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A theory of multiple phonon absorption and emission sidebands

C. H. Grein and Sajeev John
Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, P 0 B. o.x 708, Princeton, New Jersey 08544

(Received 11 July 1988)

The optical absorption coefficient for subgap electronic transitions in crystalline and disordered
semiconductors is calculated by first-principles means with use of a variational principle based on
the Feynman path-integral representation of the transition amplitude. This incorporates the syner-
getic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-
phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate
linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the non-
linear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands
which accompany the optically induced electronic transition. These sidebands dominate the ab-
sorption in the Urbach regime and account for the temperature dependence of the Urbach slope and
energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath
are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero
temperature we recover the usual polaron theory. At high temperatures the calculated tail is quali-
tatively similar to that of a static Gaussian random potential. This leads to a linear relationship be-
tween the Urbach slope and the downshift of the extrapolated continuum band edge as well as a
temperature-independent Urbach focus. At very low temperatures, deviations from these rules are
predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with

experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physi-
cal argument based on the most-probable —potential-well method.

I. INTRODUCTION

A nearly universally observed feature of optical ab-
sorption spectra near band edges in crystalline and amor-
phous semiconductors is the Urbach-Martienssen absorp-
tion edge. ' The absorption coeKcient for optically in-
duced electronic transitions from the valence- to the
conduction-band tails obeys the rule

a( v) =a0 exp I [h v EG ( T) ] /E0( T) ]—

where h v is the photon energy and E& and E0 are
temperature-dependent fitting parameters. Here, E& is
comparable to the band-gap energy and the Urbach slope
ED is typically in the range 10—100 meV for amorphous
semiconductors. This linear exponential behavior of the
absorption coe%cient may extend over ranges of photon
energies up to -0.5 eV wide corresponding to as many
as five decades in a(v).

Many theories of band-tail absorption consider a sim-
ple model of an electron interacting with spatially ran-
dom, static potentials which describe impurities in doped
semiconductors or structural disorder in amorphous
semiconductors. This picture works well for heavily
doped or amorphous semiconductors. However, in many
materials the interaction between the electron and the
dynamical quantum field of phonons gives rise to pola-
ronic effects and a significant increase in the conduction-
and valence-band-tail density of states (DOS). ' Even
in the absence of static disorder, for electron-phonon cou-
pling above the small-polaron threshold, the many-body

DOS (electron and lattice) when projected onto the pho-
non vacuum exhibits an exponential tail below the one-
electron continuum which terminates at the small-
polaron ground state. ' Such a projected DOS is relevant
to optical absorption experiments which occur on a time
scale short compared with that of lattice motion. In fact,
we show in this paper that the optical absorption
coefficient a(v) reduces precisely to such a projected
DOS in the zero-temperature limit as the phonon absorp-
tion sidebands are turned oft'. Physically such polaronic
band-tail states arise from local lattice fluctuations which
oscillate slowly on the time scale required for the electron
to oscillate within the potential well and thereby stabilize
it.

In many real materials the electron —acoustic-phonon
coupling is below the small-polaron threshold. However,
with the addition of static disorder, polaronic potential
wells can play an important role in the band tail. Be-
cause static potential fluctuations provide nucleation
centers for small-polaron formation, a substantial syner-
getic interplay between static localization and polaron
formation may occur at zero temperature even when the
electron-phonon coupling is below the threshold for
small-polaron formation in the crystal' (see Fig. 1). At
finite temperatures, the nonlinear electron-phonon in-
teraction results in the creation of multiple phonon emis-
sion and absorption sidebands in the optical absorption
spectrum. These sidebands account for some of the main
features of absorption spectra in the Urbach regime, such
as the temperature independence of the Urbach focus and
the temperature dependence of E0 and EG (see Figs.
2 —6).
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FIG. 1. Theoretical small-polaron "phase" diagram. In the
absence of static disorder and at zero temperature, small-
polaron formation can take place if the point (y, S„,, ) is above
the line. S„ is the electron —acoustic-phonon coupling constant
and y is the nonadiabaticity parameter.

We develop an expression for the optical absorp-
tion coefficient based on first principles. Both
electron —acoustic-phonon and electron —static-disorder
interactions are considered. A continuum effective-mass
approximation is made for the electron dynamics. Due
to the comparatively large static dielectric constants of
Si, As2Se3, and AszS3, final-state interactions between
electrons and holes are neglected. In these materials, the
exciton binding energy is small compared with the energy
scale of the disorder resulting in the exciton line appear-
ing above the conduction-band-tail Urbach regime.

Good agreement is found between theoretical predic-
tions and experimental measurements of the temperature
dependence of the absorption coefficient of c-Si, a-Si:H,
a-AszSe3, and a-AszS3. The physical parameters entering
into the theory, the conduction- and valence-electron
effective masses and electron-phonon deformation poten-
tials, the Debye energy, the speed of sound (assuming
linear dispersion for acoustic phonons), and the atomic
masses were determined where possible from experimen-
tal measurements. For these and other unmeasured but
physically reasonable values of the input parameters the
theory reproduces the observed linear relationship be-
tween Eo and Ez and the temperature independence of
the Urbach focus.

