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Field structure of vortex lattices in uniaxial superconductors
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The magnetic field distribution within a primitive cell of the equilibrium Aux-line lattice of a uni-
axial superconductor is obtained for any orientation of vortex axes within the crystal in intermedi-
ate fields. The numerical procedure is described for mapping of both longitudinal and transverse
field components with respect to the vortex axes (or to the direction of the induction 8, which is the
same). For a general orientation of 8 within the crystal, the transverse field, which is comparable in
value to the longitudinal one in low fields, becomes small with respect to B in intermediate fields,
but remains comparable to the variable part of the longitudinal component. The nuclear magnetic
resonance line shapes are discussed for an arbitrary orientation of an intermediate external field.

I. INTRODUCTION

Early indications of differences in the magnetic field
distribution, h(r), within vortices of anisotropic super-
conductors as compared to the classical Abrikosov struc-
ture for isotropic materials can be found in. the literature
of the 1960's. Tilley had tried to extend his solution of
the Ginzburg-Landau (GL) equations at the upper criti-
cal field H, 2 to the field domain (H, 2

—H) ((H,2.
' The

attempt was followed by Dorer and Bommel, who —to
the best of our knowledge —were the first to find that
h(r) must have a nonzero component transverse to the
vortex axes. Their solution, however, was erroneous be-
cause their averaged transverse field, i.e., the transverse
component of the induction B, did not vanish. As was
pointed out later by Kogan and Clem, such a component
of B is prohibited by the fIux quantization. Although in
that paper only the GL case (H, z H) (&H, 2 wa—s treat-
ed, the argument is quite general and holds at any field
and temperature. Another indication for possible ex-
istence of the transverse vortex field came from the mi-
croscopic calculations of Takanaka.

A clear physical picture as to the source of the trans-
verse field arose after one of the author's (V.G.K.) pointed
out that in uniaxial materials with, e.g., a large mass
along the crystal axis, the persistent currents have a ten-
dency to fiow as close to the "easy" plane (with low
masses) as possible. The kinetic part of the free energy
of the vortex-current loops is reduced when they are in-
clined from the plane normal to the vortex axis toward
the "easy" one. This is equivalent to a nonzero com-
ponent of the persistent current parallel to the vortex
axis, which, in turn, results in a nonzero transverse field
component. The effect, of course, vanishes if vortices are
directed along one of the principal crystal directions. In
more detail the problem has been considered in Ref. 3 for
fields near H, 2. In particular, the transverse component
of the macroscopic magnetization has been evaluated un-
der the explicit condition of zero transuerse induction.
Away from H, 2, the London approach can be used. In
this domain, existence of the transverse field follows from

the London equations in a direct and simple manner, as
was shown in Ref. 6 and in the later theoretical work.

The transverse field in vortices affects the outcome of
muon spin rotation (pSR) (see, e.g., Ref. 11) and nuclear
magnetic resonance (NMR) experiments; the latter is dis-
cussed below. It has an influence upon the form factors
of the neutron scattering from the flux lines. ' Also, it
leads to the transverse magnetization, which can be mea-
sured either directly or by observation of a torque acting
on a reversible sample in intermediate fields

H„«H «H„,
where the demagnetization effects of the sample shape
can be neglected. ' The torque experiment has recently
been done with the high-T, superconductors YBazCu307
and T128a2CazCu30, 0 in the field domain (1), which is
quite broad in all high-T, materials. ' The data are in a
good agreement with predictions of Ref. 13. Thus, the
transverse field in vortices of anisotropic superconductors
and the transverse magnetization should be considered as
experimental facts rather than theoretical speculations.
This field influences the intervortex interaction, flux-line
lattice structures, ' ' and, ultimately, the vortex dynam-
ics.

We consider in this paper the distribution h(r) in inter-
mediate fields for an arbitrary orientation of vortices
within a uniaxial crystal. Apart from an obvious interest
in visualizing the complex picture of the vortex field in
real space, this distribution is needed for interpretation of
the NMR line shapes. In the next section we review
briefiy the formulas needed to reconstruct h(r). Exam-
ples of numerical results are given in Sec. III; the numeri-
cal procedure is discussed in more detail in the Appendix.
The NMR line shapes and the way we evaluate them are
discussed in Sec. IV. A short discussion concludes the
paper.

