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Defect-state wave functions and energies are calculated for numerous configurations of nonideal
dangling and floating bonds in a-Si with use of Bethe-lattice-terminated clusters and a tight-binding
approach. The energy eigenvalue for the dangling bond is highly dependent on deviations from
ideality while the wave-function amplitudes are much less so. Exactly the opposite holds for the
floating bond. The experimental consequences of these calculations are discussed.

I. INTRODUCTION

A controversy has recently arisen over whether the de-
fect, or D, levels! observed in the gap of amorphous Si
(a-Si) are threefold-(under)coordinated ‘“‘dangling bonds”
or are fivefold-(over)coordinated ‘‘floating bonds.” Until
recently challenged,?”* the belief that the states were
dangling bonds had been universal. The controversy per-
sists,” ~!! at least in part, because total-energy calcula-
tions are not accurate enough to determine reliably which
configuration has the lowest energy, and because present
experiments'>!® can be qualitatively interpreted to sup-
port either view.

The controversy has not been resolved by molecular-
dynamics simulations for a-Si which have utilized empiri-
cal interatomic potential functions'*~'® as well as an ab
initio treatment'® of the electronic terms in the energy.
All of these calculations have found fivefold defects; all
but one'® found threefold defects as well. While the a-Si
growth process has certainly not yet been treated quanti-
tatively, these calculations suggest that at least energeti-
cally there is no dominating preference for threefold over
fivefold coordination. Recently we published? the results
of tight-binding calculations on a nine-atom cluster ter-
minated by Bethe lattices. These calculations showed
that the energy eigenvalue of the defect state moved from
about midgap to within 0.2 eV of the conduction band as
the cluster evolved continuously from a configuration
describing an ideal dangling bond to one describing an
ideal floating bond. Similarly the maximum fraction of
defect charge on any atom dropped from 70 to 15 %.

In this article we direct our attention to the energy ei-
genvalues and charge distributions of floating- and
dangling-bond defect sites in nonideal configurations.
One of the main goals of the calculations is to aid in the
interpretation of the experimental magnetic resonance
data regarding the charge distribution of these states. As
we shall see, the combination of this data, the observed
positions and widths of the electron levels, and the
present results shed useful new light on the dangling-
versus floating-bond controversy.

In a crystal, vacancies (the analogues of dangling
bonds) and interstitials (the analogues of floating bonds)
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have well-defined positions in the otherwise perfect lattice
with relatively small amounts of distortion or relaxation
that are almost the same from defect to defect. Thus all
defects of the same type are nearly identical. However, in
a-Si even the fourfold-coordinated normal sites are not
identical, let alone the defect sites. Typical bond-angle
distortions in a-Si are 5°-10° and thus one should expect
bond-angle distortions of at least that amount about any
defect and quite possibly much more. That is, the dan-
gling bond with its rather large volume devoid of any
atoms and the floating bond with its extra bond do not fit
effortlessly into the random network of fourfold-
coordinated Si atoms. Thus one might expect substantial
strain-induced distortions associated with the defect, over
and above those associated with the perfect random net-
work. For example, total-energy calculations for dan-
gling bonds at (111) surfaces suggest deviations of 5% or
more from the ideal angle.?° The strain broadening of the
defect state should be investigated independent of the
dangling-floating bond controversy, because comparison
of the broadening with the observed broadening provides
a useful check on the model used. As will be seen, the en-
ergy eigenvalue of the dangling bond is highly dependent
on local distortions while the energy eigenvalue of the
floating bond is not.

In a simple sp® picture the hyperfine coupling con-
stants A, and A4, are proportional to the square of
the s or p part of the wave function, respectively, at a
given site. The position of the electron-spin-resonance
(ESR) hyperfine line is determined by A4;,, and its width
is usually determined by A4,.,,- However, if 4, varies
from site to site, this will introduce an additional width
to the ESR hyperfine line. Our calculations show that
the wave function of the dangling-bond defect is relative-
ly independent of strain but that the wave function of the
floating-bond defect is considerably more strain depen-
dent. This should lead to considerable strain broadening
of the ESR hyperfine line for the floating bond, which is
not observed in the experiment. Thus we conclude that
floating bonds are not responsible for the observed ESR
line. This line could, however, be due to either dangling
bonds or configurations intermediate between dangling
and floating bonds.
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II. CALCULATION

In this paper we shall consider only fluctuations in the
position of the neighbors nearest to the center of the de-
fect. Since the wave functions of the defect tend to be lo-
calized on this group of atoms, the effects of second-
neighbor fluctuations should be relatively minimal. Fur-
ther, with a single exception at the end of the paper, we
shall only consider bond-angle distortion and ignore
bond-length variations. Since the elastic constant for
bond-length changes is much greater than that for bond-
angle changes, the bond-length variations are small and
can usually be ignored; changes in the energy and wave
function are substantial at bond-angle distortions typical
of a-Si but are insubstantial at typical bond-length distor-
tions.