The Feynman path-integral technique is used to obtain
the one-electron propagator. This method was originally
developed by Feynman' to obtain the ground-state ener-

gy of the Frohlich Hamiltonian describing an electron in-
teracting with optical phonons. The path integral over
the electron coordinate is approximated by a first cumu-
lant expansion about a trial action which describes an
electron coupled to a single fictitious mass M,„;,&
representing the phonon cloud by means of a spring with
stiffness K„;„.Both M„;,~ and K„;„are variational pa-
rameters optimized according to a variational principle. '

The adiabatic limit of the electron-phonon interaction is
obtained by choosing M«, » = ~.

The basic physical picture which emerges from our
analysis is that the Urbach edge in crystals at finite tem-
peratures can be quantitatively described by an optically
induced electronic transition which is accompanied by
multiple phonon absorptions from the heat bath. ' These
phonons are then reemitted into a polaronic potential
well which then localizes the electron in the band tail. In
the continuum model, this process by itself gives rise to
an infinite exponentially decaying absorption tail since
the elastic energy of lattice deformation is provided by
the heat bath. In the case of disordered semiconductors,
we find that this process significantly alters the spectrum
of electronic states localized by static random potential
wells and accounts for the observed temperature depen-
dent aspects of Urbach's rule.

Section II outlines the effects of phonon sidebands on
optical absorption spectra and includes a derivation of an
expression for the optical absorption coefficient. In Sec.
III the path-integral method is employed to obtain the
absorption coefficient and a comparison is made with ex-
perimental measurements for several different materials.
We find that good agreement with many aspects of the
observed absorption edge may be obtained in a simple
model of an electron initially in a single strongly localized
state which is then optically excited into a band tail. In
Sec. IV we present an argument that the corrections to
this model arising from two band tails should be small.
Section V contains a comparison of the results of Sec. III
with the predictions of a simple physical argument. Re-
sults are discussed in Sec. VI.

II. PHONON SIDEBANDS AND THE OPTICAL
ABSORPTION COEFFICIENT

x +co,x +@co,xy =0, (2.1a)

y +co2y + coax —0 (2. lb)

In the absence of interaction, the solutions are

x =xo exp(+i~, t), (2.2a)

y =yo exp(+icozt) . (2.2b)

At finite temperatures, optically induced electronic
transitions are accompanied by multiple phonon absorp-
tion and emission sidebands. This sections begins with a
definition and a simple example of sidebands and contains
a development of an expression for the optical absorption
coefficient in a one-electron approximation.

A sideband in an absorption spectrum is the excitation
of an oscillator not subject to an external force simultane-
ously with the excitation of another oscillator which is
subject to an external force. The former oscillator is ex-
cited through nonlinear interactions with the latter.
Consider the following simple example two simple har-
monic oscillators with coordinates x and y and frequen-
cies co, and co2 interact through a weak potential
y~&x y/2. Here x might represent an electron coordi-
nate and y corresponds to a particular phonon. The clas-
sical equations of motion for this system are
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Substituting (2.2a) and (2.2b) into the final term in (2.1a)
and solving for x produces a solution with sidebands of
frequency ~co&+co&~ in addition to the principle frequency
co&. Repeatedly substituting approximate solutions pro-
duces successive sideband terms with frequencies
~ei&+neo&~ for all integers n

We now consider a model for the optical absorption
spectrum due to subgap transitions in an amorphous
semiconductor. An electron may interact with both
acoustic phonons and static random potentials. For this
system the Hamiltonian is '

part of the dielectric constant as a function of photon en-
ergy hv is'

ez(v)=(2~e) —Av, g ~R, &~ 6(hv+E, E—&)
22

f
(2.6)

where V is the illuminated volume of the sample, as-
sumed to be the entire sample volume. The sum is over
the final states of energy E& and Av, j

.
I denotes a

thermal average over the initial states with energy E, .
The dipole matrix element takes the form

H =H, +H„+H, „+Hd;, , (2.3a) R, ~=&q~~r x q, ), (2.7)

where

H, =p /2m* (2.3b)

is the kinetic energy of an electron of band mass m *,

H„= g ( ~qk ~'+co', qk ~')
k

(2.3c)

Ed ik.x

He-ac ~ qk ~
16

(2.3d)

is the deformation potential interaction between the elec-
tron and the phonons, and

is the harmonic phonon energy for a lattice of N atoms of
mass M,

where v is the polarization vector of the photon and x is
the electron position. In generalizing this one-electron
expression to the many-body dynamics of a coupled
electron-phonon system, the dipole matrix element is in-
terpreted in an adiabatic approximation by factoring the
many-body wave function into a product of a lattice wave
function, and an electronic wave function f, I(x).