II. LONDON EQUATIONS

Major effects of a strong uniaxial anisotropy can be
taken into account by replacing the scalar k (curlh) in
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8n.F= J(h +A, m;kcurl;hcurlkh)dx dy, (2)

where h(x, y) is the local magnetic field and dx dy is an
element of area in the plane normal to the direction z of
vortex axes. For a vortex along z, the field h in an aniso-
tropic material has h and h nonzero components, un-
less the vortex axis coincides with one of the principal
crystal directions.

We wish to consider vortices oriented arbitrarily with
respect to the crystal frame (X, I;Z) defined in Fig. 1,
and, therefore, we transform m;k from the crystal frame
{where mxx=mi'v=mi and mzz=m3) to the "vortex
frame" (x,y, z):

the London-free energy density of an isotropic material
with an invariant combination A, m;kcurl;hcurlkh (for de-
tails the reader may turn to Refs. 6—8). Here A, is pro-
portional to the "average mass" M»=(M, M2M3)'~
with M being the principal values of the "mass tensor"
M;k. We normalize this tensor on M,„: m, k =M, l, /M»,
then the eigenvalues of m,.k are connected by
m 1 m 2m 3

= 1. Although m;k is often called the
"effective-mass tensor, " it incorporates other sources of
anisotropy, among which the possible gap anisotropy is
most important. ' Hereafter, we consider m;k as a
known phenomenological tensor. In fact, for uniaxial su-
perconductors (in the case of our interest m i

=mz & m3)
we only need to know the ratio I =m3/m, . Then the
normalization m, m 3

= 1 yields both masses: m1 = I
and m3=I . The anisotropy parameter I can be
determined experimentally from, for example, the ratio of
the two upper critical fields, the one directed in the basal
plane ab over another one along the crystal c axis with
the large mass m3. H,2,&IH,2, =Qm3/m, =&I .
Another and probably better way to extract I is provided
by the torque experiment mentioned above. '

The London free energy F (per unit length in the direc-
tion of vortices) now reads

z,B

-Y,
y

~

a

FIG. 1. The system of coordinates (x,y, z) with z= B/8 is ob-
tained by rotation 8 of the crystal frame (X, F,Z) abopt the F
axis. The plane in which the currents Bow is defined by the y
axis and the dashed line (see Sec. III).

h(G)=(BIN )0f h(r)exp( —iG r)d r,
where G forms a reciprocal lattice and the integral in Eq.
(6) is extended over the cell area. Equations (4) now yield
for h(G):

h (G)=BE, m„, G» /d,
h (G)= BA, m„, G G»/—d,
h, (G)=B(1+A, m„G )/d,
d=(1+A, miG +A, m„„G» )(I+A, m„G )

(7a)

(7b)

(7c)

(7d)

the periodicity of the vortex lattice, so that it can be ex-
panded in the Fourier series:

h(r) =g h(G)exp(i 6 r),.

m =m icos 0+m3sin 0, m —m —0,
yy m1 zz m1S1n +m32 2

m, =(m, —m3)sin9cosO,

(3)

The equilibrium lattice structure for an arbitrary orien-
tation of B (which coincides with the direction of vortex
axes) has been obtained in Refs. 12 and 15 for intermedi-
ate fields (1).' The basis vectors, b, z, of the primitive
cell are

where 8 is the angle between c or (Z) and the vortex axes
z (or B). The London equations for a lattice of vortices
located at r are obtained by varying F with respect to
h(x, y): b,

b2= x+
3m 3

m

1/2
'

2+o m„
3m 3

1/4

1/2 (8)

h, —
A, (m, h, . +m„h, . —m, h„. )=@0+5(r—r„) .

Here, eg. , h;. =B h /Bx By, h;. means the two-
dimensional Laplacian in the xy plane, and r=(x,y) and
r form a two-dimensional periodic lattice in the xy
plane. Furthermore, Nz is the Aux quantum, so that the
magnetic induction B =@0/S with S being the primitive
cell area. Note that in the system of straight vortices
parallel to z, nothing depends upon z. The field h(r) has

The lattice consists of isosceles triangles (Fig. 2) with the
side-to-base ratio bulb& and the angle P between b& and
b2 given by

2b2 Ib, =(1+3m 3 Im„)', tang = (3m 3/m„) '~

The triangles become equilateral for the field B parallel to
c (8=0), where m„=m 3, as they should. It is worth
noting that the equilibrium lattice (8) of vortices in a uni-
axial material is attached to the crystal in a unique way.
Unlike the isotropic case, any rotation of the cell (8) as a
whole around the direction of B (z axis) would have in-
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FIG. 2. Sketch of the equilibrium lattice cell [given in Eqs.
(8) and {9)]in the plane (x,y) normal to B. The nonorthogonal
coordinates (g, g) are introduced in the Appendix to simplify the
numerical procedure.

