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We examine a theory of the transient electrodynamics of thin-film superconductors irradiated by
both cw- and pulsed-laser light. The theory employs the Rothwarf-Taylor rate equations in con-
junction with a time-dependent version of Parker's T* model of nonequilibrium superconductivity,
to determine the microwave and far-infrared electrodynamics. This formulation is sufticiently gen-
eral that it can also be utilized for problems in which either static or dynamic gratings are written
on the superconductor by two laser beams. We apply the theory to studies of time-dependent mi-

crowave transmission through thin superconducting films and microwave propagation on supercon-
ducting waveguides. A perturbative formulation of the electrodynamics, to first order in the quasi-
particle response, is also presented.

I. IN'TRQDUCTION

The study of superconductors whose quasiparticle (QP)
and phonon densities have been driven out of equilibrium
by external fields or currents is of considerable interest in
low-temperature and device physics. This interest is
motivated by the possible appearance of novel physical
phenomena as well as by device applications. An exten-
sive review of the physics of nonequilibrium supercon-
ductivity can be found in Refs. 1 and 2.

A particularly interesting application is the optical
control of microwaves by use of lasers. Here, visible laser
light splits pairs creating an excess of QP's, a process
which depresses the gap and alters the QP distribution.
These effects, in turn, change the superconductor's con-
ductivity for frequencies below twice the gap frequency.
Lasers might thus be employed to control the propaga-
tion characteristics of microwaves on a strip line. Pulsed
lasers could modulate the amplitude or phase of the mi-
crowave radiation. Furthermore, a superconductor irra-
diated by two degenerate laser beams might form a static
electromagnetic grating, whose spatial period is set by the
incident laser wavelengths and orientations. Such a grat-
ing could be utilized to guide microwave or far-infrared
radiation on a thin film. If the laser beams are nondegen-
erate, the electromagnetic gratings will oscillate at the
difference frequency, so that the superconductor, again, is
not in the steady state. One is thus motivated to investi-
gate problems in which the driving currents vary in time
and/or space —not only for these potential device appli-
cations, but also because the behavior of a many-body
system under such nonequilibrium situations is of interest
to statistical mechanics. In particular, spatially nonuni-
form nonequilibrium superconductivity has received
much attention in recent years in the attempt to under-
stand diffusive instabilities.

In this paper we erriploy a theory of nonequilibrium
time-dependent superconductivity which is appropriate
for describing thin-film superconductors irradiated by ei-
ther cw- or pulsed-laser light emitted by one or more

sources. Our principal goal is to determine the
transient-microwave conductivity for such situations,
especially for cases when the thin film is driven far from
equilibrium by the laser pulse. Once the conductivity is
obtained it is straightforward to determine the transient-
microwave transmission characteristics of a thin-film su-
perconductor or the propagation characteristics of a su-
perconducting strip line.

It is diScult to treat, by first principles, superconduct-
ing systems that are driven far from equilibrium by fields
whose amplitudes vary in time and/or space. A variety
of phenomenological schemes, however, are presently
available for treating superconductors far from equilibri-
um. One category of such schemes is based on the
Rothwarf-Taylor (RT) rate equations, which treat the ki-
netics of the QP and phonon densities. We utilize the
RT equations in a form including diffusion, which occurs
whenever the superconductor is driven by inhomogene-
ous fields, as when an electromagnetic grating is written
on a thin film. Since we are interested in the microwave
response, i.e., wavelengths greater than a millimeter, we
shall not be concerned here with the intrinsic diffusion-
driven instabilities, which manifest themselves on spatial
scales on the order of 100 pm or less. The problem is to
solve simultaneous partial differential equations for the
QP and phonon densities as functions of time t and posi-
tion r: n&p(r, t) and n &(r, t), respectively. We confine
ourselves to situations in which the phonon response time
is much shorter than that of the QP, so that the phonons
will adiabatically follow the QP. For external fields that
vary suSciently slowly in time and space, the phonon
coordinate can be adiabatically eliminated. This approxi-
mation leaves us with only one differential equation to
solve, thus considerably simplifying the problem. The
simplification allows us to develop an analytic solution
for a general space- and time-varying drive current when
the system is not far from equilibrium, and an analytic
solution for a spatially uniform but time-pulsed drive
when the system is far from equilibrium.

Evaluating the nonequilibrium electrodynamic re-
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sponse of the superconductor requires knowing the QP
energy distribution and the gap energy. For situations of
interest to us —far from equilibrium where the QP
response may be highly nonlinear in the drive fields or
where the drive fields are spatially nonuniform —it is im-
practical to use an approach based on the microscopic ki-
netic (Boltzmann) equations. ' As we are interested
principally in optical laser generation of the QP's (which
relax rapidly to a thermal distribution), a time-dependent
version of Parker's effective-temperature (T') model is
employed.

The nonequilibrium gap and QP energy distribution
are then used in the Mattis-Bardeen expression for the
complex dynamic conductivity, in order to determine
the electrodynamic response, at frequencies near the gap.
We present numerical results for the time-dependent mi-
crowave conductivity, thin-film transmittance, and
waveguide propagation, in response to an optical laser
pulse.

We find that over a fairly wide range of parameters the
change in the electrodynamic response due to the applied
fields is a linear function of the fractional change in the
energy gap, even though the latter quantity may be a
nonlinear function of the driving fields. This feature of
superconducting electrodynamics allows us to develop a
convenient perturbation theory for the change in the elec-
trodynamic response, to first order in the change in QP
density.

