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Thermodynamic properties of impure anisotropic quasi-one-dimensional superconductors
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The effects of nonmagnetic impurities on quasi-one-dimensional superconductors with anisotrop-
ic order parameters are studied in the framework of mean-field theory. We calculate the tempera-
ture dependence of the magnetic susceptibility and the specific heat and examine the low-
temperature properties in terms of the density of states. The behavior of these thermodynamic
quantities shows how the superconducting state is destroyed as the impurity concentration in-
creases.

I. INTRODUCTION

Recently there have been extensive studies of the su-
perconductivity in quasi-one-dimensional conductors. '
Since the anisotropy of the electrical conductivity is
large„remarkable differences between this superconduct-
ing (SC) state and the usual BCS state are found. Assum-
ing that the electron-phonon interaction on individual
chains is the microscopic origin of the SC state, one finds
a large anisotropy of the coherence length and a nonzero
gap parameter on the whole Fermi surface. On the other
hand, another type of SC state has been proposed noting
that the phase transition from the SC state into a spia-
density-wave state takes place easily by varying the pres-
sure or the magnetic field. In fact, recent NMR experi-
ments on (TMTSF)2 X compounds (where TMTSF
represents tetramethyltetraselenafulvalene) indicate that
the temperature dependence of.the NMR relaxation rate
at low temperature has a power-law behavior instead of
the usual exponential decay of standard BCS theory.
This fact has been interpreted assuming an anisotropic
superconducting (ASC) state with a line of zeros of the
gap parameter on the Fermi surface. "' As a model sys-
tern which represents such a state, one can consider an
array of one-dimensional (1D) chains with an attractive
interaction between chains. ' It has been proposed that
the repulsive intrachain interaction gives rise to such an
attraction.

The existence of the ASC state is not yet fully estab-
lished since precise measurements at very low tempera-
tures are needed. The nature of the superconducting
state can also be examined by adding nonmagnetic im-
purities. It is known that the ASC state vanishes above a
critical concentration of the impurity while the usual SC
transition temperature is independent of the concentra-
tion. From the study in the clean case, the thermo-
dynamic properties of the ASC state are expected to be
qualitatively similar to those of heavy-fermion systems.
However, a more quantitative understanding of the ASC

state in quasi-one-dimensional conductors is necessary in
order to determine experimentally whether such a state is
responsible for the superconductivity of these com-
pounds. Ih the present paper, we examine the effect of
nonmagnetic impurities on the temperature dependence
of the magnetic susceptibility and the specific heat. We
relate these quantities to the quasiparticle density of
states in the superconducting state.

In Sec. II, the general formulation of the problem is
given within the mean-field approximation and the SC or-
der parameter is calculated. The density of states is cal-
culated from the single-particle Green's function in Sec.
III. We study the magnetic susceptibility in Sec. IV and
the specific heat in Sec. V. Section VI is devoted to a dis-
cussion of our results.

II. FORMULATION

%"e consider the Hamiltonian

II= +ekCq ~Ck ~
—ghk(CgtC kt +h. c. )+N4 Ig

k, o k

+(Vo/N) g AC& Cz exp[i(k —k') R ] .
k, k', o. j

(2.1)

The first-term is the kinetic energy with ck
=vF(~k„~ —kF) —2tt, cosk~, where vF and kF are the Fer-
mi velocity and momentum of the 1D chain and tb is the
hopping energy between chains. We consider the case
where the hopping energy along the z axis is much small-
er than tb and therefore discard this degree of freedom.
In the second and third term of (2.1), we consider only
the attractive interaction between chains and treat it in
the mean-field approximation. In the case of singlet pair-
ing, one obtains d-wave superconductivity with an order
parameter 5k given by

b.t, =hcosk», b, =—g(cosk~)(C ktCkt )H, (2.2)
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where Vk=(CI &, C k~) and co„ is the Matsubara f're-

quency. T is the ordering operator for the imaginary
time. By treating the last term of Eq. (2.1) within the
self-consistent Born approximation, Eq. (2.3) is rewritten
as