8/H, i(m/2) =9.3]. Figure 3 maps the distribution of the
longitudinal component h, (x,y) for three orientations of
B (or of the vortex axes) with respect to the c axis: 8=0,
70', and 90'. The contours of constant h, (x,y) are shown
starting with a value of h, close to 8 (to avoid the domain
with high field gradients) spaced at intervals of b,h, (see
the figure caption). These same lines also represent the
stream lines of the current density projection upon the xy
plane.

For the graphic representation of the transverse field
h, „(r), we notice that both h and h are expressed in
terms of the z component of the vector potential A:
h =BA, /By, h = —BA,/Bx. For an element d1 of the
h„streamline we have

0= ( d l Xh„),=h dx —h dy = —d A, .

The streamlines of h„are, therefore, given by
A, (x,y)=const. For this reason we Fourier-transform
the function

3 (G)=ih (G)/G„=h (G)/iG = iBm G—/d

creased the free energy. The directions x and y can be
written as (c XB)XB/8 and c XB/8, respectively.

The reciprocal lattice corresponding to the cell (8) is
found readily:

2B 3m
G =~

m„
1/2

28 mzz

3m3

1/4

(2m n), —
(10)

m, n =0,+1,+2,

We now have all the information necessary to recover the
field distribution h(r) with the help of the Fourier trans-
form (5).

III. FIKI.D DISTRIBUTION

The details of the numerical procedure used are given
in the Appendix. To present the results we have chosen
the mass ratio I =m3/m, =25, the figure which is be-
lieved currently to reAect the anisotropy of the high-T,
superconductor YBa2Cu307& with T, -90 K; see, e.g.,
Ref. 14. (Recall that due to the normalization, m im s

= 1,
both reduced masses are expressed in terms of their ratio:
m, = I '~, m3 = I ~ .) The average penetration depth A,

of all known high-T, materials is about 100 times larger
than their average coherence length g; then, roughly, the
GL parameter x =1,/g = 10 . The low critical field
H, i=(@o/4vrA. )Qm„lns or, taking @0/A, as the unit of
field, „H=(+m„l an) 4/n. We take for a representative
example B=2. This B exceeds substantially the H, &

in
the most interesting part of the interval 0& 8&m/2 [for.
B~~c (8=0), Qm„=+m3 =2.9 and 8/H„(0) =1.9,
while for Blc (8=~/2), Qm„= Qm i -0.58 and

[see Eqs. (7)] to find A, (r) and plot the contours
A, (x,y)=const. Due to the factor m „the transverse
field vanishes if 8 points in one of the principal crystal
directions. The lines of h„are shown in Fig. 4 for 0=70
and 8 =2, corresponding to the graph in Fig. 3(b); the
values and directions of h„are extracted from the numer-
ical data on h (r) and h (r). It is clear from the figure
that the total magnetic Aux in both the x and y directions
is zero, as it must be. We have checked that this condi-
tion is satisfied by direct numerical summation of the re-
sults for both h and h over the primitive ce11.

One can see from Fig. 4 that the transverse field is
maximum at vortex axes, i.e., the total field at vortex axes
is not parallel to the direction of the axes (or to B) (the
latter is normal to the figure plane). The deviation of the
h direction from that of 8 depends on the position within
the cell; Fig. 4 shows that it changes sign twice as one
moves along the line x =0, e.g. , from the "cell bottom" at
y =0 to the "top" at y =b2sing. The strips where h„has
different signs are separated by domains where "vortici-
ty" of the field lines develops; in these domains the total
field has a helical structure streaming up along B (with
helicities of different signs in different parts of the cell).