Using the relation a(v)=vs' (2v)/c ,n' where n is the
real part of the refractive index, and dropping all con-
stant prefactors and quantities which depend on photon
energy more weakly than exponentially, the exponential
part of the absorption coefficient becomes

a(v)-Av, Q ~R, /~ 6(E, +hv EI)—
f

Nd

Hd;, = g U(x —R, ) (2.3e)
it ( E, /A+ v —Ef /$ j=Av (R—A, [R, f~ e

f 2~4

dkH, k
(27r )

(2.4)

where V is the volume of the solid. We follow John and
Cohen' in considering a cubic Brillouin zone with sides
of length 2~/a and H, defined by

2

H, (k)= exp
k

(2.&)
4 ko

which preserves the volume of the first Brillouin zone.
Term (2.3d) is the nonlinear interaction between the elec-
tron and acoustic phonons which will result in the optical
absorption spectrum displaying phonon sidebands when
the electron is excited by a photon.

Within a one-electron approximation the imaginary

is a sum over Xd static potentials located at IR I. The
wave-vector summations in (2.3c) and (2.3d) extend over
all points in the first Brillouin zone. The normal coordi-
nate of a longitudinal-acoustic phonon of wave vector k
and frequency co& =uk is qk =k.qk, where u is the speed
of sound. Ed is the deformation potential energy con-
stant and following Sumi and Toyozawa' we define a di-
mensionless acoustic coupling constant S„ through
AukpS&&: Ed /2Mu where kp =~/a and a is the lattice
spacing. The nonadiabaticity of the electron-phonon in-
teraction is measured by y—:A'uko/(Rko/2m*). A con-
tinuum theory may be obtained by replacing the wave
vector summations by the weighted integral

= I g /R, //'e
i,f

it(E, /fi+ v —E /fy)Xe f ge
(2.8)

where P = 1/kz T.
In some amorphous semiconductors, such as a-Si:H, '

the absorption is dominated by a single band tail. For
concreteness we will consider a simple model where the
absorption is dominated by the conduction-band tail.
The results can, nevertheless, be carried over to the case
of an absorption edge dominated by a valence-band tail ~

In this model, the initial-state manifold consists of a sin-
gle strongly localized level corresponding to an infinite
hole effective mass. The electron does not interact with
phonons, thus no valence-band tail forms in this approxi-
mation. In the final state, after the electronic transition,
the electron interacts with both phonons and static po-
tential fiuctuations [described by Hamiltonian (2.3a)] re-
sulting in the formation of a conduction-band tail in the
DOS.

The continuum model we are employing does not allow
for real band structure. It should, however, give a good
description of subgap electronic transitions provided the
tail does not extend more than one-quarter of the way
into the gap and the localization lengths for the band-tail
states are greater than or equal to the lattice constant.
We define an energy scale where —E, is the energy of
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an electron in its initial localized state and on which zero
represents the energy of an electron at rest in the conduc-
tion band in a phonon vacuum. Conduction-band-tail
states may be referenced by the energy F. ((0) defined by
hv —E, =E.

Expression (2.8) describes the optical absorption when
an electronic transition is induced from an initial local-
ized state to a final state at energy E in the conduction-
band tail. As is described in the next section, for physi-
cally reasonable choices of the electron-phonon coupling
strength and nonadiabaticity, and mean static potential
strength and correlation length, many properties of the
absorption spectra calculated from (2.8) agree well with
observed results for c-Si, a-Si:H, a-As2S3, and a-AszSe3.

III. PATH-INTEGRAL CALCULATION
OF ABSORPTION COEFFICIENT AND RESULTS

This section describes the calculation of the absorption
coefficient with the incorporation of the full nonadiabatic
dynamics -of the many-body electron-phonon system.
Comparison with experimental results are also made.

To incorporate the nonadiabatic quantum dynamics of
I

X(fle " R IE &/Z (3.1a)

where

Z= g &i le "li & . (3.1b)

Our model describes the optically induced electronic
transition from an initial localized state at, say, the origin
to localized states in the conduction-band tail. Since the
model does not include electron-hole correlations, the
main eff'ect of R is to restrict the final-state electron coor-
dinate to x=O. Neglecting all dependence of R;f on f
allows one to factor it out of the summation in (3.la).
Writing the state vectors in a coordinate-space represen-
tation lx; [qk { & results in (3.1a) becoming

the electron-phonon system, the absorption coefficient
(2.8) is rewritten in terms of matrix elements of time evo-
lution operators

i (v —E /A)ta(v)— gap

2m.A

a(v)- f" e" " ""' "f & (dqz dqI )& [q&I Ie
' "I [qt ] &&0' {qk ] le ' '

IO; [qk ) & .
k

(3.2)

The first matrix element is that of a free harmonic oscillator and may be evaluated exactly. The second relatrix element
involving the full Hamiltonian H may be represented by the path integrals

(0;[qI, I le
' '

IO;[q~I &= f 2)x(r)2)qk(r)e' (3.3)

with limits x(0)=x(t)=0 and qz(0) =q'z, ql (t) =qz and where S is the action corresponding to the full Hamiltonian II.
A straightforward but tedious calculation outlined in the Appendix yields

dqkdqk qk e "
qk 0; qk e '' 0; qk = x&e (3.4)

where

S,~=S, +S;„,+Sd;, ,

S, = x ~dr,
0

(3.5a)

(u ~0) with %du /V remaining constant. 8 is the auto-
correlation function of the static potentials,

Nd
B(x(r)—x(r'))—: f dR u(x(r) —R)u(x(r') —R) .