The paper is organized as follows: Section II is devot-
ed to the kinetics of the QP and phonon densities. In Sec.
IIA we present the RT rate equations and discuss the
adiabatic elimination of the phonon variable. In Sec.
II B we offer solutions of these equations for some specific
time- and position-dependent field amplitudes. In Sec. III
we discuss T and the nonequilibrium energy gap ob-
tained from the QP density. Section IV is devoted to
electrodynamics. In Sec. IV A we outline the method for
determining the electrodynamic response functions from
the Mattis-Bardeen equations and the T* kinetics. We
present results for the changes in the microwave

, transmission and waveguiding characteristics under in-
tense optical irradiation —both steady state and pulsed.
In Sec. IVB we present a theory which determines the
electrodynamic response of a superconductor, to first or-
der in the fractional change in energy gap, and thus to
first order in the change in QP density. We discuss the
limits of validity of this linear relationship. Mathemati-
cal details of this first-order theory are presented in the
Appendix. We conclude in Sec. V.

II. KINETICS

external drive is a laser field, it is possible to consider the
QP current alone, and relate it to the laser intensity.

A. The rate equations: Adiabatic elimination of the phonons

Jgp(1' r ) =Dip Vnop(r, t )

Jpi, (r, t)=Dpi, Vnpg(r, t) .

(2.1a)

(2.1b)

In these equations, DQp and D h are phenomenological
diffusion coefficients for the QP and phonons. Accord-
ingly, the RT equations become

a 2 = 2 2—
DQp V n Qp =IQp 2R72 Qp + 7l phat 7 g

(2.2a)

8 —Di „V ni,„=Iii, +Rn gpBt

+ph
Tg

0
ph ph

CS

(2.2b)

In Eqs. (2.2), I&p and I~l, are the drive currents per unit
volume due to the external fields; R is the recombination
coefticient; vz is the time for a phonon to break a pair; ~„
is the time for a phonon to escape to the thermal reser-
voir; and n h is the equilibrium phonon density associat-
ed with the thermal reservoir. The quantity (2Rn&p)
is regarded as a quasiparticle-recombination time.

Next we estimate the space and time scales over which
the QP and phonon densities vary. This can be accom-
plished by scahng the densities as well as the space and
time coordinates to dimensionless quantities. With nQp
and n &p defined as the QP density in steady-state (SS) and
in equilibrium, respectively, we introduce u as

u =llgp /pl gp
SS (2.3a)

ii —&i gp /il qp
0 (2.3b)

depending on whether the final state is, or is not, the
equilibrium state. For the phonons, we normalize to the
equilibrium thermal reservoir value, as

Our starting point is a generalization of the RT equa-
tions, to include the effects of QP and phonon diffusion,
which arises from spatially inhomogeneous drive currents
(e.g., laser induced). The RT equations are essentially
generation-recombination equations. Hence, diffusion
enters into the QP (or phonon) equation via the diver-
gence of a QP (or phonon) diffusion current J&p(r, t) [or
J~z(r, t)], where

The physical situation to which this model applies is as
follows: A superconducting thin film lies on a substrate,
such as sapphire, which also serves as a thermal reser-
voir. The thin film is subjected to QP and phonon
currents which drive the system out of thermodynamic
equilibrium. These currents arise from external drive
fields and can vary in time and space, as does the
external-field intensity. En the special case in which the

0

The natural time scale to use is

ri, =(2Rn& )

or

r~R (2Rn Oqp )——

(2.4)

(2.5a)

(2.5b)
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depending again on the final state of the system. With
respect to the steady-state values, we introduce the di-
mensionless time as

s=t/r~ . (2.6)

Lgp =(Dope~ )' (2.7)

The natural length scale to use is the QP recombination
length

Iph
0n ph +es

ss
nQP

+ph+ Q
2VR n ph

(2.13)

Inserting Eq. (2.13) into (2.9a), we obtain, after returning
to dimensional space and time coordinates,

the phonon current varies slowly on the scales set by ~ph
and L h, then the left-hand side of Eq. (2.9b) can be set
equal to zero and

V=LQpV' . (2.8)

and accordingly, we introduce the following definition:
rR Lop—V u =J,r~ — u

at res rB
(2.14)

When the final state is equilibrium, we replace ~R by rR
in Eqs. (2.6)—(2.8). Using these definitions, with the
steady-state values for u and ~R, we find that the RT
equations become

where

IQp es n', h

Qp +~ ++ s + nQ
(2.15)

R QP R ph
0

ss " + ss "
Il Qp 'TBn QP

V2 v=
LQp

8 —V u=2

Bs

Iph l
0n ph +es

+ph

s +ph

ss
+phn QP+ 0 Q V

2+R + ph

Here we have introduced the phonon lifetime

+B us
ph +B++es

and length scale

(2.9a)

(2.9b)

(2.10)

One further simplification is possible. If we redefine u
with respect to the equilibrium QP density [Eq. (2.3b)] in-
stead of the steady-state value, then the above equations,
(2.14) and (2.15), still hold providing that nop is replaced

by n Qp and vR is replaced by wR. Then, when the system
is in equilibrium, so that IQp =Iph =0, and u =?, the re-
sulting two equations for u and v yield the result that

Il ph 7l

(2.16)2'
exactly as required by detailed balance. With this result,
Eq. (2.14) can be simplified to

a 2
27-

Dope' nqp
—lop——+ "

Ip„dt +B ++es

Lph —(Dphrph)' (2.11)

If the phonon density is adiabatically to follow the QP
density, we require that ~ph&&~R and Lph &&LQp and
also require that the phonon drive current Iph vary in
time and space on scales that are long compared to ~„h
and Lph.