G (ico„,k)=ico„E&o.3+—bzcr, X(ic—o„)k) 2 (2.4)

where cr (j= 1,2, 3) are the Pauli matrices and the self-
energy is given by

where g is the coupling constant. We assume that 5 is
real. Equation (2.2) is a simplified order parameter com-
pared to that of Ref. 4 which also takes into account the
on-site repulsion. However, both cases give essentially
the same result for properties arising from the gapless re-
gions on the Fermi surface. The last term of Eq. (2.1)
denotes the coupling with the impurities where Vo is the
magnitude of the impurity potential and N is the total
number of lattice sites. The single-particle electron
Green's function is defined by

G(ico„,k) = —,' f—Pr(T,q'„(r)%'„(0))H—1/T

X exp(ice„r),

Tc
ln =g( —,

'
) —P( —,(+a),

c0
(2.1 1)

where a= l(4vr&T, ). Equation (2.11) was obtained in
Ref. 8 which treated the e6'ect of nonmagnetic impurity
on the several kinds of SC pairing states. The quantity a
is the pair-breaking parameter which is half of that corre-
sponding to the usual BCS state in the presence of mag-
netic impurities. ' In Fig. 1, T, is calculated as a func-
tion of 1 /~. The quantity T, vanishes at w =~0, where

I /(roT, O) =n/e» ..

The asymptotic forms of Eq. (2.11) are given by

T, /T, o- 1 (vr —/8e»)ro/w

(2.12)

for ~0/~ (( 1 and

T, /T 0=( ')' —e ~inc/ro~ '

for r/ro- I, respectively. By using (2.10), b, as a function
of T /T, O is calculated for some choices of ~0/~ in Fig. 2.
In the case of T-T„h is calculated as

b. /T, =(a /b)' (1—T/T, )'i (2.13)

~o
X(iso„,k)= go3G(iso.„,k)a3 .

k

From Eqs. (2.4) and (2.S), one obtains

l S~ + E,kc73 Ego
G (i co„,k) =-

co~ +8k+6k

(2.S) h

(2.6)

a= — 1 —ag1 1

„=0(n+ —,'+a)
3 1

1
2a/3

128~', =, ( n + —,
' +a )' n + -,

' +~

(2.14)

(2.1S)

where

CO
(»I 1

COn Cc)n + +a' (2.7)

—=2mn; V N(»/0N .
1

(2.8)

In Eq. (2.8), No =Na /~uz is the density of states per spin
in the qormal state, a is the lattice constant along the x
axis, and n,- =N; /N is the impurity concento ration.
Note that Eq. (2.S) renormalizes co„but does not renor-
malize b, k. In Eq. (2.7), (.. . ) denotes the average over
k», i.e., (.. . ) =m ' f odk». . . . We use k in place of k or
k if there is no confusion. From Eqs. (2.2) and (2.6), the
order parameter b is determined self-consistently by

In order to examine b at low temperatures, Eq. (2.9) is
rewritten as

] coD cos k
d COn

( 2„2)l/2)
OO cos k 1= —2 dc' Im

0 ( —m2+622)222) eXP[ru/T]+(

(2.16)

(2.9)

where k=gNO/N and coD is the cutoff energy. Equation
(2.9) is rewritten as

0.5

1 T—ln
T 0

where

( cosk } cos k

( ~+go )i»z
(2.10)

0 5

T,o= (2e»/vr)coDexp( —2/A, ) .

By putting b, =0 in Eq. (2.10},the equation for T, is ob-
tained as

FICi. 1. Normalized T„h(0), and 6(0)/T, as a function of
Tp/~. The ratio 5(0)/T, increases as wp/~ increases.
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1 CO
CO

—CO+
2% ~2+ g2 1 /2

k

(3.2)

&o

The branch cut of the square root is chosen so as to ob-
tain a positive value for the imaginary part of co. By writ-
ing co=co, +ico2, where co, and co2 are real, Eq. (3.2) is
rewritten as

0.5 co j
—co+ co ~I+ co2I

(3.3)

