l

(4)

and

I
P/1234 P/1432 4

( E123 E134 E124+E234) (4')

Thus the chiral spin states are alternatively characterized
by their supporting a difference between the expectation
values for plaquettes traversed in opposite directions.
This of course emphasizes their P-violating nature. An
important formal advantage of this second definition of
the chiral spin phase, since it uses the electron creation
and annihilation operator rather than the spin operator,
it may be used away from half-filling, large-U limit. It al-
lows us, in other words, to step outside the framework of
Heisenberg spin models.

(iii) As a Berry phase, for transport of spins around a
loop. Such phases are known to be a good way to charac-
terize the FQHE. Specifically, consider the operator that
transports the spins at 1,2,3 to sites 2,3,1. It is the per-
mutation P(}23) Using simple mathematical identities re-
lating cyclic permutations to interchanges, apd inter-
changes to spin operators, we find

123= (P(123) ) ( (23)P(12) )

=—,
' ((1+crz cr3)(1+cr).o 2) ),

and hence easily

l
+123 132 2 E123 (6)

As stated, this definition of %)23 works only for spin mod-
els. In general, we may take a,. =c; cr (3c;—p, where on the
left-hand side cr is an operator but on the right-hand side
it is a numerical matrix, and use the last term of (5) as
the definition of X)23 In this generality, however, it can
no longer be interpreted as the expectation of a transport
operation. There are other simple relations among the
various order parameters E, P/, and S, e.g. ,

I
ImP/123 = E)23

electron occupies each site, so the states are gauge invari-
ant. "' Therefore, according to general principles, a
gauge-invariant object like g, cannot acquire a nonzero
vacuum expectation value. Rather, the simplest gauge-
invariant order parameters we can construct from y are
of the general type

=&X+ X &,
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I
ImS|23 Ei23

(iv) As a state, around which the low-energy excita-
tions are described by a field theory with a Chem-Simons
term. This characterization of course is considerably
more vague than the previous ones, but it is closely relat-
ed to the immediately preceding phenomenon that phase
is accumulated in transport around loops. We shall make
precise connections in a specific model below.

In summary, we find that there are several apparently
different, but in reality identical, characterizations of
chiral spin states.

The chiral spin order parameter captures some, but not
aH, of the properties we would like to postulate of a quan-
tuni spin liquid. It has the desirable feature of leaving ro-
tation and translation symmetry unbroken, but unfor-
tunately it does not capture the long-range coherence we
expect is necessary for an incompressible liquid. Inspired
by analogy with the quantized Hall efFect, however, we
are led to the following preliminary definition. We say
that we have a chiral spin liquid, when not only small tri-
angles or plaquettes, but also large loops are ordered, in
such a way that products around consecutive links en-
closing a loop obey

effect of a magnetic field is precisely to modulate the
phase of the wave function as a charged particle is trans-
ported around a loop, as in (iii) above. However, we must
not be too quick to infer P and T violation from this anal-
ogy. Iri particular, in Refs. 15 and 16 Aux phases are con-
structed in which half a Auxoid of magnetic field pierces
each plaquette of a square lattice, corresponding to
Pli23& =negative. But from this alone, we cannot infer P
or T violation. Indeed, the action of P or T is to change
the half-Auxoid per plaquette to minus one half-Auxoid.
However, e' =e ', and this change is equivalent to
adding a full negative Auxoid to the original
configuration, which is merely a gauge transformation.
Hence, these symmetries should be maintained. Yet if we
follow the authors of Refs. 14 and 27 by approximating
the lattice wave function, in an apparently natural way,
by a continuum wave function, the effective Aux through
a loop becomes proportional to the area of the loop, and
does generically show complex phases, indicative of P and
T violation. This passage to the continuum and to an
area law is necessary, if the state is to be a spin liquid in
our sense (and, we suspect, in any reasonable sense. ) It is
not unreasonable, however, to be suspicious of an approx-
imation that alters symmetry. The constructions which
follow, were largely motivated by a desire to clarify this
issue.

Here f(y) is a positive real function of the geometry of
the loop y (in our mean-field models it will be proportion-
al to the length of y), but the crucial feature is the phase
term proportional to the area A (y) enclosed by the loop.
Identifying (y;~ylk yl, &r loosely as a sort of Wilson
loop, we can think of bA (y) as the Aux enclosed by the
loop y. Although we shall not attempt to prove it in this
paper, we expect that the crucial properties of the spin
liquid, and specifically the statistics of its quasiparticle
excitations, are determined by the coeScient b. The
mean-field theories we construct below support ground
states with order of this type.