We can estimate the time scales as follows: Conven-
tional theory asserts that ~R &&wB for T && T„which im-
plies that ~R &&~ph since the phonon lifetime is less then
the smaller of rtt or r„[as confirmed by Eq. (2.10)).
Thus, even if there is weak coupling to the reservoir
(which, in fact, we shall require for the T* model, whose
validity depends on the condition r„))rz), it is nonethe-
less true that the phonon lifetime is shorter than that of
the QP.

We can estimate the diffusion length scales from the
approximate velocities and lifetimes of the quasiparticles
and phonons, as

2R 2 0
(I+...i;) ["&' ("o' '

(2.17a)

and Eq. (2.13) becomes

Ph (1+& yr ) Ph Ph Ph QP (2.17b)

We thus have a single differential equation to solve, Eq.
(2.17a), for the QP density as a function of r and t. The
resulting solution nqp(r, t) is then to be substituted into
the algebraic equation (2.17b) for the phonon density
nph(r, t).

We shall be exploring a model of laser radiation in
which Iph =0, and IQp is proportional to the laser intensi-
ty. Note that in the absence of a phonon current, Eq.
(2.17b) reduces to the nonequilibrium generalization of
detailed balance

Lph

LQp

vph~ph « 1
VFVR

(2.12) 7l ph Pl Qp

+ph 2+R
(2.18)

where the inequality follows from the previous inequality
between time scales and from vph «vF, where VF is the
Fermi velocity.

Thus, we anticipate that the phonon density will adia-
batically follow that of the quasiparticles. Accordingly, if

provided that r~ (&r„. Equation (2.18) has useful impli-
cations regarding transient behavior, which will be dis-
cussed later.

Equations (2.17), our working equations for the QP and
phonon densities, are valid (as are the RT equations) pro-
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vided that the number of superconducting pairs greatly
exceeds the number of QP; and this condition implies
roughly that T/T, ~0.7.

B. Qnasiparticle response to laser radiation

We now obtain solutions to the above rate equation,
for the QP, for three interesting cases. The phonon solu-
tions follow from Eq. (2.17b). We present our results in
terms of an effective drive current, Q, which, in general,
is a function of IQp and I h. In Sec. IIC we employ a
model of laser radiation in which I~h =0, and Q(Iqp) is
determined by the laser intensity.

1. Steady state re-sponse to spatially uniform cw radiation

When the applied fields are constant for all of space
and time, i.e., IQp and I h are constants, the left-hand
side of Eq. (2.17a) is equal to zero, and the resulting solu-
tion for nQp, now labeled n Qp, is

(2.26)

where

2v-
A(x) =7tt Iqp(x)+ I~h(x)

+es +8 nQp
(2.27)

which for the step-function drive, now under considera-
tion becomes

A(x)=A 6(x)=r„ Iq + I „6(x).++~

(2.28)

vary, is determined by the recombination time (steady
state), increased by the well-known factor (I+a„/rs),
which arises from phon on trapping. With these
definitions, the QP equation (2.17a) becomes

0 2
du 2 "QI=A(x) — u
dx nQp

n =nqp(1+Q)'

which when used in Eq. (2.17b) gives

(2.19)
Now, as t~~, meaning x~ac, we have u =1 and
du /dx =0. Putting these limiting values into Eq. (2.26),
with A(x) =A we find that

0

ni, h
=

1
+Iphrph+nqp (1+Q) . (2.20)1+r„rs +R

A =1—
0 2

nQp
ss

nQp
(2.29)

Here Q is a dimensionless drive current given by

0
IQp 2V Iph

Q =(1+r„/rs )rii o +
n Qp 7es+7g n Qp

(2.21) du
1 u

dx
(2.30)

which put back into Eq. (2.26) yields the equation, for
x)0,

In the limit of weak external fields, i.e., Q &(1, we see
that to first order

ss o o Q
5nQp = n Qp n Qp

=n
Qp 2

(2.22)

In the opposite limit, Q))1, for strong external fields
driving the superconductor far from equilibrium, we see
that

5nqp = n qpQ
0 1/2 (2.23)

2. Transient response to spatially uniform pulsed radiation

We shall consider two cases for which the amplitudes
of the external driving fields (and, hence, the driving
currents I) vary with time, but are still homogeneous in
space.

a. Sudden onset and the approach to steady state. In
this case the laser is turned on to a constant value at
t=0: Iqpi„hi=Iqpi~hi6(t). Initially the system is in
equilibrium and must approach the steady-state value at
t= ~. It is convenient to introduce the dimensionless
quantities: u =nqp/nqp, from Eq. (2.3a), and

where the Iqpi~hi in the definition of Q are understood to
0be I

b. Pulsed laser. If the laser is turned on at t =0 and
off at t =t0..

Iqpi&hi(t ) =I@ (&pi h6(t)6( to t )

then the system is initially in equilibrium and as t ~ ~ it
returns to equilibrium. We, therefore, define the dimen-
sionless variables with respect to their equilibrium values:
u =nqp/nqp, from Eq. (2.3b), and

X =t/~0R, (2.32)

with the initial condition u (0)= n qp /n qp.
The solution of this first-order nonlinear Riccati equa-

tion is found in standard tables. We apply the boundary
condition; multiply by n qp /n qp, in order to normalize
with respect to the equilibrium values; and, finally, arrive
at the solution

nqp(t) cosh(t /rz )+&1+Q sinh(t /re )=&I+Q
nQp sinh(t /rx )+v'I+ Q cosh(t /hatt )

(2.31)

X =t/WR,

where

(2.24)
where

rR =rid(1+r„/rs ) (2.33)
i' Tg ( I+r /rg ) (2.25)

This rz, the time scale over which the QP density will
is the enhanced recombination time (for equilibrium).
Furthermore, we take the definition of A from Eq. (2.28),
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but replace n Qp by n Qp and ~R by v.R, thus making
A =Q for Q as defined by Eq. (2.21) but with I&p( h) un-

0 P
derstood to be IQp(ph) Using these definitions, we find
that Eq. (2.17a) for the QP becomes

d =Aoe(x)e(x, x ) (u 2 1)
dx

(2.34)

SS

a =(1+A )' =(1+Q)'
0n QP

(2.36)

With Eqs. (2.5a), (2.5b), (2.25), and (2.33), we see that
-0
+R

a
(2.37)

Thus, Eq. (2.35), describing nOp(t) after the external
fields are turned on, but before they are turned off, is
identical to Eq. (2.31) which describes the sudden switch-
ing on.