V
(3.6)

ik-[x(~) —x(Y)]r t, ] . &~kp

2 ac k
k

X [ [N(cu~)+ 1]e

The average potential has been chosen to be zero,

dRu x ~ —R =0.
We consider Gaussian correlated random potentials

(3.7)

+X(cok)e " {, (3 5b)

and

Sd;, = f dr f dr'8[x(r) —x(r')]
2A o o

(3.5c)

PAcok
with N(co&)=(e "—1) ' being the phonon occupation
number. Term (3.5c) is obtained by averaging over all
configurations of the static potentials and taking the lim-
its of high density (%d / V~ ~ ) and weak scattering

(3.8)8(x(r) —x(r') ) = V, , exp
X 7 X

correlated over distances L comparable to the interatom-
ic spacing.

The electron coordinate does not appear quadratically
in (3.5) so path integral (3.4) cannot be done exactly. It is
approximated by a first cumulant expansion about a trial
action which describes an electron coupled to a mass
through a spring, ' ' as described in Sec. I. The trial ac-
tion is
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S,„,.= f d ['( )]'——f d f d '
( )

—(, )
zcos[b(lr ~'l —t/2)]

2 0 2 0 0 sin(bt /2)

where

(3.9)

4a/6 and M (3.10)

if& 's& m *

2~ikt
u sin(bt /2) r„!~)+r, „,!ii+r„,!ii

b sin(ut/2)

Following the procedure outlined in Ref. 15, the first cumulant approximation is
3/2 3

(3.1 la)

3
Io(t) =

2(m *
Mtrial vt ut—cot
+M,„;,! )

2
77I (t)= ——

int
0

f dg(t —b, ) f dk k exp
0 0

k

2ko
[rr —iQ(h;t)] [[N(k)+ l]e '"" +N(k)e" j

—3/2

(3.11b)

(3.11c)

I„,(t)= —f db, (t —b, )

(kL) V, , (kL) ——Q(&;t)
SA 4 2

(3.11d)

Q (b, ; t) =fiko
2M trial

m *(m *+M,„,„)v
sin(vA/2) sin[v (b, t)/2]—+

sin(ut/2) (m *+M„;,i )t
(3.1 le)

t rial . M trial
Io(t) =- vit— (3.12a)

Q (b„ t) =ifiko

So,

M trial

m *(m *+M„;,. i )u

i (b, —t)b,

t (m *+M,„;„)
(3.12b)

ii(V —F, IA') i' SeiiXlx(r e

and N(k) =(e""
Expression (3.lla) has poles along the real t™"~~

spaced by 2~/v. It is convenient to shift the time con-
tour in (3.1) into the lower half complex time plane and
perform the integration over all real t', with t =—iT+t'.
For imaginary time t = —i T and ut )) 1, Eqs. (3.11b) and
(3.11e) may be approximated by

in the adiabatic limit (M, „;,„~oo ):

I;„,~—S„ f dk k exp
2 "k02 0

&&ko—+
2 2mu

X [[N(k)+1]e
+N(k)e'""' —2N(k) —1} .

(3.14)
Following Toyozawa we define

~S„
S+ —— f dk k exp

2ko o

leuko—+
ko 2 2mv

S—:S+ (0)+S (0)

N(k)+1
X N(k) exp(+iukt ), (3.15a)

where

m *+Mtrjal

2~At

' 3/2

sin (bt /2) expF (t), (3.13a)

~S„ f dkk exp
2ko

X[2N(k)+1] .

leuko+
2 2mv

(3.15b)

F(t)=— 3Mtrial

2(m *+M„,,i )

3Mtrial u
+it v —E, /A+ —3v /2

4(m *+M,„... )

+I,„,(t)+Id;, (t) . (3.13b)

In order to make a connection with Toyozawa's ex-
pressions for absorption in the adiabatic limit of
electron-phonon interaction, ' one must consider (3.11c)

Now exPI;„,(t)= exP[S+(t)+S (t) —S] can be expand-
ed in a power series of S+(t). The zeroth-order term is
the zero phonon line, with intensity proportional to
exp( —S). The general term S+(t) +S (t) represents
the emission of n+ phonons and the absorption of n

phonons during the optically induced electronic transi-
tion. Emitted phonons cost elastic energy, therefore, the
photon energy hv must be increased. Thermal fluctua-
tions enhance the phonon emissions, however, they per-
sist down to zero temperature. At zero temperature and
in the absence of static disorder these emission processes



39 TEMPERATURE DEPENDENCE OF THE URBACH OPTICAL. . . 1145

a(v) —expF(t, ) . (3.16)

The variational principle derived in Ref. 15 for the DOS
is valid with (3.16), thus the variational parameters u and
M„;,&

were chosen to maximize in[a(v)] for every value
of u. The time at the saddle point was found by solving
F'(t, )=0. The optimum values of u, M,„;„,and t, were
determined numerically.