Before concluding this section, it seems appropriate to
address two questions that might cause confusion. First,
in what precise sense can we distinguish the "macroscop-
ic" violation envisaged in chiral spin states from, say, the
T violation in antiferromagnetisIn? After all, staggered
magnetization is T odd. The crucial difference is, that
the combination of T with another symmetry of the
Hamiltonian, namely translation through one lattice
spacing, leaves the antiferromagnetic ground-state invari-
ant. Since such a lattice translation is invisible macros-
copically, the antiferromagnetic ground state is
efFectively T symmetric macroscopically. (In contrast, a
ferromagnetic ground state does of course violate T ma-
croscopically. )

Second, are Aux phases necessarily I' and T violating?
Let us define this question more precisely. It is no
surprise to find P and T violation in the FQHE, since
there is a strong external magnetic field applied to the
sample. Now we can loosely describe chiral spin states as
characterized above, and the closely related Ilux phase
states in the literature, by saying that a sort of fictitious
magnetic field has developed spontaneously. Irideed, the

SOLUBLE MODEL

(1+v) II &+(1—v) III &
—2IIII &,

where

(10)

l»=ll»~ &+l11 1 t &,

I«& = l1111&+l1111&,
IIII& = I1111'&+

I g111&,

We have identified, and characterized in an abstract
way, what we mean by a chiral spin state. We will argue
that the ground state of a frustrated Heisenberg antifer-
romagnet, treated in a mean-field approximation, may be
a chiral spin state. However, the validity of the mean-
field approximation in the present context is far from
clear. Ideally, we would like to solve a realistic model ex-
actly, and demonstrate that it possesses a chiral spin
phase. In practice, this poses formidable problems at two
levels —in formulating a realistic Hamiltonian, and in
solving it. In this section we take a different, more mod-
est, approach.

We will presently construct a Hamiltonian, whose
ground state can be explicitly identified, and is a chiral
spin state (although not a spin liquid). One purpose of
this exercise is to furnish an existence proof: there exists
at least one Hamiltonian whose ground state violates T
and P. Another is to supply us with concrete wave func-
tions to look at, so that intuitions may be formed and
conjectures tried.

To begin, consider four spins. These may be combined
into a singlet in two different ways. Accordingly, the
general wave function for a singlet may be written in the
form
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y=o, (o~Xo3) . (12)

At this stage, we just have a problem of three spins, each
with spin —,'. An easy computation shows that

y = —4(S, +S~+S3) +15, (13)

where S, =o.;/2, and i =1, 2, and 3. Out of three —,
' spins,

we can form a spin- —,
' multiplet, which we denote by

IS=—'„S,) and two different spin- —,
' multiplets, which we

denote by IS=—,',S, )+ and IS=—,', S, ) . We have,

containing a parameter v.
The question arises: Is there any intrinsic way to

separate the two-dimensional space of singlet states into
one-dimensional subspaces? In fact we cari think of three
ways, all of which lead to the same separation.

(i) We may demand, that the different spin
configurations each have equal weight; that is, that the
squares of their coefFicients are all equal. This is the sort
of situation we might expect in a liquid, where there are
frequent fluctuations in the spins, but all preserving the
overall spin-0 character. It is easy to see, that equality of
amplitude occurs if and only if v =+i V'3.

(ii) We may try to impose some symmetry requirement.
While one quickly realizes that our two-dimensional
space is irreducible under T or under the complete group
of permutations, it is easy to check that it reduces under
the group of even permutations. The invariant subspaces,
are spanned by the states with v=+i&3.

(iii) We may label states by chirality This. is the most
useful for our immediate purposes, and we now spell it
out in detail.

Consider again the Hermitian operator,

y'Is= '„s, & =o,
y'Is= —,', S, & =12, a=+ or— (14)

(15)

and by applying the spin-lowering operator

—(I11T)+a~lLT1&+~'IT), J, &) .
3

(16)

Here, co denotes the cube root of unity so that
1+co+co =0, Evidently, the other states IS=—,',S, )
are obtained from (15 and 16) by replacing co by co .

The operator y commutes with S and thus y, S, and S,
can be simultaneously diag onalized. We find that
IS=—,',S,=—,

')+ is an eigenstate of y with eigenvalue
2i(co co )=——2&3. Evidently, IS=—,',S, = —,') is an ei-
genvalue of y with eigenvalue 2i(co co) —2&3 Note.
that the time reversal operator T takes IS=—,',S, = —,

' )+
into

I
S=

—,', S,= —
—,
' )

Now we picture the three spins Si, S2, and S~ on three
of the corners of a plaquette on a square lattice. Let us
couple in the fourth spin S4 to form a total-spin singlet.
From general principles, we know that two different spin
singlets are possible, namely,

Since IS=—,', S, ) must be orthogonal to ls= —,',S, ), we
can write down

Is=-,', s, =-,' &'= (lT T1 &+~ITgT &+~'lg T T &),
1

Is=o& =Is=-,', s, =-,'& a Il& —ls=-,', s, = —
—,'& g IT), for a=+1.