The solution for t ) to is

n op ( t ) n ccosh[( t to ) /Vz ]—+sinh[( t —
to ) /T g ]

n Qp nosinh[(t to)/r~ ]—+cosh[(t —to)/r~ ]

(2.38)

where no is the value of nop(to) evaluated from Eq.
(2.35)~

These results show that when a field consisting of a sin-
gle pulse is turned on, the QP density starts to rise (head-
ing toward the steady-state value), with a rise-time con-.
stant of ~R ', and when the field is shut off; the density de-
cays back toward its equilibrium value with a decay-time
constant of 7R . These results are demonstrated graphi-
cally in Fig. 1. This figure shows the results of Eq. (2.31)
for the sudden switching on of the fields, to a constant
value, and of Eqs. (2.35)—(2.38) for a pulsed field with two
different pulse lengths to. All times have been norrnal-
ized with respect to the same rise time ~R . The strength
of the fields, when switched on, is the same in all cases, as
determined by the value of the dimensionless parameter
Q, here taken to be Q =73. The significance of this value
of Q and the range of possible values of gati are discussed
in Sec. II C.

3. Response to a weak oscillating electromagnetic grating

We now let the external driving currents vary in both
time and space to describe, for example, the response to
two laser sources that create an electromagnetic grating.
For two laser beams described by wave vectors, frequen-

We solve this equation for 0 & x & xo (0 & t & to ) subject
to the boundary condition u (0)= 1, and we then solve for
xo ~ x subject to the condition that the solution u be con-
tinuous at x =xo.

The solution, for 0 & t & t„ is

nop(t) cosh(at /rz )+asinh(at /Yz )=a (2.35)
nop sinh(at/re )+a cosh(at/a~ )

where

6
Cl

CL
Cf

Oa

1
0

FICx. 1 . Evolution of the nonequilibrium quasiparticle densi-

ty (with respect to its equilibrium value) as a function of time

[no™lized to the rise-time constant (to steady state), rR].
Curve (a): Approach to steady state, for sudden switching on at
t =0 of drive current to a constant value (Q). Lower two
curves: Response to a time-pulse —on at t =0, off at t = to, and
constant Q at 0 & t & to.

where S, is the intensity of laser i; K=K, —K2,'

A=co, —co2,
' and g=(e, ez) . The last term represents the

grating, which creates a quasiparticle current that oscil-
lates with the same K and Q. An electromagnetic grat-
ing of the form

(Ki+K2) r —(coi+co2)t

is also created, but for visible or near-infrared lasers its
time scale is too fast for either the QP or phonons to
respond. These considerations motivate us to study the
QP response to the laser induced current

IOp(r, t) =[Ic+bI cos(K r —Qt)]e(t), (2.40)

where Io=I, +I2, bI=(gI&I2)'~~, and where again
through the 8 function we shall include the transient
effects associated with turning on the laser at t =0. We
shall consider two special cases: (1) both I, and Iz are
weak, so that Io and AI are weak, and the departure from
equilibrium is small, and (2) I, and I2 may be strong but
bI is weak (experimentally realizable by using nearly or-
thogonal beams).

In the first case, when both beams are weak, we keep
terms only to first order in the departure from equilibri-
um:

5nop(r, t ) =nop(r, t) —n qp

cies, and polarizations (K„co„e,) and (Kz, co2, ez), the to-
tal light intensity at the superconductor's surface is

S(r, t)=S~+S2+2(gS,Sz)'~ cos(K r —At), (2.39)
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which yields a linearized version of Eq. (2.17a),

a 2 2s-—DqpV' 6nqp = Iqp+ I hat

2
5nqp,r~(1+ r„/~ ti)

(2.41)

and

=D~pK +—1 2

r~(1+r„/~s )
(2.43)

where now I~h =0 and IOp is given by Eq. (2.40). Since
this equation is linear in 5n&p, the solution is a linear
combination, 5n&p+5n&p, of the responses to the Io
term and to the b,I term in Eq. (2.40). The former is
given already by Eq. (2.31) and the latter is given by

f'(K r+ iIfi)

i [
—&nt —t/v. ]+ (2 42)

2[1+(Qr) ]'
where

—', (U+Krti): the difFusion term dominates if UFICrz ))1
(i.e., if a QP diffuses a distance greater than a wavelength
of the driving field before recombining), and the QP
recombination dominates if UFK~~ &&1. If we estimate
UF as = 108 cm/s and ~DR anywhere from 10-10 to 10-7 s,
then this ratio has an order-of-magnitude value from
10 K to 10 I( . The wave vector difference, K, from
interfering laser beams can be varied continuously. If
EC &&1X10 cm ', the diffusion term dominates the tran-
sient response.

We note that for weak drive currents of arbitrary spa-
tial dependence, the solution of the linearized equation
for 5nOp is found by summing the result in Eq. (2.42), for
all Fourier components b,I(K,A) of the current, over K.