0.5

672 —M ~I +c02I+

where I =(8' r) '(r '(r+X)' & r =X +4co co

and X= co, +co—2+6,k. For small co, Eq. (3.3) is calcu-
lated as

co=cox, +i(yo+co y2)+. . . (3.4)

where yo, x „and y2 are given by
FIG. 2. Normalized order parameter 6/Ap as a function of

T/T„with wp/~= 0 (1), 0.2 (2), 0.4 (3), 0.6 (4), and 0.8 (5).
& r/'2 (3.5)

In Eq. (2.16), co is the analytically continued value of i co„
which is obtained from (2.7) with i co„=co+i0 We. define
b,(0) as b, at T=0 which is obtained by putting the
right-hand side of (2.16) zero. When r '=0, one obtains
b(0) =2e '~

Ao, where ho =2coD exp( —2/A, ). At low
temperatures, (2.16) is calculated as

(3.6)
1

1 —(a'/X'" &/2r

x',yo((36/', +yo)/Xo" &

4r(1 —(b,k/Xo~ &/2r)
and Xo=yo+b, „. For both large and small r Eq. (3.5)
becomes

&Ib(0)=1—3((3)(T/&)' (r '=0),
b /b (0)= 1 —c( T/6) (r 'WO),

where

(2.17)

(2.18)

yo =4k exp( —orb, ) (rb, ))1),
yo=(2r) '[I —(Ar)'j (rb, «1) .

The asymptotic form of x, and y2 for small 1/~ is

(3.8)

C=
(~'('6(x, y, , »„l(yo+~k }

AkcOS k

0 (8 +6 )~ ld COn

(2.19}

xi =~ra (yo «b)
yz-( —,')(~«)'/yo (yo «b, ) .

By use of Eq. (3.2), Eq. (3.1) is rewritten as'

D(co) =2rco2 .

(3.9)

(3.10)

(3.1 1)
In Eq. (2.18), we used the fact that co=x, co+iyo for the
small co where x, and yo are calculated in Sec. III. In
Fig. 1, b, (0)/Ao is shown as a function of ro/r where the
asymptotic behavior is given by b, /6(0) = I —0.52/b, r
and ~(

—", )Inro/r~' for ro/r((1 and —1, respectively.
The quantity 6(0)/T, is also shown in Fig. 1 where one
finds 5(0)/T, =2m/er+' and vr( —', )' for ro/r=O and

1, respectively.

From Eqs. (3.3) and (3.11},D(co) at T =0 can be calculat-
ed numerically, and the results are shown in Fig. 3 for

).5

III. DENSITY OF STATES

By use of the Green's function (2.6), the electronic den-
sity of states normalized by No is given by

0.5

D(co) = QlmTrG (co, k)
2~&O k

(3.1)

The quantity S is the analytically continued value ob-
tained from

t 2
4U/ 5p

FIG. 3. Normalized density of states D(co) at T=O as a func-
tion of co/Ap, with 7 p/7 0 (1), 0.2 (2), 0.4 {3),0.6 (4), and 0.8 (5)
which correspond to 6(0)/Ap=1. 21, 1.1, 0.97, 0.83, and 0.63,
respectively.
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D(0)

where we took p~ =1. By use of Eq. (2.7), (4.1) is rewrit-
ten as

y( T)=f1E —g ( Tr G (i co„,k ) )
T
2l BCc7~

0.5-
(a„/(a„+~„)

(2r) ~ ( g2 /(@2 +g2 )3/2 )
(4.2)

05

where the denominator of the second line shows the ver-
tex correction by the impurity. In Fig. 5, g(T) as a func-
tion of T is shown for fixed ro/r.