Then two S=O states are thus,

Is=o&+=—IT Tg1 &+I11T T &+~I T1T g &

+~l 1 T1T &+~'I LT T t &+~'I T k l T ),
and IS=0), obtained from IS=0)+ by replacing co by
co . By construction, these states are eigenstates of
y=o, .(a2Xo3), where

is best described by referring to Fig. 1. We select out of
all the plaquettes on a square lattice a subset consisting of
nontouching plaquettes in such a way that the corners of
these plaquettes cover all the sited on the lattice. (These
plaquettes are shown shaded in the figure. ) We label the
sites as in the figure. Now, let

H, =J[(S,+S~+S3+S~)
~IS=0& =2&3als=o&., a=+1. +(S~+S6+S~+Ss) + . ] . (21)

gls=o) =( —1)2&3als=0) (20)

Now we are ready to construct a Hamiltonian H that
has a chiral spin state as ground state. The construction

Thus we have arrived again at the same separation, as
promised. Since our two states are invariant under even
permutations of the four spins, i.e., under permutations
in the classes (12), (34), and (123), and go into each other
under odd permutations, i.e., under permutations in the
class (12) and (1234), they are also eigenstates of the other
possible chirality operators, such as y =o'

i ( o 2 X o 4), ob-
tained from g by permuations. In particular,

shaded
plaquet te

(c Is=o&++c Is=o&-) .

Since on each plaquette, we can take an arbitrary linear
combination of IS=0)—,the ground state is irifinitely de-
generate. Let us now introduce an interaction between
neighboring plaquettes by writing

Clearly, the ground state of this Hamiltonian is reached
by forming the four spins on each shaded plaquette into a
singlet. Namely, the ground state is given by an infinite
direct product, denoted schematically,
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FIG. 1. The shaded plaquettes are selected to construct the
Hamiltonian in Eq. (21).

Hi =K[y(123)y(567)+y(123)y(9 10 11)+ . . ] . (23)

The notation is the obvious one; by y(567) we mean
a, .(o6Xo i), and so on.

Consider the Hamiltonian H =H, +H2. Clearly, for
small E, this describes an Ising system since on each
shaded plaquette the associated "Ising spin" can either be
up (i.e., the four spins on that plaquette form ~S =0)+)
or be down (i.e., the four spins form ~S=0) ). Accord-
ing to whether K is positive or negative, the Ising system
is antiferromagnetic or ferromagnetic.

Evidently, the ground state of H for K & 0 is two-fold
degenerate and is a chiral spin state. T and P are spon-
taneously broken. Notice that at high temperatures,
above the usual Ising phase transition, T and P are re-
stored.

Clearly, many other choices for the Hamiltonian are
possible: For instance, in addition to H2, or instead of
Hz, we can add

H~ =K'[y(124)y(567)+g(124)y(9 10 11)+ ] . (24)

For E'' &0, Hz describes an "antiferromagnetic" Ising in-
teraction. In this case, the expectation value of the order
parameter g would have staggered values and macroscop-
ically there would be no time reversal violation.

As we emphasized, our goal in this section has been to
exhibit specific P and T invariant spin Hamiltonians
whose ground state is a chiral spin state. The Hamiltoni-
ans we exhibited involve six spin interactions and are
rather artificial. The ground-state wave functions are
rather attractive, however. In forming them we are led
to add together many different spin configurations with
coefFicients that are equal in magnitude. This certainly
calls to mind a spin-liquid picture, although to induce the
nonlocal ordering necessary for a true spin liquid would
require coupling the different squares together in a less
trivial way. I.=g c; (iB, )c; H, gao(i)(n—; ——1), (26)

nearest neighbor along a diagonal (NNN) couplings

H=+J $ S; S.+J' $ S;.S
NN NNN

where J and J' parametrize the strength of the nearest-
neighbor and next-nearest-neighbor couplings, respective-
ly. It has been shown by Inui, Donachi, and Cxabay
that the diagonal coupling J' is induced by doping. In
absence of the NNN coupling computer simulations sug-
gest that the ground state of the Heisenberg model is an
antiferromagnetic (Neel) state which violates neither T
nor P. But the NNN coupling (J')0) introduced frus-
trations in the Neel state. For large enough J', the Neel
state is no longer favored and the ground state is expect-
ed to be a disordered state. We will see later that such a
disordered state is quite likely to be a chiral spin state.
Two considerations suggest that there is a close relation
between the NNN coupling and the chiral-spin state.
First, as discussed in the Introduction, the chiral spin
state may be characterized by the nonvanishing phase of
the vacuum expectation value cr, (crzXo3). This vacu-
um expectation value is closely related to the amplitude
for moving a spin around the triangle 123. It is plausible
that the next-nearest-neighbor-coupling frustration in-
duces coherent hopping of spins around the triangle and
allows the operator o, (cr2Xc73) to develop a nonzero
vacuum expectation value. Second, in Ref. 27 it has been
suggested that the Aux phase on square lattice may be re-
garded as an alternative realization of the spin-liquid
state constructed by Kalmeyer and Laughlin' on a tri-
angular lattice. However, the Aux phase respects T and P
while the Kalmeyer-Laughlin state does not. This is be-
cause in the Aux phase P/, 234=e' and under T and I'
P/]234 +P/ ]234 P/]234 To find a state corresponding
more closely to the Kalmeyer-Lauglin state, and in par-
ticular sharing its symmetry properties, we must find a
state similar to the Aux phase, that, in addition, violates T
and I' Qne way t. his can happen, is for P/, 23 in Eq. (3) to
develop a nonzero vacuum expectation value. The phase
of P/, 23 is the Aux through the triangle 123, and is equal
to half the Aux through the plaquette 1234, that is e'"
if the ground state is homogeneous. Therefore, a nonzero
P/f/3 can break T and P symmetry. It is possible to con-
struct models, which in mean-field develop the desired
vacuum expectation values. The corresponding vacuum
state, as we well see, does seem to resemble the
Kalmeyer-Laughlin state qualitatively.