An important characteristic of the field distribution is
the root-mean-square deviation from 8:

m2 G2+m2 G2

m iA. G (m„G, +m3Gy )

(12)

where the sum runs over the reciprocal lattice (10) except
for the origin G=O. [To avoid misunderstanding, note
the difference between the variance of the vector h,
defined in Eq. (12), and the variance ((h 8) ) for th—e
field value. ] In substituting the Fourier components
h;(G) of Eqs. (7) in Eq. (12), we had neglected 1's with
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the minimum at 90'. The ratio of the maximum to the
minirnurn is I, e.g., 25 in our example.

In the same manner, one can evaluate the average
square of the transverse field,

(h„)=g'[h, (G)+h (G)], (14)

FIG. 4. The lines of the transverse field h, „ for B at angle
0=70' to c for B=2+p/X . A representative value of h, „at the
point a of the figure is 0.087.

3@om„ 1+(m„,/m„) f(m, n;ri)
((h —B)')=

64~ A, „(I mn+n )—

(13)

where

m mn+—n /4
m mn + n ( 1+i) ) /—4

3m3

The summation in Eq. (13) is done numerically; the result
for ((h —B) ) in units of No/A. is shown in Fig. 5 for
I =25. For a given field in the domain (1), the width of
the variable part of the field distribution decreases with 0;
it is maximum at 0=0, decreases as 0 grows, and reaches

which is given by Eq. (13) without "1"in the numerator
under the sum. This is shown in Fig. 5 for the same an-
isotropy parameter I =25. Thus, the transverse field
scales with the variation of the total field, unless 8 is close
to 0 or 90'. Similar to the variance of h, the mean square
of the transverse field is independent of 8 in intermediate
fields. However, its relative value, (h „)/B, decreases,
and directional deviations of h from 8 become signaller in
increasing fields.

It is worth mentioning that for well separated vortices,
unlike the situation in intermediate fields, the transverse
and axial fields are of the same order of magnitude.
Hence, the relative effect of the transverse field is greater
in low fields near H„[unf ortu nately, only the asymptotic
behavior of h(r) for r ))A, has been studied for an isolat-
ed vortex; as well, little is known about the equilibrium
structure of the fiux-line lattice in low fields' ]. Never-
theless, in phenomena related only to the field Uariation,
such as pSR, NMR, or macroscopic magnetization, ' h, „
cannot be neglected in any field up to H, 2.

In intermediate fields the average intervortex distance
L is small compared to the average value of X. This
means that the derivatives h, .„&-h;/L ))h, /A. , and,
therefore, one can disregard the first terms in the London
equations (4). The first of Eqs. (4) then reads

m h && mzz Az yy Using divh =0 and a /az =0, one
obtains

frizz ( x;yy y;yx )™xzz;yy ( mzz jz ™xzjx );y

(the factor 4m. /c is omitted). The second of Eqs. (4) re-
sults in (m„j,+m, j ). =0. Hence, the combination
m„j,+I,j is a constant which must be zero, because
the integrals of both j and j, over the cell must vanish.

m„j, +m, j =0 . (15)

0.04 This result has a simple meaning: In fields M &)H„, the
current Aows in the plane that is obtained by rotation a
of the xy plane about the y axis such that

0.03—
tana = —m„, /m„. (16)

0.02—

0.01

0.00
10 20 30 40 50 60

8 (deg)
70 80 90

FIG. 5. The variance ((h —8)') (upper curve) and (h„)
{lower curve) in units of {4p/A ) vs the angle 0 between B and
c for 8=2{Cp/A, ).

In other words, though all the currents are situated in a
plane, the plane is not perpendicular to the vortex axes.
This plane is shown by the dashed line in Fig. 1. We de-
rived the result given in Eqs. (15) and (16) for intermedi-
ate fields (1); in fact, it holds also near H, 2. '

In conclusion of this section, we note that ours is not
the first attempt to plot the transverse field; for weakly
anisotropic material ( m 3 /m, = 1 ), this was done by
Krzyszton and Wrobel. ' Schopohl and Baratoff used
the asymptotic result at large (with respect to A, ) distances
from the vortex core to plot the transverse field of a sin-
gle vortex.
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IV. NMR LINE SHAPES V. DISCUSSION

The shape of the NMR absorption versus frequency of
the ac field is directly related to the distribution of ~h~ in
the primitive cell of the Aux line lattice. ' ' Clearly, the
absorption intensity in a given small frequency interval,
5co, is proportional to the fraction of the cell area where
the field value is in a corresponding interval (5co~5h).
Having obtained the distribution of h(r) in the form of a
discrete matrix with certain coordinates (x,y) assigned to
all elements, one can easily find approximate line shapes
by direct count of the relative number of (x,y) points for
which the field value is between h and h +5h.