The limiting values are calculated as follows. For
T-T„Eqs. (2.13) and (4.2) lead to

FIG. 4. Normalized density of states at the Fermi surface for
T=.0. ag"( —,'+a)

y( T)= I —
2 (1—T/T, ),

32m b
(4.3)

some choices of ro/r. The quantity D(co) at co=0 is
finite for r '%0. This can be seen noting

where a and b are defined by Eqs. (2.14) and (2.15). For
the study of y(T) at low temperatures, we rewrite Eq.
(4.2) by use of the density of states obtained in Sec. III,

D (0)=2ryo, (3.12)

and yo is always finite from Eq. (3.8). Numerical results
for D(0) are shown in Fig. 4 as a function role, and the
limiting values are obtained as follows:

y( T)= den D (co)
0 Bc@ exp(co/T)+1

(4 4)

where D(u) is defined in Eq. (3.1). At low temperatures
Eq. (4.4) becomes

D (0)=grb, exp[ ~rb, ] (ro/«—& 1),
D(0) = 1 —( —", )In(ro/r) (ro/r- I ) .

For small ~co~, D(co) is

(3.13) g( T) =(2 ln2) T/b, (r ' =0)

y(T)=D(0)+~ /6D "(0)T +

(4.5)

D (~)= ~~ ~
/a (~,/r =0),

D(co) =D(0)+2~y2co (ro/r&0) .
(3.14)

Since the expansion of D(co) in terms of co in the case of
'%0 is valid for ~co~ &yo, the co dependence is visible

only for ~o/~-1 in Fig. 3. The properties of the density
of states studied here are similar to those of the polar
state of heavy-fermion systems. "' The co dependence of
D(co) in the clean case and the finite value of D(0) in the
presence of impurities are the same except for numerical
factors which depend on details of the Fermi surface.
There is a difference of D(cu) around ~co~ = ho in the clean
case because there is a logarithmic singularity in our case.

=2ryo+(2~ /3)ry2T + . (r '%0), (4.6)

where yo and y2 are given by Eqs. (3.5) and (3.7). Note
that Eq. (4.4) is the usual formula for a free-electron sys-
tem in which one always obtains y(0) =D(0). Since yo is
small for small ~ ', the T dependence in Fig. 5 is visible
for ro/r-1. In the case of r '=0, y(T) shows a linear
dependence on T and then is much larger than that of the
usual BCS state which decreases exponentially. '

x(v)

IV. MAGNETIC SUSCKPTIBII.ITY
0.5

We examine g( T), the spin susceptibility which is nor-
malized by its normal-state value. Since g( T) corre-
sponds to the density response function for a homogene-
ous magnetic field, the extension of Eq. (2.4) leads to

y(T) = QTr[G(ice„+Ho, k )
o k, n

G(i~, Ho k)]e I, +0 H -0 ~

(4.1)

0-5

FICx. 5. Normalized magnetic susceptibility g( T), with
vo/~=0 (1), 0.2 (2), 0.4 (3), 0.6 (4), and 0.8 (5). The dashed curve
denotes the Yosida function corresponding to the usual BCS
state which is shown for comparison.
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V. SPECIFIC HEAT

We study the specific heat C~ by calculating the free energy. The quantity C~ is defined by

d
C~ =C„(T) T— (5E),

dT2

where 5E is the excess free energy given by

d5FINO= J dz z [1/A, (z)]
0 dz

- i, ' xJ. "( „„,,„)

(5.1)

(5.2)

The quantity C„(T) denotes Cz in the normal state,

C„(T)=(2~ /3)NOT . (5.3)

First we examine the jump of the specific heat b.C~. By expanding (5.2) in terms of 6 and making use of (2.13), the
quantity AC~ normalized by C„ is calculated as

bC v/C„(T, )=C„'(T,)[CV —C„(T,)]T T o=

2

8 1 —ag(n +1 /2+a)
n=0

g (n+ —,'+a) [1—(2a/3)/(n+ —,'+a)]
n=0

[1—a/'( —,
' +a )]

——'g" ( —'+ a ) ——1tj'"(—'+ a )4 2

(5.4)

where o.= 1/4vr&T„and P', P",g"' are polygamma func-
tions. The asymptotic form of Eq. (5.4) is given by