We will now show, in a mean-field approach, that an
extrapolated form of the Hamiltonian (25) supports a lo-
cally stable vacuum which breaks T and P, if J'/J is
larger than a critical value. Following Refs. 16 and 25,
we first introduce the electron-destruction operator c;
and write the Lagrangian of the model (25) as

FRUSTRATION AND A CHIRAL SPIN
LIQUID IN MEAN FIELD THEGRY

Consider a two dimensional spin- —,
' Heisenberg model

on a square lattice with both nearest-neighbor and next-

where n; =c; c; is the number of electrons on the ith site
and the Lagrange multiplier term g;ao(n; —1) is intro-
duced to enforce the constraint n, = l. H, in (26) is ob-
tained by replacing S, in (25) by
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S;=c, o.c, ,

and reads

(27) complex parameters. The nearest-neighbor hopping am-
plitudes y; are parametrized by y, , i =1, . . . , 4 in the
way described in Ref. 16. The next-nearest-neighbor
hopping amplitudes are given by

NN NNN

—2X(J+J') . (28)

The constant term —2N(J+ J') is included for later con-
venience. In the path-integral formalism the partition
function is given by

Z= fDaoDc;Dc; exp i fL dt

X;,;~-„+-„=Xs+(—1)'X6

X';+ y
X7+( 1)~X8

In momentum space H~ can be written as

Ha —& itkiki)'~
k

(33)

= fDaoexp i fL,ft(ao)dt (29) where gI, is a summation over half of the Brillouin zone
and

where L, (trao) is the eff'ective Lagrangian obtained by in-
tegrating out electrons. L,ft(ao) is very complicated and
we have to do a saddle-point approximation here. Put-
ting aside the question of the accuracy of this approxima-
tion for a moment, we find that the important.
configurations are given by the stationary points of the
eA'ective action

5L,ft(ao )

6ao

The energy of the approximate ground state, constructed
in this way, is given by L,tt(ao) a—t the stationary point.
From (26) it is not difficult to see that the mean-field ener-

gy L,ft(ao ) is—equal to the vacuum energy of the Hamil-
tonian

ck

Ck+Q

hk is given by

hk =2RegI+2 Reg2~I+Reg3~3+Img3TQ,

where

i(k„+k ) i(k —k )

g, =y&e " ' +y7e

i(k +k ) i(k —k )

g =ye '+ye
ik„~ —ik —ik ~ ik

'93=7&e +X 2 e +1'3e +X 4e

(36)

H, =H, +g ao(n, —1), (31)
In (36) we have taken the lattice constant a = 1.

Now we can diagonalize H~. The energy spectrum is
given by

Hti =g (X,,c,tc, +H. c. )+ g (X; c, c; +H. c. ),
NN NNN

(32)

with a total number of N electrons. We must vary the g,
to minimize the energy the ground state.

Following Aleck and Marston, we will consider the
which break the symmetry under translation by one

lattice spacing, but are invariant under translations by
two lattice spacings. These g, are parametrized by eight

where the electron operators are now no longer subject to
the constraint c; c; =1. H, is still very dificult to solve,
but since the constraint n, = 1 is removed we can easily
use the variational method (i.e., eff'ectively the Hartree-
Fock approximation) to find a state close to the true vac-
uum of H).

Here we are primarily interested in the spatially homo-
geneous stationary point ao =const. The constant ao acts
like a chemical potential in (31). From (30) and (31) it is
not hard to see that the stationary value of ao is such that
the total number of electrons in ground state of H, is
equal to the number of the lattice sites N. This of course
corresponds to our starting point, which was a model
with one spin degree of freedom per site.

As our trial wave function for H, , let us first consider
the bond state studied by Aleck and Marston. ' The
bond state is defined as the ground state of the following
quadratic Hamiltonian:

E„= 2Rei)+[4(R ei)2)+ li), l

]'~~ (37)

In the absence of the diagonal hopping terms

(X; l;=~ s=0) the Fermi "surface" of E„(at half-

filling) consists of just the two isolated points at
k =(m/2, m/2) and k =(m/2, —ir/2). The low-lying exci-
tations around the Fermi "surface" correspond to two
families of massless Dirac fermions in the continuum lim-
it. Each family contains a spin-up and a spin-down elec-
tron. However, the nonzero diagonal hopping terms with
y6= —y8 =real open a gap at the Fermi "surface". Since
generically it is energetically favorable for fermion sys-
tems to open a gap at the Fermi surface, we expect y6 and

y8 to develop a nonzero value if J' is large enough. In
the following we will show, in a mean-field approxima-
tion, this is exactly what happens.