For the case where the two laser intensities are strong
but AI is weak, we return to the nonlinear differential
equation, Eq. (2.17a) [with I h=0 and Iop given by Eq.
(2.40)], and we say that nOp =n, (t)+5n(r, t ). Here, n, is
the response to Io, which again is given by Eq. (2.31); and
5n (r, t ) ( « n, ) is given by the equation

/=tan 'Q~ . (2.44)
a
at

DV —5n (r, t ) =BIcos(K r Q, t )—
The transient response, given by the second exponential
in the brackets in Eq. (2.42), is characterized by the new
response time ~, which is now set by the effective
grating-difFusion time, (DopIC ) ', as well as by the
enhanced recombination time, ~~. We can estimate
which of the two terms dominates by using the classical
approximation D&p =

—,
'

Uz~& . Thus, the ratio of the
two contributions (difFusion:recombination) becomes

where

5n(r, t),2

rR (t)
(2.45)

YIi (t) = [2Rn, (t)] '(1+r„/rs )

is the instantaneous recombination time in the presence
of the QP drive current Io The solu. tion to Eq. (45) is

5n(r t)= ,'bIe' 'exp —f d—t', f dt'e ' 'exp + dt" „+cc
o r(t') o o r(t") (2.46)

where the QP response time r(t) is given by

~(t) '=D pK + 2
Qp i() (2.47)

C. Magnitude of laser drive current Q and response time rR

The preceding results show that the departure from
equilibrium, both steady-state and time-varying, is
governed by the value of Q, on a time scale set by rz. We
now estimate the values of these constants. The nurneri-
cal results that will be presented in the following sections
will all be given in terms of Q (or Q' defined below) and

For real practical applications, we wish to know the
numerical values of these parameters in terms of real
laser powers and real time scales.

In estimating the magnitude of the dimensionless drive
current Q, we first notice that this quantity, as defined
through Eq. (2.21), is highly temperature dependent. Sys-
tems at different temperatures but characterized by the
same value of Q correspond to different driving powers,

Q'=yQ

where

(2.48)

e.g., different laser intensities. To compare systems at
different temperatures but with the same external drive,
we would like to have a parameter that characterizes the
external drive strength independent of temperature.
Now, Q depends on T through the equilibrium QP densi-
ty n&p and recombination time r~. The pair-breaking
time ~~ also depends on the temperature, but only weakly
for T &0.5T, In any case, .stan appears in Q only through
the ratio rtilr„; and since r„[being dependent on the
film's thickness and coupling to the reservoir (substrate)]
is an adjustable macroscopic parameter, it is usual in the
present sort of phenomenology to take the ratio v.z/~„ it-
self as the adjustable parameter. ' Taking ~~/~„as a
given fixed quantity, we have the temperature depen-
dence of Q only through nop and Pti, and thus we can
define a new dimensionless drive current Q' which is tem-
perature independent:
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y =2n /( r~ /r ),
with n defined as the usual normalized QP density,

n = n op /4N(0)h(0) .

(2.49)

(2.50)

Here, N (0) is the electron density of states at the Fermi
energy in the normal state, b,(0) is the zero-temperature
gap energy, and ~ is a temperature-independent scale
factor (see Ref. 6). If we employ the definition of ~z, Eq.
(2.5b), we find that

Rr0

N(0)b, (0)
(2.51)

The temperature dependence of y, and hence of Q, arises
from the temperature dependence of (n Op ) .

To calculate y(T), we use Eq. (2.49), and for r„/r we

employ the expression found by Kaplan et al. [Ref. 10,
Eq. (11)]for a QP at the gap edge (for T « T„ the lead-

ing term in this expression for rR/r is proportional to
exp [6(0) /k T)]}. For n op we use the BCS expression [see
Eq. (3.2)]. The resulting temperature dependence of the
factor y is plotted in Fig. 2 for A1. For a given set of
drive currents, I&p and I~i„we can calculate Q', and then
from y(T) we can determine Q at any temperature T:

(2.52)

where S is the power Aux per unit area in the incident
laser beam, and A is the film's absorptance. If we take
F= 1 and use low-temperature optical data for A and d
for 1-pm incident radiation for a 1.-pm-thick film, we ar-
rive at the following estimates:

Q=y '(T)Q'. The increase by orders of magnitude in

y
' as the temperature is lowered indicates that a non-

linear response (Q )& 1) may be hard to avoid.
For an optically driven superconductor we express Q'

as a function of the light intensity following Parker's
analysis. The fraction of the absorbed energy resulting
in QP creation is F=1 and the average energy per QP is
=b(T). Thus, I&P=PF/b(T)V, where P is the power
absorbed in volume V; and we take I~i, =0. The b, (T)
puts some T dependence into Q', which is avoided by
redefining y by multiplying the right-hand side of Eq.
(2.49) by h(T)/b, (0). Since in the temperature ranges
that concern us, we have b,(T)/b, (0)=1, this modifying
factor has no real efFect on y( T) for the present estimates.
If we say that QP are created uniformly down to a dis-
tance d, which is the film's thickness d or the penetration
depth, whichever is smaller, then we have

Fr (I +r«/r~)
'(&)= S,

2N(0)b, (0) d

S =(2kW/cm )(I+r«/rz) 'Q'=(1 —100 W/cm )Q', for Nb,

S=(45 mW/cm )(I+r„/rii) 'Q'=(0. 45 —23 mW/cm )Q', for Al, (2.53a)

(2.53b)

where we have taken

r«/r~ = (4d /pupa )/r~

as =1/g for Al and =20/g for Nb, with I/g= 1 —100.
The values of Q' on the order of unity, which are used for
the numerical results presented here, thus correspond to
a few mW/cm on Al or a few W/cm on Nb. If Q'=1,
then Q =y ', which for Al equals 19 at 0.5T, and equals

I

I

5.32 X 10 at 0.25T, —well into the nonlinear regime. To
maintain a linear response (Q & 1) for Al requires driving
powers of less than 0.1 mW/cm at 0.5T, and less than
10 mW/cm at 0.25T, . Our results to be presented for
Nb, at Q'=3 and T=0.25T„correspond to
Q=1.6X10~, again in the nonlinear regime. At 0.25T„
only laser powers of pW/cm on Nb will give a linear
response.