As in our earlier work,?' we use a basic cluster of a
number of atoms and model the electronic states with a
five-orbital sp3s* tight-binding Hamiltonian. A more
critical discussion of this model is given in Sec. III. To
terminate the cluster we attach Bethe lattices to each of
the free bonds of the surface atoms, obtaining the ap-
propriate one-electron Green’s functions by standard
techniques.?? The nearest-neighbor couplings at the crys-
talline  interatomic  spacing (d,=2.35 A) are
h,=—2.075 eV, h,=2.484 eV, h,,=2.717 eV,

p— —0.715 eV, and hs"*p=2.328 eV. The single-site

energies are 8p=1.715 eV, e, =—4.2 eV, and 85*=6.68
eV. These values are taken from previous studies?® on
crystalline Si. They reproduce the band structure of crys-
talline Si very well and predict a gap of 1.7 eV for a-Si.
The interatomic couplings, as in Ref. 21 are assumed to
decay as h(r)oce!’# % with a=2.243 and b=3.600,
where r is measured in units of d,. These parameters are
such that the second-neighbor couplings are nonzero for
the five atoms surrounding a central atom in the
floating-bond case but vanish in the ideal crystal and for
most dangling-bond configurations.

Our results are based upon the use of a tight-binding
model with sp3s* orbitals on a finite cluster and the use
of Bethe lattices to terminate the cluster. It is impossible
to obtain accurate conduction-band structures with sp?
models unless an inordinately large number of neighbor
couplings is included. For the purpose of calculating
defect-state energies, it is essential to obtain a reasonably
accurate conduction-band density of states, since the
defect-state energies are determined by the real part of
the one-electron Green’s function in the gap, which is in
turn given in terms of the density of states by the
Kramers-Kronig-type relations. Wave-function energies
close to the conduction-band edge are particularly sensi-
tive to the conduction-band density of states. Therefore,
we have used the sp3s* model, since it gives a consider-
ably improved description of the conduction-band densi-
ty of states. Within the context of tight binding, the use
of the Bethe lattice is comparable in accuracy to other
termination procedures. In a-Si, the Bethe lattice yields
an accurate gap?!' and a good density of states.>* In most
ways the defect cluster embedded in the Bethe lattice is
the amorphous analogue of an impurity or an impurity
complex embedded in a crystal. On the basis of studies of
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H defects,””> we doubt that embedding the cluster in a
large random network of fourfold-coordinated Si would
yield appreciably different results. Although one would
prefer to perform a first-principles calculation, tight-
binding Green’s-functions methods have been very suc-
cessful in crystalline material?® 2% in obtaining deep-level
energies and wave functions, distinguishing between deep
and shallow impurities, and in treating impurity com-
plexes?>3® containing several atoms as well as surfaces
and interfaces."'3? Typically, tight-binding calculations
in crystalline semiconductors reproduce chemical trends
of impurity states correctly and get absolute energies of
these states (including vacancies) correct to a few tenths
of an eV. Energy differences between states are consider-
ably better. We expect the same sort of accuracy here.

-III. RESULTS

The most general dangling-bond configuration with
fixed bond lengths can be described by a central atom
(atom 1) and three atoms (labeled 2—-4) that are bonded to
atom 1. Atoms 2-4 are all a distance d, from atom 1,
these three atoms define a plane and a circle within that
plane, and atom 1 lies directly above the origin of that
circle. As shown in Fig. 1(a) we define the angle 6 such
that the angle between atom 1 and atoms 2, 3, and 4 is
90°+6. The positions of atoms 2—4 on the circle are
shown in Fig. 1(b) where angles ¢; and ¢, are defined.
Thus the ideal dangling bond, which preserves the perfect
tetrahedral symmetry, consists of the coordinates
0=19.47°, $;=¢,=0°. In general, distortions in all of
the angles will occur.