ACV/C„( T, ) = (8/7)g(3)(1 —0.392ro/r)

and ( —", )~inro/r~ for ro/r &&1 and =1, respectively. The
numerical result of (5.4) is shown in Fig. 6. Results simi-
lar to Eq. (5.4) and Fig. 6 have already been found for iso-
tropic superconductors with magnetic impurities ' and
for different types ofp-wave superconductors. " The only
difference is the numerical factor —, in the denominator of
Eq. (5.4), which takes different values for different types
of superconducting states, due to differences in the de-

CV=C„(T)+ 6E,
dT

Q2
oE/N, = — +2m Tg

( 2+F2 )1/2

(5.5)

+— (5.6)(-2 +g2 )1/2

tailed structure of the gap parameter. For example, (5.4)
in the case of ~ '=0 becomes —', of the usual BCS value
while the corresponding value for the polar axial case is

]I

Next we examine the temperature dependence of C~
numerically. We rewrite Eq. (5.1) as (see Appendix A)

h,C„

C {T)

0.5

0-5
dc@ in[1+exp( —co/T )]

From Eqs. (2.10) and (5.5), the quantity C~/C„(T) is cal-
culated and is shown in Fig. 7. When 1/~ increases, the
difference between Cz and C„(T) becomes small and Fig.
7 always satisfies the following condition:

T.
dT[CYIC„(T) 1]=0 . — (5.7)

Now we study Cz at low temperatures. By use of the
density of states Eq. (5.2) is rewritten as (see Appendix B)

+2
SrIN. =, +2T

FIG. 6. Jump of the specific heat normalized to that of the
normal state as a function of ~0/~.

dQ) D co
~
~

~
( ((~z +~z) 1 /z )

Xln[1+exp( co/T)] . —
(5.8)



39 THERMODYNAMIC PROPERTIES OF IMPURE ANISOTROPIC. . . 11 403

2 lated as

Cy

c.(r)
Cv =D(0)(1—B),
II 7=p

(5.13)

33(0)c
~ aye

2 (5.14)

For the case of I/rh«1, we find B=2nCp=. 0.3. We
obtain that B decreases with increasing I/r, actually
B =0.03 for roles=0 8. .

From Eq. (5.9), we find the low-temperature behavior
as follows. In the clean case, Cv is calculated as

0.5

r/&co
Cv 27$(3)T

C„(T) ~'a(0)
(5.15)

FIG. 7. Temperature dependence of the normalized specific
heat with ~p/~=0 (1), 0.2 (2), 0.4 (3), 0.6 (4), and 0.8 (5). The ar-
row indicates the corresponding T, . The dashed line is the
normal-state specific heat.

oo 1+ f dcocpD(co)

= A (T) + D(Q)T
dT 3

+18((3)D'(0)T + (5.9}

A (T) 1 +2f do~
z D(cp)

X
exp(cp/T)+ 1

(5.10)

Equation (5.9) shows that the low-temperature behavior
of Cv is determined not only by the density of states but
also the temperature dependence of b. We therefore ex-
amine the quantity A (0}which can be rewritten as

cp„(co„—co„)+b, i,A(0)= —
—,'+ f "dip„cos'k "

z0 (
—& +g2 )3/2

In the case of the small ~ ', we find

3 (0)=C, /rh, (1/rb, « I )

(5.1 1)

(5.12)

with Co-0.05. Equation (5.12} shows that 3 (0)=0 at
'=0. Then the first term of Eq. (5.9) can be disregard-

ed at low temperatures only for the clean system. From
Eqs. (2.17), (2.18), (5.9), and (5.10}, Ci, at T=O is calcu-

The last two terms in Eq. (5.8) are the contribution of ex-
cited quasiparticles with density of states D(co). This is
due to the mean-field treatment of the attractive interac-
tion in the second line of Eq. (2.1). Substituting Eq. (5.8)
into Eq. (5.1) one obtains

dA
Ci, /Xp = A(T)

dT

In the dirty case the increase of Cv is proportional to T
although this is visible in Fig. 7 only for rp/1 1.