The rise time to steady state

=r~ (1+r«/r~ )—(1+y 'Q') '
=i& (1+r«/r~ )(y 'Q') ', for Q &)1,

is independent of temperature, since ~z y' is T indepen-
dent; inversely proportional to the square root of the in-
cident power; and highly material dependent, through

For the case of Q=1.6X10 and T=0.25T, con-
sidered later for Nb ( Q' = 3)

~~ =(18 ps)(1+r„/~z),

I

passed,

( I+~«/re )

depends on temperature, as the QP recombination de-
pends on n&p. In the example where Q=1.6X10 at
T=0.25T„

which for a 1-pm-thick film becomes 7z =0.38—36 ns (as
'=1—100). Thus, rise times as fast as nanoseconds

may be possible in this range of parameters.
Whereas the rise time is temperature independent, the

recovery time to equilibrium after a light pulse has

~~ =4007~ =0.15—14 ps .

If speed is a requirement, for example, nanosecond
response, we must go to higher temperatures; at
T=O. ST, the recovery is faster by a factor of 40.
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101 b, (T); but if nqp is the nonequilibrium density, then T is
replaced by the efFective temperature T* and 6 is the
nonequilibrium gap h(T ). With the weak-coupling re-
sult that b, (0)=1.764kT„ the integral in Eq. (3.1) can be
transformed to give the results

10

n qp =4N (0)b, (0)I(P, 'T),

nqp =4N(OM, (0)I(p, V'*),
(3.2a)

(3.2b)

10

10-4—

where

&(T) d, &(T*)
andkT kT* (3.3)

10-5—

10-6—

= T T )fc7'= and T*=
T. C

and where

I(P, V') = f dy I I +exp[P'+ ( I.764/V')'y']'~' j0

(3.4)

(3.5)

a I i I a I a l ~ l ~ I a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
One of the two variables P and 7; which are arguments
on I, can be eliminated by use of the BCS gap equation,
from which we find, in the case of weak coupling,

FIG. 2. The dimensionless scale factor y, which contains the
temperature dependence of the effective drive current Q ( T), vs
the reduced temperature T/T, .

Y= V(P) = e"~',1.764

or, for T* and 5( T*), T*=V'(P*), where

(3.6)

—P x sinh 'x sech ([1+x ]' P/2)
d

2 0 (I+x2)»2

III. STATISTICAI. MECHANICS IN THE T* APPROACH

In Sec. II we have calculated the total QP density
nqp(r, t) for various external driving fields. What is re-
quired, however, in order to determine the electrodynam-
ic response of the system, is knowledge of the energy dis-
tribution of the QP density. For the case in which a su-
perconductor is driven from equilibrium by a strong elec-
tromagnetic field at optical frequencies, and then is
probed by a weak microwave field, the well-known T*
model of Parker has been shown to be e6'ective. '"

It is assumed in this model that the optically excited
QP come into equilibrium with the phonons of energy
greater than 26, at an eftective temperature T'. The
value of T' is determined by the BCS theory to corre-
spond to the value of n&p. We briefIy outline the equa-
tions that we employ in implementing the Parker model,
since these equations will serve in the later discussion.

We wish to look at systems driven far from equilibri-
um, when many QP are created, for the purpose of ex-
ploring departures from the linear response to the driving
fields. Thus, at this point, we avoid using any linearized
equations, and we employ the exact relation between nqp
and 5,

ngp-n p=4N(0)
(E2 g2)1/2( EikT+ 1 )

(3.1)

In Eq. (3.1), if nqp is the equilibrium density, nqp, then T
is the ambient temperature and 5 is the equilibrium gap

"Qp I(p*, "T(p*))

nqp I(P, T) (3.8)

We know the left-hand side of Eq. (3.8) and also the
denominator on the right-hand side. Therefore, P* is the
only unknown, and is found numerically. After we have
found /3*, we substitute it back into Eq. (3.6) to find
T*/T„and substitute it into the gap equation to find the
nonequilibrium gap 6:

5( T' ) F(p*)
b.(0) b, (0) (3.9)

Finally, the distribution function for the nonequilibri-
um case f*(E), is found by evaluating the Fermi function
fo(E, T) at T*: f*(E)=f (E T*).

When the physical quantities pertaining to the none-
quilibrium superconducting state are properly normal-
ized [e.g. , 5b/h(T) and f'(E), where E=E/h(T)],
they are all material independent.

When nqp on the left-hand side of Eq. (3.1) or (3.8) is a
function of "r,"we can solve for p* (as well as b. and f) as
a function "t." This time-dependent T* approach is legi-
timate when the time-scale for the changing drive current
(for example, the pulse width of the square-wave drive

(3.7)

The RT equations give us a normahzed QP density
n Qp /n Qp which the two equations (3.2a) and (3.2b) allow
us to express as
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due to a pulsed laser) is long compared to the time for the
QP to relax to the bottom of the conduction band and
Eq. (2.18) is satisfied. This statement follows from the
fact that detailed balance implies that the QP and the
phonons are in equilibrium with one another. We shall
use the time-dependent kinetics in Sec. IV to obtain the
time-dependent conductance and thin-film transmittance.