Figure 6 shows the result of such a count plotted
versus parameter f= (h —h;„)/(B —h;„) for
B =2(@o/A, ), I =25, and for three orientations of B
within the crystal: 8=0', 70', and 90'. Note that f=1
corresponds to h =B. Because the curves decrease mono-
tonically for h )B, these parts are not shown in the
figure. Two features are worth noting. The extra saddle
point of h (r) is evident in the line shape as an extra max-
imum in Fig. 6 for 70. The relative position of the main
maximum (corresponding to the saddle which does not
disappear at 0=0) changes with the angle 0; it moves to
higher fields as 0 increases from 0 to about 70, after
which it falls to its initial (8=0) value at 90 .

The main motivation for this work was to demonstrate
substantial differences in the field distribution within vor-
tices of anisotropic superconductors as compared to their
isotropic counterparts. The vortices are the elementary
entities of the macroscopic mixed state of superconduc-
tors; any changes in their magnetic structure translate
into qualitatively new features of the macroscopic mag-
netic behavior.

The most profound manifestation of the transverse
field in vortices is the transverse magnetization, which
has recently been observed in the torque experiments. '

This, of course, does not exhaust all possible implications
of the peculiar magnetic structure of the mixed phase in
anisotropic superconductors. The list of these implica-
tions is not yet completed. However, it is already clear
that one cannot properly interpret experiments such as
pSR, NMR, or the neutron scattering without explicitly
taking the transverse field into account (or implicitly, in
the specific form of the Fourier components of the field).
We name some other phenomena where the details of the
vortex magnetic structure are of importance: Elastic
properties of the Aux-line lattices in anisotropic supercon-
ductors ' affect in an essential way the pinning charac-
teristics of anisotropic materials with implications on the
vast and still poorly understood domain of critical
currents in strongly anisotropic high-T, superconductors.
The low-field vortex dynamics, in particular, should be
more complicated than that of the isotropic case, because
the transverse field in this domain is of the same order as
the axial one.
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APPENDIX

I I I I I I I l I

0.0 0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 t

(h-h;„}/(8- h;„)

FICx. 6. Approximate NMR line shapes for 8 =2(@0/A, ) and
0=0, 70', and 90'. The vertical units are arbitrary; the curves
are displayed vertically to avoid overlap.

For. the numerical work it is convenient to use X as the
unit of length and 40/A, as the unit of field. Keeping the
same notation for the new dimensionless quantities, we
replace h —+hi, /No, 8~Bi, /No, r~r/k, and Cx~Cxk.
This results in Eqs. (7) with all A, omitted, and in Eqs. (8)
and (10) with omitted @o. For given input parameters B,
9, and m3/m„Eqs. (9) along with b, bi2sgn= 1/B yield
the parameters of the primitive cell: b, , bz, and P.

Standard routines for the fast Fourier transform are
designed for two-dimensional periodic functions defined
on a square lattice. To make use of this feature, we first
introduce the nonorthogonal coordiriates g and g shown
in Fig. 1:
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zi =x —y cot/, g=y/sing . (A 1) h„=h F, /F, =h, m„F, /(1+m„F2), (A4)

In these coordinates h(rI+nb„g+mb2)=h(g, g) with in-
tegers n and m. Then we have, instead of Eqs. (5) and (6),

h(z), g)= gh(p, q)e'~"+~~', (A2)
n, m

h(p, q)=B Jdridgh(ri, g)e (A3)

where p=2mn/b, and q=2mm/b2 run from —ae to
+ ao. The integral in (A3) is extended over the rectangu-
lar cell 0)q) b„0)g) b2. Executing the transforma-
tion (Al) in Eqs. (4) for h(r) and using Eq. (A3), one ob-
tains for the Fourier components h(p, q )

m~~ +Pl )Vl gF2
Az =B 1+I(p +Fi 1+m„F

where

F, =(p cos P+q 2p—q cosg)/sin P,
Fz

= (p +q
—2pq cosP ) /sin (t,

F& =(p cosP —pq)/sin(() .

(A5)

(A6)
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