We first consider crystalline silicon. The Debye energy
is %coo:leuko 0.054 eV, ' the average speed of sound is
u =8400 m/s (Ref. 22) and the conduction-
band average effective mass is m *= 1.1m, . Thus,
y =A'uko /(A' ko /2m *

) =0.016. The valence-band defor-

alone give rise to polaronic states if the electron-phonon
coupling constant S„ is sufficiently large. However, the
lattice distortion energy prevents states from existing
below the polaron ground-state energy. Static potential
wells provide nucleation centers below the polaron
threshold, allowing states to have energies below the po-
laron ground-state energy. ' On the other hand, phonons
absorbed from the heat bath during the electronic transi-
tion and emitted into the cloud surrounding the electron
allow the electron to dig its own potential well at no cost
of lattice distortion energy. Thus, even in the absence of
static disorder, at finite temperatures phonon absorption
sidebands give rise to an infinite tail of localized states
below the conduction-band edge.

Returning to the nonadiabatic expression for the ab-
sorption coefficient (3.2), the time contour integral was
evaluated in a saddle-point approximation. The function
F (t) [Eq. (3.13b)] has a saddle point t, = iT, on —the neg-
ative imaginary time axis. It follows that the exponential
part of the absorption coefficient behaves as

mation potential is Ed =11.3 eV (Ref. 24) so $„=28.8.
In a pure crystalline sample there is no static disorder so
V, , =O. Figure 2 shows the numerically evaluated ab-
sorption spectra in the range T = 150—350 K.
Comprehensive measurements of a(v) by Cody et al. at
300 K in c-Si reveal an Urbach slope of Eo=8 ~ 5+1 0
meV in the vicinity of the indirect edge 1.0 ~ Av ~ 1. 1 eV.
Our theory, which contains no free parameters, yields ac-
curate linear exponential behavior with a slope of
Eo=8.6 meV. Although it is not difficult to implement
the electron crystal momentum k-selection rule into our
continuum model, it has been suppressed here since the
electronic wave functions are strongly localized at ener-
gies in the Urbach regime. The small effects within the
Urbach regime would be best treated by a tight binding
model.

Measurements of some of the input parameters of a-
Si:H have been made. For convenience, we choose y to
have the same value as in c-Si and the correlation length
L for the static random potential to be equal to the lattice
constant. S„and V, , of a-Si:H were then uniquely
determined by matching the observed temperature depen-
dence of Eo with our theoretical model, yielding
V, , =0.41 eV and S„=220. A detailed comparison be-
tween our theory and measurements of Tiedje et al. is
presented in Fig. 3 ~ The absorption coefficient and the
conduction-band tail DOS display linear exponential be-
havior over more than three decades, in agreement with
recent photoelectron spectroscopy measurements. A
comparison of the polaronic effective masses and radii be-
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FIG. 3. Absorption coefFicient for various temperatures in
hydrogenated amorphous silicon. The continuum edge occurs
approximately at the left-hand side of each curve. Linear Ur-
bach behavior occurs over energy ranges —0.6~ E ~ —1.1 eV
at 10 K and —0.8~E ~ —1.3 eV at 300 K. The Urbach focus
is temperature independent. In the upper insert, the solid curve
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the downshift of the continuum EG (energy scale on right-hand
side of figure). The lower inset shows E~ vs Eo displaying a
linear relationship for T ~ 100 K.
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ap =2. 3 X 10 cm '. This yields S,, =400 and
V, , =0.68 eV. Figure 5 shows a detailed comparison
between our theory and Street's results. As with a-Si:H,
excellent agreement is found.

Finally, we consider a-As2Se3. The measured input pa-
rameters are Scop=0. 012 eV and u =2300 m/s. Assum-
ing m =m, yields y=0.005 as for a-As2S3. Performing
the same fit discussed for a-Si:H to match the theory to
the temperature dependence of Ep observed by Andreev
et al. ' yields S„=190and V, , =0.53 eV for tempera-
tures below the glass transition temperature Tg 450 K.
Although our model is not applicable to liquid semicon-
ductors, we can match the observed temperature depen-
dence of Ep for T & T with S„.=1520, V, , =O, and
y=0. 005. (Andreev notes that a linear extrapolation of
his T ) T data predicts an Urbach slope Ep =0 at T =0,
thus we choose V, , =0.) This, of course, suggests quali-
tatively different physics above T . A comparison be-
tween the theory and Andreev's measurements is shown
in Fig. 6.