The ground state l4ii ) of Hji can be obtained by filling

all negative energy levels with electrons. Using l4& ) we

can obtain ( c; c~ ) =X;. for nearest-neighbor and next-
nearest-neighbor bonds. Those y, are again

par ametrized by eight complex parameters
i =1, . . . , 8 corresponding one by one to the g. In fact
the y; can be expressed as derivatives of the ground-state
energy of Hz with respect to the y;. In terms of the y;,
the expectation value of H, [see (31)] in the state lC&ii )
can be written as
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&a =
& @a IHil~'a &

= —&[J(lx)f'+ Ix2I'+ lc~, I'+ Ix, l')+ J'(Ix, +y, l'+ ly, —y, I'+ Iy, +y, l'+ Ig, —g, ')] . (38)

Since the g; are functions of the y;, we can adjust the g;
to minimize the energy Ez. By computer search we find
that there are two local minima which are potential
ground states. One is a chiral spin state, characterized by

Xs=X7=o

X6= —Xs=+g&0

(39)

x; I;~i=0
(40)

The energy (per site) of the dimer phase is equal to —J.
The energies of the chiral spin state, the Aux phase, and
the dimer state are plotted in Fig. 2.

In addition to the bond states, another obvious mean-
field state to consider is the Neel state, characterized by

(c; cr c;)=( —1)',

X;,=0. (41)

The energy of the Neel state is given by —2(J—J'). A
second spin-ordered state, characterized by

where f and g are real constants. One can easily check
the fiux through the triangles is +m/2 ( —m/2) for
g6= —gs=+g ( —g ). In this state, P and T are broken.
The chiral spin state exists only for J'/J~0. 5. When
J'/J (0.5, we find g =0 and the chiral spin state is bet-
tered by the Aux phase discussed in Refs. 15 and 16. P
and T are not broken in this Aux phase.

Still within the framework of bond states, another local
minimum is the dimer phase characterized by

and compute corrections to the corresponding saddle
point, we shall find them to be huge. In order to have a
context in which we can use the relatively tractable
mean-Geld method, and yet have a controlled approxima-
tion, we can go to an appropriate large n limit, so that
there are many indivduals contributing to the mean field.
As is well known in many other contexts, in this limit the
case of the mean-field approximation is at least self-
consistent, order by order in 1/n. A large nli-mit ap-
propriate to our problem can be achieved by considering
the Harniltonian,

NN NNN

n(J+—J')X, (43)

where a, 6 = 1, . . . , n. In the ground state, H, contains
nN/2 fermions. For n =2, H„reduces to H, in (31).

We may repeat our previous calculations for the ener-
gies of bond states. The energies of the chiral spin state
and the dimer state are the same as before except for an
overall factor n /4.

Now let us consider the staggered phase (correspond-
ing to the Neel phase for n =2), characterized by

(c; 'c;b ) =
—,'5b+( —I )'Tb,

X;, =0 (44)

1

2

1

2

where Tb is traceless Herrnitian matrix. The minimum of
the energy is at

(c;o'c; ) =( —1)",
(42)

1

2

for n =even,

X;, =0

also has low energy when J' is large. We will call this
state the stripe state. The mean-field energy of the stripe
state is —2J'.

Thus, in the mean-field approximation either the Neel
state (for 0 (J'/J & 0.5) or the stripe state (for
0.5&J'/J(1) always has the lowest energy. But near
J'/J=0. 5, the chiral spin state comes very close. Actual-
ly at J'/J=0. 5, E,h;„,= —0.918 and

1

2

0
1

2

1

2

(45)

for n =odd,

ENeel Estripe dimer

Because of the expected large quantum Auctuations, the
saddle-point or mean-field approximation is inadequate to
determine which, if any, of the mean-field trial states ac-
tually describes the true ground state. However, the
above calculation at least indicates that the chiral spin
state is a serious candidate for the true ground state.

As we have mentioned repeatedly, the mean-field ap-
proach to the spin- —,

' Heisenberg model is not reliable.
Specifically, if we take any of our trial states and go back

1

2

The minimal energy is given by

(H )„,= 2N(J J')—— (46)

where [x] is the integer part of x. For the stripe state
(and other "spin"-ordered states) the mean-field energy is
also of order —O(n). Thus in the large-n limit the bond
states are always favored, because their energies are of or-
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FIG. 2. The mean-field energies of the chiral spin state, the
flux state, and the dimer state.