In the polar axial case" it has already been shown nu-
merically that Cv at T=O is finite for 1/rAO but it is not
yet clear if the value corresponding to Eq. (5.13) is simply
given by D(0) as in the case of y(T) or has an extra fac-
tor like (1 B). In t—he case of point zeros of the gap pa-
rameter, 8 has been claimed to be small, ' however, to
our knowledge there is no complete treatment of the
A ( T) term in the heavy-fermion case.

VI. DISCUSSION

In the present paper, we have examined the effect of
nonmagnetic impurities on quasi-one-dimensional super-
conductors with an anisotropic gap parameter, having
line zeros on the Fermi surface. In this case, nonmagnet-
ic impurities have a pair-breaking effect, similar to mag-
netic impurities in an isotropic superconductor. The
effect of pair breaking was studied by examining the den-
sity of states, magnetic susceptibility, and specific heat.
In all three quantities, rather strong impurity effects are
found. The low-temperature properties can all be de-
scribed in terms of the properties of the density of states
around the Fermi surface. Our results for the specific
heat should be rather straightforwardly comparable to
experimental results. This could help to identify the su-
perconductivity in (TMTSF)zX compounds with the d-

type state proposed in Refs. 1 —7.
Rather detailed experimental investigators of the ther-

modynamics of the superconducting transition in the or-
ganic compound (TMTSF)zC104 have been performed
by Garoche and collaborators. ' ' In that compound
there is an order-disorder transition of the C10 anions

at 24 K which can be completely or partially suppressed
by more or less rapid cooling rates, leading to a certain
degree of nonmagnetic disorder. Introducing disorder in
this way leads to a decrease of T„ i.e., the disorder has a
pair-breaking effect. Experimental results for the nor-
malized specific-heat jump' are shown in Fig. 8, together
with our theoretical results. The agreement is very good,
and this seems to provide some support for the d-wave
nature of the superconducting state. There is, however, a
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1.0

ac(Z)
EC(1~)

0.5-

0.5
Tc/Tco

1.0

FIG. 8. Normalized specific-heat jump of an impure quasi-
one-dimensional d-type superconductor as a function of reduced
transition temperature (full line), where AC(T, ) denotes the
AC& at T= T, . The dashed line is the corresponding result for
an isotropic superconductor with magnetic impurities (Ref. 14),
triangles are the data of Pesty et al. (Ref. 17).

There is the following similarity between the present
case and the polar case in heavy-fermion systems. In the
clean case, the density of states around the Fermi surface
is proportional to

~
co~ and then thermodynamic quantities

show power-law behavior. In the presence of nonmagnet-
ic impurities the density of states always remains finite
and excited quasiparticles dominate the low-temperature
thermodynamic properties. With decreasing impurity
concentration D(0) decreases exponentially. The differ-
ence of numerical factors which appears in the two cases
comes from the dimensional dependence of the order pa-
rameter.

The density of states obtained here is also similar to
that of d-wave superconductors on a two-dimensional
square lattice. ' Therefore the same temperature depen-
dence can be expected for the thermodynamic quantities
as the magnetic susceptibility and the specific heat al-
though there will again be differences in numerical fac-
tors.
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APPENDIX A: PROOF OF EQ. (5.6)

From (5.1) and (5.2),

Q2 d cos k
(Al)

From (2.7), it is found that

cos k dQ„
=4m

860 +Q

Substituting (A2) into (A 1) and making use of (2.7), one obtains (5.6).

APPENDIX B: PROOF OF EQ. (5.8)

Equation (5.2) is calculated as

Q2
5I' /X0 = Dde

tanh
2 0

+ f'dz'f ' d~
D

cOS2k

(r)'+z')'"
x

1 cos k
exp(m/T)+(

™
( —ee~~xxe)'xe)

+2 g2 2I Qp —00

+ f dz —Tl (1+ "~ )Im
o ~k N=

coD 2

+ f den T ln(1+e ) Im
ee)D d~ ( 2+ 2 )1/2

2/c
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where z& =z cosk. By use of (A2) with iso„=co, (Bl) is rewritten as

Q2 &D
5F/No= —(61, ) 2T—f droln(1+e )[D(co)—1],

D

which leads to (5.8) in the case of b, ((co&&.

(B2)
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