The crystalline values of S„have not been experimen-
tally determined for AszSe3 and As2S3, nor have measure-
rnents been made of S„ in a-Si:H, a-As2Se3, or a-AszS3.
For Si, the large change in S„ from its crystalline value
may seem surprising at first. Although for a-Si:H there is
some amount of freedom in the choice of y and hence
V, , and S„,we find that for all choices, the effect of dis-
order is to move the electron-phonon coupling closer to
the small-polaron threshold than in the crystal in order to

obtain a theoretical fit to the experimentally measured
Eo(T). This discrepancy is improved somewhat but not
substantially by considering the role of the second band
tail in determining a(v). We now proceed to discuss the
corrections arising from convolving the valence- and
conduction-band tails.

IU. COMBINED EFFECTS OF UALENCE-
AND CONDUCTION-BAND TAILS

A more refined model involves choosing the initial-
state manifold to consist of a set of strongly localized
electronic levels with a DOS equal to that of an electron
coupled to a phonon field and static random potentials.
Our approach here is to mimic both the static and
thermal aspects of the disorder in the valence-band tail
by means of effective static random potentials. Our treat-
ment is still within a continuum model for the electron
dynamics. As a first approximation we again try to mim-
ic some aspects of the true band structure by introducing
two independent continua, one for the conduction band
and one for the valence band. The computation is greatly
simplified by treating the finite temperature phonon field
as being frozen in one of the bands. This, nevertheless,
gives a good estimate of the magnitude of the correction
of the results of Sec. III arising from the presence of two
band tails.

The absorption coefficient is proportional to the convo-
lution of the valence- and the conduction-band tail
DOS's.

,(v) Av. g IR,. f I2$(E;+h vEf)
f

=Av, , g IR,,f I f dE 5(E, + h v E)o(E Ef—) . —
f

dt' it(v+ E, /& —E/A) it'(E —Ef )/ t

=Av, , Q IR, ,
fl' dE

, f
(4.1)

gap V (4.3a)

Neglecting the dependence of R;f on i,f, the total ab-
sorption becomes

a, „~(v)—j dE p„(h v E)a(E), — (4.2)
gap

where a is the absorption coefficient calculated in Sec.
III. The limits of the E integration have been chosen to
limit the initial and final states to subgap states. p, is the
valence-band-tail DOS which we approximate by means
of two static random potentials, one describing static dis-
order and one describing a frozen-in phonon distribution.
As is discussed in the next section, at high temperatures
the electron-acoustic phonon interaction is equivalent to
electron-static Gaussian correlated random potential in-
teraction with V, , =S„k&TAcop/&2 and L =&2m/kp.
Techniques to calculate p, are presented in Ref. 15, they
are similar to those used in this paper. Considering the
convolution of the dominant Urbach regimes of p, and o, ,
then letting

E/E,a(E) =e (4.3b)

one obtains

(hv —E )/E (hv —E )/Ea (v) — (e '" —e '" ) .E —EV C

(4.4)

Thus, if either E~ or Ec is much larger than the other,
absorption is dominated by the band tail with the larger
Urbach slope. If the valence- and conduction-band-tail
Urbach slopes are comparable, say E~

=Ep +6 and
Ec =Ep 6, then u„„~ behaves as a single linear ex-
ponential with Urbach slope Ep 1n the 11mlt 6~0. In
neither of these cases does the presence of a second band
tail with smaller or comparable Urbach slope signifi-
cantly alter the absorption coefficient calculated for a sin-
gle band tail as in Sec. III.

For the case of a-Si:H, employing the above method to
calculate e„„&yields a fit to the data of Tiedje et al. with



1148 C. H. GREIN AND SAJEEV JOHN 39

S„=200 in both of the band tails. This value of S,„. in
the conduction-band tail is slightly less than that ob-
tained in the earlier approximation of a single level in the
initial-state manifold but is still greater than the observed
value in c-Si.

A proper treatment of the electron dynamics in the
valence-band tail and the inclusion of correlation eff'ects

between the valence- and the conduction-band tails may
yield a further decrease in the values of S,, needed to fit

the experimental data. Moreover, our models assume a
linear dispersion relation for acoustic phonons. This is a
poor approximation in amorphous materials. ' The
consideration of a more appropriate acoustic-phonon
dispersion relationship and the presence of localized pho-
non modes may enhance the eff'ective S„ in the amor-
phous material.

V. MOST-PROBABLE —POTENTIAL-WELL METHOD

A simple physical argument ' ' may be used to obtain
the zero-temperature DOS of a coupled electron-phonon
system in the presence of static disorder, in the adiabatic
limit. ' In this section a similar method is used to calcu-
late an approximation to the exponential part of the
finite-temperature absorption coefficient.