Dime

FIG. 3. The mean-field phase diagram of the Hamiltonian
(43) with an added term (47).

der —O(n ). There are then only two possible phases,
the chiral spin state and the dimer state, in the range
0 & J'/J (1. The energy of the chiral spin state is slight-
ly higher then that of the dimer state. At J'/J = I we get
Echiral 0.994J and Edimer J—the two energies are
extremely close. Thus the chiral spin state is very likely
to be a locally stable state. It is hard to imagine a path
connecting the two states without encountering a poten-
tial barrier. There is an argument, relying on a result we
will show later, that strongly suggests that such paths do
not exist. That is, the effective action for low-energy ex-
citation around the chiral spin contains a Chem-Simons
term with integer coefficient while the effective action for
excitations around the dimer phase contains no Chern-
Simons term. The integer coefficient of the Chern-
Simons term can jump to another value only when the
gap in the electron spectrum is closed. Therefore, for any
path connecting the chiral spin state and the dimer state,
there must be a state along the path for which the energy
gap in the electron spectrum closes. However, such a
gapless state very likely has higher energy than the chiral
spin state (with its gap). The gapless states, we conjec-
ture, constitute a potential barrier between the chiral spin
state and the dimer state.

The chiral spin phase will definitely become the ener-
getically favored possibility once we consider Hamiltoni-
ans containing an additional term of the form

QG;G, .
n i,j

In (32) G, is the order parameter discussed before [see (I)
and (4)] and is given by

the ground state. It should therefore be sensible to study
the quasiparticle excitations around this state. We also
found that the mean-field energy of the chiral-spin state is
very close to that of other ordered states, i.e., the Neel,
stripe, and dimer states, even for the original case of
n=2. This suggests that the quantum fluctuation may
well melt the ordered phases, resulting in a chiral spin
ground state. Even if this does not happen, the chiral
spin state may appear as ground state of a modified
Heisenberg model. Hopping terms around the plaquette
[see (47)] favor the chiral spin state. Furthermore, al-
though we will not review it here, hopping terms of the
simpler sort

(49)

also favor the chiral spin state. Altogether, we are en-
couraged to take seriously the possibility that order of
this kind develops under rather general circumstances, in
frustrated-spin models.

The chiral spin states defined here are spin liquids, ac-
cording to our definition. Indeed, in the large-n mean-
field theory the expectation value of products of y's
around arbitrarily large closed paths is merely the prod-
uct of their nominal values on single links. Since the
number of elementary triangular plaquettes enclosed by a
closed path is proportional to the area enclosed, and each
contributes the same constant to the imaginary part, the
area law (9) is manifestly satisfied.

Finally, let us remark that although we have made life
easy for ourselves by going to mean-field theory, we have
probably made it hard for the spin liquid. After all, we
expect the liquid to be stabilized, relative to say the di-
mer, precisely by fluctuations, and mean-field theory sys-
tematically minimizes fluctuations.

—(i+x~i+x+y)] . (48)

Such a term does not change the energy of the dimer
phase because 6;=0 in the dimer phase. But the added
term lowers the energy of the chiral spin state if w) 0.
The mean-field phase diagram is plotted in Fig. 3.

In this section we have argued that the chiral spin state
is very likely a locally stable state of the frustrated
Heisenberg model, in the large-n mean-field approxima-
tion. For slightly modified Hamiltonians, it is plausibly

QUANTUM NUMBERS OF QUASIPARTICLES

We now turn to discuss the quantum numbers of the
quasiparticles, first qualitatively and then more formally.

As we have seen the chiral spin phase is stabilized, rel-
ative to the dimer, by hopping. Very roughly, we may
say that the dimer melts as the electrons become even
slightly free to wander. Presumably, this effect of includ-
ing plaquette terms or of increasing t by hand also would
be induced dynamically as a by-product of doping.
Indeed, as one moves away from half-filling, vacant sites
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become available, so the electrons begin to move. In any
case, it seems sensible to think of the chiral spin phase as
a quantum liquid. We expect it to be incompressible, due
to strong Coulomb repulsion.

In this context, the postulated-area law (9) acquires a
simple physical interpretation. It means that the effective
magnetic flux, introduced above as a Berry phase associ-
ated above with transport around fixed loops in phys-
ical space, can instead be ascribed —much more
reasonably —to the transport of particles around one
another. [This ascription is possible, if (and only if) the
spin fluid is incompressible. For only then, are particle
number within a loop, and the area of the loop, inter-
changeable. ] In other words, fictitious fluxes and charges
are to be attached to each particle, in such a way that the
Berry phase is realized as the phase accumulated accord-
ing to the Aharonov-Bohm effect for transport of these
fictitious charges and fluxes around one another.

Sophisticated readers will recognize there the appear-
ance of statistical transmutation. Indeed, the analysis
here is entirely parallel to a similar one for the FQHE.
Let us determine, following a slightly different path from
the one laid down in that analysis, the relevant numbers.
A defect in our featureless singlet spin liquid can be intro-
duced by constraining the spin on one site to be, say, up.
The density of the liquid is then reduced, because the site
in question can only be reached by neighboring electrons
already spinning up. In effect, one-half a site —and
therefore, by incompressibility, one-half an electron-
has been removed. Since the phase was e' per encircled
electron, it becomes e™2for encircling the defect. Now
we can expect that, upon our slowly delocalizing the con-
straint, the system will relax to an energy eigenstate with
spin —,'. As long as there is a gap neither the total spin
nor the phase accompanying transport around a loop far
from the defect can be altered by the relaxation, which is
a local process. Thus we expect that the defect relaxes
into a spin- —, neutral, half-fermion quasiparticle.