IV. EI.KCTRODYNAMICS

We treat the electrodynamical response of a supercon-
ducting thin film by use of the Mattis-Bardeen (MB) equa-
tions. The MB equations give the ac conductivity of the
superconductor, with respect to its normal-state conduc-
tivity:

o /o „=(o,—io z)/o „.

9—
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These equations, valid in the extreme local (dirty) limit
and in the extreme anomalous limit, have long been ap-
plied successfully to treat thin films. ' '

In Sec. IV A, wg shall use the T model from Sec. III
together with the MB equations in an exact formulation.
In Sec. IVB we shall develop a perturbative approach
which, using the MB equations, expresses the electro-
dynamic response functions to first order in 5b.

I

0.5
I

1.0 1.5
I

2.0 2.5 3.0 3.5

A. Exact formulation

The MB expression for the conductivity employs the
QP distribution function f and the energy gap b, . Again,
following Parker s model, we can obtain the nonequilibri-
um value for o/o„by .using the T* values: fo(E, T )

and b,(T'). The MB equations for cr, /cr„and o2/cr„
can be cast as explicit functions of P, as defined in Eqs.
(3.3), and of O' =%co/6( T). With the definition that
6'=A'co/5(T'), the change in conductivity, i.e., the
difference between the nonequilibrium and equ&librium
values, is expressed as

5o;/cr„=o;(h*,P*)/ „c—rcr;(6, P)/o„, for i =1 or 2 .

(4.1)

When we plot 5cr/o „(or an electrodynamic function
thereof) versus Q, and repeat this for different tempera-
tures, the results are material independent, but a given
value of Q on the different T curves does not correspond
to a given driving power. When we plot the electro-
dynamics versus Q', however, the results are material
dependent (via y), but a given value of Q' on different T
curves corresponds to a given power. The same is true
for the superconducting parameters [M, /b, (T), 5f, and
oT / T] themselves, from which the electrodynamic re-
sults follow.

Our steady-state results for 5o. , /o. , and 6o.z/o. 2 are
shown in Fig. 3. The fractional change in the real part of
o. is seen to be much greater than in the imaginary part.
The real part is determined by n&p, and there is a large
fractional change in this quantity due to pair breaking by
the optical drive. The imaginary part, on the other hand,
is mostly determined by the pair density, which under-

FIG. 3. The fractional change in the (complex) conductivity,
between equilibrium and steady state, for a superconducting
thin film vs the probe frequency, expressed as the photon energy
divided by the equilibrium gap energy N=Aco/6( T). The upper
two curves show the real part 50 &/0 I and the lower two curves
the imaginary part 50.2/o. 2. At ambient temperature T=O. ST, .
Dashed curves: for an external effective drive current of Q =30
(Q'=1.597 for Al). Solid curves: for Q=10 (Q'=0. 532).

goes only small fractional changes. The largest changes
are seen for frequencies just below the gap, reAecting the
reduction in the gap, 5A.

The transient response to pulsed-laser radiation can be
obtained from the solutions of the RT equations, given by
Eqs. (2.35) and (2.38). Figure 4 depicts the time evolution
of the fractional change in the real part of the conductivi-
ty for a pulse of duration t~=1.2r+ for Q=1.6X10 at
T=0.25T, (for Nb this means Q'=3). The three curves
correspond, in the case of Nb, to the three frequencies 17,
60, and 240 GHz. The fractional change in o.

&
is greater

at the shortest wavelengths, reflecting the role of the QP
density in o, . A comparison of 5o, /o

&
to 5nqp/nqp

shows that the transient behavior of these quantities is
quite similar.

To describe the transmittance t, of a superconducting
thin film on a dielectric substrate, we use the simplified
analysis of Glover and Tinkham, ' in which we neglect
edge effects and multiple rejections in the substrate. In
the normal state the transmittance is

ter =[1+Zo/(~+1)R~ j
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FIG. 4. Fractional change in the real part of the conductivity
vs time, for a light pulse of duration to=1.2~& and strength
Q=1.6X 10' at T=0.25T, (Q'=3 for Nb). For frequencies
which in Nb correspond to 240 GHz (solid), 60 GHz (long-
dashed line), and 17 CxHz (short-dashed line).

where R~ (=1/cr„d) is the dc resistance per square of
the film, Zo is the impedance of free space, d the film
thickness, and ~ the index of refraction for the substrate.
Evaluating the o, in the expression for t, at @*,T' and
then again at 8, T and subtracting the results, we find

5t, [(t~ '/ 1) '+o, /cr„] +(—o2/o„)
[(t~'/ 1) '+o

i /o„—] +(o2!o„)
(4.2)

where o, =o;(6,P) and o,'=o;(6*,P*). Similarly,
ot, /tz is found by evaluating the cr; in the following
equation

—
I [t I/2+

( 1 t 1/2)( / )]2

+[(1—t~/ )(oslo„)] ] (4.3)

first at 6*, T* and then at 6', T and subtracting the two.
These results demonstrate that the quantities 5t, /t& and
5t, /t, both depend on the film thickness and material
properties only through the t&, and this quantity is a
function of only the resistance R& and substrate index of
refraction ~.