Consider the quantum mechanical probability distribu-
tion for normal coordinates qk of a lattice at finite tem-
perature:

Pi [e I] ~ exp
leuko

4k() (fi /2MQq~)

X dkk e
0

X cosh(AukP) —1

sinh(fiukP)
(5.5)

In addition to the probability distribution of dynamic
lattice fluctuations due to phonons the probability distri-
bution fixed potentials due to static disorder must also be
considered. The Fourier components of a correlated
Gaussian random potential obey the probability distribu-
tion'

k LB(k)=V, , (mL ) exp (5.7)

and correlation length L [(5.7) is equivalent to (3.8)]. We
consider static potential wells of Gaussian form charac-
terized by a depth Vo and range A:

r
V(r) = —

VD exp (5.8)

d k
P2 I V(k) I ~ exp —

—,
' f V(k)B '(k) V( —k)

(2~)
(5.6)

with autocorrelation function chosen to be

k nk

—exp
MCO~ q k

2

fi sinh(ficoqP )

so (5.6) becomes

~o
P2[ V(k)( cc exp

2V Z

3/2

(2 —Z) (5 9)

X [ cosh(ficol, P) —1] (5.1)

where the P„are harmonic oscillator wave functions and

the product is over all wave vectors k in the first Bril-
louin zone. We consider lattice fluctuations of the form P [ V(k»e~] (5.10)

where Z —= (L/A) .
Thus, the joint probability distribution of fluctuations

(5.2) and (5.8) is

'Qo [ k'c'
p 4

(5.2)
The variational parameters Z, Vz, Q~, and c are con-
strained by the radial Schrodinger equation to provide a
ground state at energy E

of depth QD, and range c. In order to make contact with
the continuum theory, it is convenient to replace the
wave-vector summation in (5.1) by an integral:

d kC
(2~)3

(5.3)

C(k)= exp
~k
2ko

(5.4)

The probability of occurrence of a fluctuation of the
form (5.2) is given by

with autocorrelation function C(k) chosen to have a
Gaussian form, with correlation length &2vr!k~ (Ref.
15),

d Ed e ik-r

2m* dp &x
= —~E u (r), (5.11)

where u (r) =rg(r) and f(r) is the electronic wave func-
tion. Equation (5.11) contains two potential terms: the
static Gaussian potential and the deformation potential
describing interaction between the electron and acoustic
phonons. The variational parameters are chosen to rnax-
imize (5.10) subject to constraint (5.11).

With this choice of the variational parameters, (5.10)
becomes an estimate of the one-electron DOS in a single
band tail. Absorption coefficient (3.16) is essentially the
DOS in the conduction-band tail with the added contri-
butions of phonon sidebands. To approximate the eff'ects
of phonon sidebands, the lattice distortion energy was not
included in (5.11). Thus, the phonon contribution to
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FICx. 7. A comparison of the most-probable —potential-well
method and the path-integral method to calculate the absorp-
tion coefficient. eD =Aco0 is the Debye energy. The low curve is
calculated by means of path integrals in the adiabatic limit of
electron-phonon interaction. The upper curve is obtained by
means of the most-probable —potential-well method and coin-
cides with the path-integral method if the phonon emission am-
plitude [1V(cok)+1] is replaced by unity in the path-integral
method.

(5.10) will be similar to the static disorder contribution,
that is, an infinite tail forms rather than a tail which van-
ishes at the polaron ground-state energy in the absence of
static disorder. Note that in the limit of high tempera-
ture (P~O) the phonon probability distribution (5.5) be-
comes equivalent to the static disorder distribution (5.9).
Similarly, for the path integral, in the adiabatic
(M„;,&~ ac) and small-time [ukQT, /(m /2+Ruka/2mv)
((I] limits, the phonon contribution (3.llc) to the ab-
sorption coefficient in the saddle-point approximation be-
comes equivalent to the static-disorder contribution
(3.11d). A numerical comparison between (3.16) and
(5.10) in the above limits with V, , =O reveals that the
most-probable —potential-well method does not include
the correct phonon emission amplitude. The two
methods agree when the phonon emission term
[N(k)+1]e '"" in (3.11c) is modified to e '" . Figure
7 presents a comparison between the predictions of the
most-probable —potential-well method and the path-
integral method with and without the modi-
fication to the phonon emission term. The absorption
coefficient predicted by the most-probable —potential-well
method is slightly greater than that obtained from the
modified path-integral method for all energies because
the former method does not restrict the wave function to
a particular form whereas the latter method restricts the
wave function to a harmonic-oscillator form.

It is apparent that our multiple phonon emission and
absorption sideband model goes beyond the static
potential-well picture in several important ways. First of
all, it correctly incorporates the dynamics of the potential
wells arising from the nonadiabaticity of the electron-
phonon interaction. By doing so, our model recovers the
usual small polaron theory in the limit of zero tempera-

ture. At zero temperature there is a lower bound to the
absorption edge given by the ground state of the coupled
electron-phonon system. As the temperature is turned
on, an infinite absorption tail immediately emerges since
phonons can be absorbed from the heat bath and reemit-
ted into a polaronic potential well. In the static
potential-well picture this emission process requires elas-
tic deformation energy. However, this elastic energy is
now provided by the heat bath. That is to say, the simple
physical arguments of this section with the inclusion of
elastic energy can recover the path-integral theory if the
phonon absorption term is removed and the phonon
emission amplitude N(k)+ 1 is replaced by l. If the pho-
non absorption term is included in the path integral and
the emission amplitude is kept at unity the potential-well
calculation must be performed without including elastic
deformation energy. The fact that the potential-well pic-
ture does not capture the full physics of the path integral
is because the potential-well technique is basically an
effective DOS, whereas, the true optical transition ampli-
tude involves an enumeration of all possible processes
which can couple the electron from the valence band to
such an effective DOS. In particular the phonon emis-
sion amplitude at finite temperature is modified by the
usual Bose factor N(k)+1. Such a modification does not
appear in the potential-well method.