The conclusion of the preceding highly heuristic argu-
ment can be illustrated concretely in the continuum limit
of our chiral spin phase. In the flux phase the Fermi
"surface" consists of two isolated points. The low-energy
excitations correspond to two families of fermions in con-
tinuum limit, whose propagation is described by the
effective Lagrangian

y"(i d„+a + A „)f,
a =1,2
~=+

(50)

where a =+ labels spin up and spin down, A„ is the elec-
tromagnetic gauge potential and y" is given by

=CT, f =ECT, P =LO (51)

a„ is the dynamically generated gauge potential discussed
in Refs. 24 and 25. ao comes from the Lagrange multi-
plier term used to enforce the constraint n,. =l. a;~;, z

comes from the phase of the hopping amplitude g „,
exp —i I A dxy „=y „exp i I a dx . (52)

m m

Here g „denotes the ground-state expectation value of

c~ c„ in the chiral spin state. For example, in the mean-
field approximation, y „ is specified as in Eq. (39). In
other words, the efFective statistical gauge potential a
represents the fluctuation of g „away from its ground-
state value. The electromagnetic gauge potential is in-
cluded to make the right-hand side of (52) an electromag-
netic gauge-invariant object. In the chiral spin phase the
electron spectrum opens a gap at the Fermi surface. This
corresponds to the fermion fields P, obtaining a mass
term. We find that the mass terms obtained by f, and

have the same sign

mfa. Pi ™02A'2.. (53)

Such a mass term breaks T and P, which just reflects the
symmetry properties of the chiral spin phase. Putting
(50) and (53) together we obtain the Lagrangian of the
continuum limit of the chiral-spin state

f, y"(id„+a„+A„)g, +mP, g,
a=1,2a=+

(54)

At half-filling we can safely integrate out the massive fer-
mions and obtain the following effective Lagrangian:

(55)

The factor of 4 results from the four feemions.
Using the effective Lagrangian we may obtain the low-

energy properties of the chiral spin phase. First we
would like to show that there is no zero-magnetic-field
Hall effect in the chiral spin phase (i.e., the conductance
o'„~=0), even though it is no longer forbidden by the
(broken) symmetries P and T. The electrical current is
defined by

J"= =— e" B(a +A ).eff 1 Pl
e g~ ) (

v (56)

The equation of motion for a„reads

(57)

This implies that the electrical current vanishes for any
background electromagnetic field and the chiral spin
phase at half-filling is an insulator. This is hardly shock-
ing, since our effective theory (54) or (55) is supposed to
describe the low-energy properties of the Heisenberg
model (25), which contains no charge fiuctuations. How-
ever, it was not completely obvious a priori in our mean-
field approximation, which does allow charge fluctua-
tions.

Now let us consider the excitations in the chiral spin
phase. The simplest excitation to consider is an excited
electron in the conduction band. We must emphasize
that the appearance of an electron in the conduction
band does not correspond to introducing an electron into
our system, because integrating out ao still enforces the
constraint n; =1. We will see that such an excited elec-
tron corresponds to a neutral spin- —,

' particle. At low en-
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ergy the excited electron can be regarded as a test parti-
cle. The effective Lagrangian in presence of such a parti-
cle can be written as

+(a„+A„)j", (58)

~&etr . 1 m0= =j"+— e" d (a~+ A~ ) .aa„~ fm /

(60)

The first term in (59) can be regarded as the contribution
to electrical charge arising from the vacuum polarization.
The equation of motion implies that the electrical charge
of the excited electron is completely screened by vacuum
polarization. The screened electron behaves like a neu-
tral particle. Because the chiral spin vacuum is a spin
singlet even when a„and 3„are nonzero the vacuum po-
larization cannot change the spin quantum number of the
excited electron. Therefore, the screened electron is real-
ly a spin- —,

' neutral particle. Due to the Chem-Simons
term in (58), the statistics of the excited electron is also
changed. From Refs. 5'and 31 we find the statistics are
given by a phase factor e'~+~ '. Thus, the screened
electron behaves like a half-fermion. The quantum num-
bers and the statistics of the screened electron are exactly
the same as the spinon in the Kalmeyer-Laughlin state,
and of course the same as we obtained heuristically be-
fore.

It may well seem that there is no connection whatsoev-
er, or even a mismatch, between our heuristic argument
and our formal argument. According to the former, the
quantum statistics of the quasiparticle is determined by
the ratio of fictitious flux density to particle density. Ac-
cording to the latter, it is determined by the number of
points at which the energy gap closes, if the flux is turned
off. Most remarkably, however, these two quantities are
related by an index theorem. We shall illustrate how
this works, by considering a generalized flux phase.