We have investigated a large number of dangling-bond
configurations, but two sets of distortions accurately epi-
tomize the results. In the following, E is the energy ei-
genvalue of the defect wave function with respect to the
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FIG. 1. The geometry of the most general angling bond. The
angles 0, ¢3, and ¢, yield a complete description.
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conduction-band edge, Q is the fraction of the charge in
the wave function on atom 1, and P is the fraction of the
charge on atom 1 that is from the p orbitals. Most of the
rest of Q is from the s orbitals with a small amount, un-
less otherwise noted, in the s* orbitals. In Fig. 2 we have
plotted E, Q, and P versus 6 for ¢;=¢,=0°. As can be
seen, the eigenvalue moves rapidly towards the conduc-
tion band as 6 is decreased and merges with the conduc-
tion band at 6~4°. Throughout most of the range
dE /d0~0.057 eV/deg. Thus E changes by more than
half an eV over a 10° range. P and Q, on the other hand,
depend on 6 only weakly for 6 near the ideal dangling-
bond value of 19.47°. We believe that this weak depen-
dence of P and Q on 6 is due to the fact that the charge is
mostly located on atom 1. In Fig. 3 the quantities E, P,
and Q are plotted versus v, ¢p;=¢,=¢ for fixed 6
=19.47°. We note that E, Q, and P are almost complete-
ly independent of ¢ for —10°< ¢ <20° and are relatively
independent of ¢ for ¢ <20°. We have also studied the
cluster for different ¢ and ¢, with various fixed values of
6 and found that E, P, and Q depend only weakly on ¢,
and ¢, as long as ¢, and ¢, are in the same range as
above.

The above results for E can be understood in a simple
fashion by considering the diagonal energy matrix ele-
ments in the sp model. At 6=19.47° the dangling bond
has mainly sp? character, but at 6=0° it has only p, char-
acter, which gives a higher energy since €, > €. In fact
one can uniquely construct bond orbitals for bonds point-
ing in the three specified directions and obtain the direc-
tion and energy of the fourth or dangling bond. This also
uniquely determines both the direction and the s, Dx> Pys
and p, character of the dangling bond. An energy for
this state can then be constructed from the amount of s
and p character that it contains. Our detailed results are
in agreement with this crude model in predicting energies
that are quite 6 dependent but only weakly ¢3 and ¢,
dependent. Further, we note that energy changes are first
order in changes in 6 but, from symmetry, are second or-
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FIG. 2. The energy ecigenvalue (E), the fraction (Q) of
charge on atom 1, and the fraction (P) of charge on atom 1 that
is from p states, for the dangling bond. The angles ¢;=¢,=0".
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FIG. 3. The energy eigenvalue (E), the fraction (Q) of

charge on atom 1, and the fraction (P) of charge on atom 1 that
is from p states, for the dangling bond. Here 6=19.47° and

3 =¢s=¢.

der in changes in ¢; and ¢,. Our simple model breaks
down if ¢;+¢, exceeds 60°. In this extreme limit, all
three atoms lie on the same half-circle in Fig. 1(b) and it
is also the point where E, P, and Q change radically.

The first-order energy shift can be understood via a
simple model including only the orbitals [s,1), |p,,1),
Ip,,1), and |p,,1) on the defect site, and the components
of the defect wave functions on the neighboring atoms
directed at the defect atom, denoted |h,2), |h,3), and
|h,4). For a first-order perturbation-theoretical analysis,
only the ideal configuration wave function is needed. If
we take the z axis to point along the dangling-bond direc-
tion, this wave function has the form

fl/f):asls,l)+ap lp,,1)
+a,([h,2)+|h,3)+|h,4))+|Ay) , (1)

where Ay denotes the contribution from the remaining
orbitals. We can arbitrarily choose a, to be positive:
then a, >0 since the wave function points in the +z
direction. Furthermore, we expect that a, <0, since the
dominant |p,,1) orbital is negative below its azimuthal
plane. Neglecting the Ay terms, the only parts of the
Hamiltonian which change to linear order in
A6=19.47°—0 are the couplings between the |p,,1) or-
bital and the three |A,i) orbitals. These couplings have
the form

(P, 1H|h,i)=—hycos(90°+6), hy>0.
Thus for small positive A8 we have
AE = —6hga,a;sin(109.47°)A0
=—=5.7hpa,a, A6 . (2)

For the parameters of our model, a,=0.7 and a;, =0.2
are quite large, explaining the strong dependence of E on