VI. DISCUSSION AND SUMMARY

The simple model of a strongly localized initial state
and a more complete treatment of the electron-phonon
and electron —static-disorder interaction in the final state
yields an excellent fit to the observed temperature depen-
dence of the Urbach slope EQ and the downshift of the
continuum EG and the temperature independence of the
Urbach focus in the materials c-Si, a-Si:H, a-As2Se3, and
a-As2S3. Phonon sidebands in the absorption spectra
arise from the nonlinear electron-phonon interaction and
account for most of the observed features of the absorp-
tion spectra in the Urbach regime.

At high temperatures the electron-phonon interaction
becomes equivalent to electron-Gaussian correlated ran-
dom potential interaction with an effective temperature-
dependent disorder strength V, s For a Gaussian corre-
lated random potential it has been shown that
E& ~ V„„and ED ~ V„,. Thus, ED and EG are ex-
pected to be linearly related at high temperatures as is
verified by our theory and experiments. At low tempera-
tures our theory predicts departures from linearity
characteristic of the quantum nature of the lattice vibra-
tions.

Our model is valid in materials in which the exciton
binding energy is small compared with the energy scale of
the disorder, resulting in the exciton line occurring
at energies higher than those in the Urbach regime.
Electron-hole correlations are of great importance in cer-
tain polar semiconductors or ionic insulators where disor-
der may cause field ionized exciton states, causing an
associated dependence in the dipole matrix element.

The observed linearity of Urbach tails is a consequence
of short-range order in both thermally disordered and
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amorphous materials. For Gaussian correlated random
potentials, the correlation length must be close to the lat-
tice spacing. For phonons in our continuum model,
short-range order is determined by the high-frequency
cutoff. Linear Urbach behavior survives the combination
of static disorder and dynamic electron-phonon interac-
tions.

This work develops an explanation of some of the main
features of Urbach tails in certain materials. A complete
theory requires the incorporation of exciton effects, real
band structure, and a more complete treatment of the dy-
namics of electrons and holes in the valence-band tail.
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APPENDIX

This appendix outlines the evaluation of the path in-
tegrals over the phonon coordinates and the integrals
over the end points qk and qk in the expression

f Q (dqk dqk)& [qk I e "I [qk I &

tkx
y„( )=

u
(A2f)

i(S~ +S ~)/fi
Ik( y ) = f +qk+q —ke

where

(A3a)

f '«(Iqkl' —~k lqkl')+ f 'yr(r)qr(r) .

(A3b)

Letting qk=uk+ivk and yk=yk+iyk yields

To facilitate the evaluation of the phonon path integrals,
let

I (y ) =I„"(y)I„'(y), (A4a)

Consider where

Ik(y')=,2)uk exp i So(uk )
—2 f dr ukyk /fi

u~(0) = u~, u~(t) = u'k 0
(A4b)

and

Ik(y)=
~

2)vk exp i So(vk)+2 dr vkyk /fi
k' k k 0

So(x)=M f dr(x —tvkx ) .

(A4c)

(A4d)

Mco/,

vari fi sin(cvk t)
iS", /AclIk(y)=

Noting that the action in (A4b) is that of a driven harmonic oscillator, one obtains from Feyninan and Hibbs'
1/2

(A5a)

where

Mco/, 2uk 2u kS,"i = . cos(cv„t)(uk+u'k) —2u„uI, — dr yk(r) si [n cv(t —r)]— f dr yk"(r) sin(~v„r)
sin(teak t) Mao/, o McoI, o

t 7dr dr'yk(r)yk(r') si [neo(kt r)] sin(tvkr')—
M2~',.

(Asb)

and similarly for Ik(y).
—(/3 —it /fi)H iSk i (Sk+S' ~)/111

Also, defining & [q„I le "I [q'kI &
—= f X)qk(r)e " and Jkj„'=—f 2)qk2)q „e ' ', then, from Feyn-

man and Hibbs,

Ju-
k

1/2M co&

irirt sin[tv„(fi/3 —it) ]
exp — . [ (u k + u 'k) cosh[co& (fi/3 it)] —2uku 'kI—

fi sin h cok ( iii —it)
(A6)
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and similarly for J&.
It then follows that (Al) equals

f Xlx(~)
k, kl )0 f duk f du gIlcJI

x(0) =x(I)=0

iS ~/fi2)x(~)e

with S,a. given by (3.5).
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