The construction of the chiral spin. state given above
was based on the particular flux phase such that the flux
through each plaquette is equal to m.. A similar construc-
tion of the chiral spin state can be also done for general-
ized flux phase where the flux through each plaquette is
equal to 2~p/q, with q an even integer. It has been
shown that the Fermi "surface" of such a fiux phase (at
half-filling) consists of q isolated points, and. that each
point corresponds to a two-component massless Dirac
fermion in the continuum limit. Including proper non-
nearest-neighbor-hopping terms, we give each of the q
pairs of fermions, connected by a perturbation at the ap-
propriate wave vector, a mass. The mass for each faInily
can be shown to have the same sign. Thus the general-
ized chiral spin state is described, in the continuum limit,
by

where j"is the current of the test particle. Now the elec-
trical current and the equation of motion become

J"=— e'"' 8 (a + A )+j"1 m
e

[ /

v

g, y"(iB„+a„+A„)g, +mg, P, . (61)

After integrating out the fermions we obtain a Chern-
Simon term as in (58) but with the factor of 4 replaced by
2q. The neutral spin- —, excitations then acquire fractional
statistics given by e'"+ " q'. This is exactly the same
result, as would follow from our heuristic argument.

CONCLUDING REMARKS

Now let us briefly discuss what all this might have to
do with high-temperature superconductivity. A spinon
of the type described above, carrying half-fermion statis-
tics, plausibly binds to any introduced hole, creating a
spinless charged half-fermion composite. Two half-
fermions can pair to make a boson, and such boson pairs
are good candidates for a superconducting condensate.
The pairing is energetically desirable, because a pair of in-
troduced holes, generate a fictitious flux which is an in-
tegral multiple of the fundamental fiuxoid. In other
words a pair can peacefully coexist with the chiral spin
phase background, and therefore need not carry spinons
along. The qualitative idea here is not altogether unlike
that underlying "spin-bag" or "spin-polaron" mecha-
nisms. According to these pictures too, holes are associ-
ated with disordered patches, and so it is advantageous to
minimize their effect by clumping them together. There
is a significant difference, however; the present mecha-
nism does not require an antiferromagnetic Neel or spin-
wave background to play against.

Another related argument for superconductivity in
doped chiral-spin liquids, given by Laughlin, ' ' is the
following. It is known that fermions with arbitrarily
weak attraction become superconducting at zero temper-
ature. Now half-fermions can be considered as fermions
with a special sort of long-range attraction. Thus, they
must condense at low temperature.

We conclude with some philosophy and a speculation.
The message of this paper, and of several others in the re-
cent literature might be phrased roughly as follows. The
success of the Laughlin wavefunctions in describing the
incompressible quantum-liquid phases of the FQHE,
shows that they provide an excellent way to reconcile the
desire to order (in that context, order in real space is
desired, to minimize Coulomb repulsion) with the
difficulties introduced by frustration (in that case, by an
external magnetic field). Roughly speaking, in the FQHE
the electron gas, by collective correlations, manufactures
an effective magnetic field to cancel the real one. Now a
frustrated-spin system faces similar problems. Let us irn-
agine attempting to find the ground state in the usual
way, by evolving the system in imaginary time. We can
think of spin sampling various loops as it "decides" how
to point, and in general getting conflicting instructions.
By condensing into a chiral spin liquid, the spins intro-
duce collective phases, that partially ameliorate the frus-
tration. It is no accident, then, that the sorts of
effective-field theories and order parameters we find for
chiral spin liquids, are so reminiscent of those familiar in
the quantized Hall effect. Concretely, spinon excitations
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around the chiral spin state near half filling, analyzed
above, have the same statistics as one finds for the quasi-
particles around the m=2 Laughlin state. We believe
this conclusion, originally derived by Laughlin from an
approximate mapping of the Heisenberg antiferromagnet
on a triangular lattice into a quantum Hall system, is
much more robust; it follows generally for chiral spin
liquid states having b =an, in the area law (9), where n,
is the density of electrons.

This circle of ideas strongly suggests a conjecture, that
if true leads to a dramatic consequence. It is quite con-
ceivable that in di6'erent parameter regimes, or in the real
materials at difterent doping levels, other possibilities
than m =2 occur. Indeed, we have briefly discussed such
possibilities before, in illustrating the consistency of our
qualitative and quantitative arguments for fractional
statistics of spinons. In mean-field theory, these di6'erent
possibilities lead to gaps opening at di6'erent places. It
should be favorable to open a gap at the Fermi surface, so
the system might switch from one phase to another as the
position of this surface changes. And, of course, a whole

menagerie of states has been observed in the FQHE.
Now if, for instance, and m=4 chiral spin state were
formed, holes doped into it might be expected to con-
dense in quadruples, thus producing a Auxoid unit h /4e.
(This time, we are speaking of genuine magnetic flux. )

All this suggests that it would be worthwhile checking
the unit of Aux quantization carefully in the new materi-
als under various circumstances, not prejudging the
universality of pairing. There may be surprises lurking at
diff'erent doping levels, pressures —or even simply at
lower temperatures.
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