6.
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The number of variables needed to describe a general
floating-bond state is much greater than for a dangling
bond. We start with the same four atoms as before as
well as the same definitions for 6, ¢;, and ¢,. Atoms 5
and 6 lie above and below the plane of the circle, respec-
tively, at distances d from atom 1. We define 65 and 6,
to be the deviation of atoms 5 and 6, respectively, from
the perpendicular vertical through atom 1, with azimu-
thal angles ¢5 and ¢, with respect to the planar position
of atom 2. There are two standard definitions for floating
bonds. We have defined the highly symmetric ‘“ideal”
floating bond with 0=0s=0,=¢;=¢,=ds=d,=0" as
shown in Fig. 4(a). On the other hand Pantelides has
defined a *“‘canonical” floating bond with 6=19.47° and
0s=0=d,=ds=ds=¢pc=0°. As shown in Fig. 4(b), this
corresponds to a tetrahedrally coordinated Si atom with
an extra atom attached directly opposite one of the origi-
nal four atoms. We shall let Q; denote the fraction of the
defect-state charge on atom i and P; denote the fraction
of that charge that is from the p states.

Pantelides® stated that the central atom of the
floating-bond configuration cannot contain any charge
from the defect state, in a simple model. In fact, we have
recently proved?! that there is no such charge on the cen-
tral atom of a floating bond in an sp? tight-binding model
with only nearest-neighbor couplings and no rings. The
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FIG. 4. (a) The “ideal” and (b) ‘‘canonical” floating-bond
configurations.

proof is still valid if an s* band is added, provided that
the matrix elements of the s* band have the same radial
dependence as those of the s band. However, real Si does
contain second-neighbor couplings and rings, and thus
we expect a charge on the central atom. Since our calcu-
lations include second-neighbor interactions, we obtain a
charge on the central atom.

Since the number of angles is much larger for the float-
ing bond than for the dangling bond, we have not investi-
gated all of the possibilities as completely. However, a
few cases again epitomize the situation. First, consider a
variation of 6 with the rest of the angles fixed at 0°. In
this case, atoms 2, 3, and 4 are equivalent so that
P,=P,=P, and Q,=Q;=0,. The results are plotted in
Fig. 5, and P,=0 for all values of 6. We note that
dE /d 8 varies from 0 at 6=0° to 0.009 eV/deg at large
values of 6. This is a much smaller variation than for the
dangling bond. We believe that this relative insensitivity
to changes in 6 is due to the fact that the state lies very
close to the conduction band and has a somewhat extend-
ed wave function. As such it has some resemblance to a
shallow state, and the energy eigenvalues of such states
are usually fairly insensitive to strains. We also note that
all of the Q’s are quite small for all values of 6, many of
the P’s and Q’s vary quite rapidly with 6, and that the site
with the largest amount of charge changes atoms twice.
In Fig. 6 we have plotted the results versus ¢ =¢;=¢,
varying with the rest of the angles set equal to 0°. E
remains constant at —0.16 eV and none of the P’s or Q’s
vary much and P, ~0.0, P,=P;~0.07, P,~0.07, and
Py=P,~0.8. Further studies show that variations of the
P’s, Q’s, and E in Fig. 5 are typical for variation of 6, 05,
or 6¢ while none of these quantities vary much as ¢3, ¢4,
¢s, or ¢¢ change. The insensitivity of the floating-bond

eigenvalue to 6 can be understood via Eq. (2). In the
0.20
- O.16
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FIG. 5. (a) The energy (E) and charge fraction (Q;) on atom
i and (b) the fraction of charge (P;) that comes from p states in
the floating-bond configuration vs 6. Here 0s=0,=¢;=d¢,
=y¥s=1,=0°. Note that @, =Q;=Q, and P,=P;=P, while
P,=0.
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FIG. 6. The charge fractions (Q;) on atom i for ¢ =¢;=¢,
with the rest of the angles set equal to 0°.

15 20

floating-bond case a, =0 at 6=0° and a, and q, are very
small for all values of 6.

Finally we note that floating bond is less localized than
the dangling-bond state in that about half of its charge is
situated on the central atom and its five nearest neigh-
bors; is the state is localized at all, the localization length
is probably 5 A or greater. This, and its close proximity
to the conduction-band edge, raise the possibility that it
could be a part of the exponential band tails which are al-
ways present in amorphous Si.

IV. DISCUSSION

First consider the energy eigenvalue. The ideal dan-
gling bond has an energy of —0.70 eV with respect to the
conduction band, which is close to the experimental
width of the D state. We find this state to be very strain
dependent in that dE /d 6 ~0.057 eV/deg. One might ex-
pect bond-angle distortions of at least 5°, which would
yield AE==0.28 eV. This is consistent with experi-
ments, although the broadening of the D state could be
due to other causes such as nearby impurities or phonons.
On the other hand, the ideal floating bond has an energy
eigenvalue of —0.16 eV, which is very close to the
conduction-band edge. This is far from the observed po-
sition of the D state and one does not expect the tight-
binding approximation to be in error by this much. In
the canonical configuration, where the atoms get crowded
quite closely together, the energy below the conduction
band is still a very small 0.28 eV. These energies are
much less strain dependent than the energy of the dan-
gling bond.

Next we consider the amount of s and p charge density
on the various atomic sites. We define ¢, and g, as the
amount of s and p charge on a given site, where

qg,=Q0(1—P),
qp=QP .

As discussed in Sec. I, 4, and thus the position of a
line in an ESR hyperfine experiment, is proportional to
q,;. Furthermore, 4, and thus the width of a line in a
powder-averaged ESR hyperfine experiment, is propor-
tional to g,. The constants of proportionality cannot be
accurately obtained from tight-binding theory. Of

(3)
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TABLE I. Values of ¢, and g, for the ideal (i) floating bond
and the canonical (c¢) floating bond.

Atom number q,(i) q,(i) q,(c) q,(c)
1 0.063 0.00 0.157 0.000

2-4 0.043 0.00 0.039 0.005

5 0.028 0.12 0.025 0.123

6 0.028 0.12 0.044 0.044

course, if one has a distribution of g,’s (or 4,,’s) this will
also contribute to the linewidth. In fact, it is quite possi-
ble that this strain-broadening mechanism is more impor-
tant than the broadening from 4, .

For the ideal dangling bond, we find that g, =0.20 and
g, =0.45. These numbers are close to those estimated by
other investigators.>'> Whether these values are con-
sistent with the experimental hyperfine data is a matter of
contention, especially the value for g,. Our main point
here is that g, varies very little with strain. That is, g
changes by about 8% over a change of 5° in 6 and about
17% over a change of 10° in 8. The ¢, and ¢, depen-
dences are essentially zero. A linewidth of even 17% is
consistent with the experimental hyperfine data of Biegel-
sen and Stutzmann.

The situation for the floating bond is far more involved
because six different atoms can contribute to the ESR
hyperfine line. In Biegelsen and Stutzmann’s data on the
natural (4.7%) abundance of Si, essentially only one atom
in a cluster contributes to the signal and atoms whose g
is less than half of the average g, will not contribute to
the signal because their contribution will be lost in the
central peak. However, in the data from the enriched
(93%) sample, nearly all of the atoms in a cluster should
contribute to that defect’s signal. Furthermore, there is
no appreciable central peak.

For the ideal floating bond (see Table I) all of the g,’s
are quite small and none of the atoms is dominant.

QorP

104

8 (deq)

FIG. 7. The energy (E) and the charge fraction (Q) and
fraction of charge (P,) that comes from p states for an inter-
mediate case between the dangling and floating bonds.
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Furthermore, from their 6 dependence, one could con-
clude that one should see a continuum hyperfine spec-
trum and not a well-defined line, as is observed. The situ-
ation is somewhat more favorable in the more asym-
metric canonical configuration. In this case, atom 1 (the
central atom) is at least slightly dominant. However, the
sum of the g,’s from the other five atoms is greater than
the g, from atom 1. Given this situation and the 6 depen-
dencies of the g,’s, one would obtain a very broad line
from variations in A4;,, in an experiment on enriched ma-
terial. This model cannot possibly be consistent with the
experiments of Biegelsen and Stutzmann.

In an attempt to obtain results close to those en-
visioned by Pantelides, we have investigated one inter-
mediate case between the dangling and floating bonds. In
that case we take the bond length of atom 6 to be 1.15d,.
In our model, the bond length of 1.15d, corresponds to a
coupling strength of 78% of the coupling strength at a
nearest-neighbor distance d,. It is the latter number

nearest-neighbor distance d,. It is the latter number
which controls the properties of the state. The results are
shown in Fig. 7. As expected, atom 6 is starting to be-
come a dangling-bond atom. The energy eigenvalue has
dropped and atom 6 has, by far, the most charge. How-
ever, even in this case, the angular dependence of g, is
too severe to be consistent with a spread in 6 and the ex-
perimental data. Of course, as atom 6 pulls further away
from atom 1, the defect cluster approaches the dangling-
bond state. As expected from this and earlier work, E, P,
and Q, as well as variations in these quantities with
strain, are roughly linear functions of the coupling
strength.
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