Figure 5 demonstrates the results for 5&, /t& versus the

FIG. 5. The change in the transmittance 5t, of a supercon-
ducting thin film, between its equilibrium and externally driven
steady-state, with respect to the normal-state transmittance t~
( =0.337) vs the probe frequency, expressed as the photon ener-

gy divided by the nonequilibrium gap energy, fico/h. At an am-
bient temperature of T=O. ST, . For three different effective
drive currents, Q =10, 30, and 50 (Q'=0. 532, 1.597, and 2.662
for Al).

normalized frequency 6'*, for the case of a steady-state
driving field with Q =10, 30, and 50 when the ambient
temperature is T/T, =0.5 (Q'=0. 532, 1.597, and 2.662
for Al), and with R&=170 0 and ~=2.07. The solid
lines in Fig. 6 show 6t, ltz versus Q' for two fixed fre-
quencies, for the same system as in Fig. 5. The solid lines
in Fig. 7 are also 5t, /t~ versus Q', but for the ambient
temperature given by P=7 ( T/T, =0.2518).

For the sarge optical pulse as in Fig. 4, the time evolu-
tion of the thin-film transmission is depicted in Fig. 8.
For Nb, the curves correspond to the frequencies 17, 60,
and 135 GHz. The values of Rz and ~ (170 0 and 2.07)
are the same as in Fig. 5. The transient behavior of
5t, /t, follows 5n&p/n&p, rejecting the fact that, for
these frequencies far below the pair-splitting frequency,
the excess QP govern the fractional change in transmis-
sion. Figure 8(b) demonstrates that although the lowest
frequencies exhibit the largest fractional change, it is the
higher frequencies that experience the greatest absolute
change. Within the pulse time to, at 135 GHz the
transmittance increases from 0.033 to 0.08, whereas at 60
GHz it increases from 0.006 to 0.02.
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FIG. 6. The change in the transmittance 5t, of a supercon-
ducting thin film, between its equilibrium and externally driven
steady state, with respect to the normal-state transmittance t&

( =0.337 at low frequency) vs the effective external drive
current: Q on the upper axis and temperature-independent Q'
(for Al) on the lower axis. At ambient temperature T=0.5T, .
For two probe frequencies: Ace/b ( T)=0.5 and 1-.5. Solid
curves: the exact T* model plus Mattis-Bardeen electrodynam-
ics. Dashed curves: perturbative electrodynamics to first order
in 56/b, .
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FIG. 7. Same as Fig. 6, except that the ambient temperature
corresponds to P=7, or T-=0.2518T, ; and the two probe fre-
quencies are given by A'co/b(T)=0. 6 and 1.5. Q on the upper
axis in units of 10 .

Laser radiation provides a convenient means to achieve
optical control of microwave propagation in supercon-
ducting waveguides and strip lines. The attenuation and
phase velocity in a superconducting waveguide are
known functions of the conductivity (Refs. 15 and 16).
We have used these functions together with the present
theory of the laser-driven nonequilibrium state. ' Figure
9 depicts the resulting frequency dependence of the equi-
librium (solid curve) and laser-driven (dashed) steady-
state attenuation and phase velocity of microwaves prop-
agating in a Nb/NbzO~/Nb waveguide. The Nb20~ is 0.1

pm thick and the Nb films, which are equally illuminat-
ed, are several micrometers thick (the thick-film limit).
The laser power, given by Eq. (2.53) with Q'=3, is 3—300
W/cm, depending on r). Figure 9(a) reveals that laser ra-
diation significantly enhances microwave attenuation
below the pair-splitting frequency. ' For example, at the
interesting frequencies of 240, 135, and 94 GHz, the at-
tenuation is increased from 34 to 2X 10 dB/m, from 22
to 10"dB/m, and 15 to 6X 10 dB/m, respectively. Thus,
if a 2-rnm strip is irradiated, it will, neglecting QP
di8'usion, decrease the intensity of a 240-GHz wave by 40
dB, a 135-GHz wave by 20 dB, and a 94-GHz wave by 12
dB.

Figure 9(b) contrasts the phase velocity, V, in equilibri-
urn with that under irradiation and reveals that below
710 GHz the equilibrium velocity exceeds the laser-
driven one, whereas above 710 GHz the reverse is true.
Below 100 GHz, the fractional change in phase velocity
is about 10%, a useful feature for phase-shifting mi-
crowave radiation. Specifically, at 60 GHz the laser will
decrease V from 3.362X10 rn/s to 2.929X10 m/s, a
change of nearly 15%. Accordingly, in the absence of
QP diffusion, the difference in phase of a 60-GHz wave
propagating over a path length of 1 mm in the presence
versus the absence of laser radiation is 94. Since the at-
tentuation over 1 mm is 3 dB, such a system might be
useful as a phase shifter. At 17 GHz, there is virtually no
attenuation and the phase shift is about 30' over the same
path length.

We have also studied the transient behavior of mi-
crowave propagation in this same Nb/Nb2O5/Nb
waveguide when it is irradiated by 1.27~ laser pulse.
Figure 10 depicts the time evolution of the attenuation
and phase velocity for 17-GHz and 240-GHz waves. The
attenuation curve at 240-GHz is especially interesting for
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FIG. 9. Frequency dependence of the attenuation and phase
velocity in a Nb/NbzO&/Nb waveguide at T=0.25T, : (a) At-
tentuation in equilibrium (solid line) and in laser driven steady
state (dashed line) with Q=1.6X 10 . (b) Phase velocity in equi-
librium (solid line) and in laser-driven steady state (dashed line)
with Q=1.6X10' (Q'=3).

its applicability to millimeter-wave modulation. During
the time to = 1.2rR (e.g., 1.2 ns for z) =0.73) that the laser
is on, the attenuation rises from 34 to 1.46 X 10
dB/m —the peak attenuation across a 1-mm strip being
15 dB. Recovery of the equilibrium value of the attenua-
tion is longer than the rise time; nevertheless, in just 12~~
the attenuation fails to 1 dB over the 1-mm strip. Faster
recovery times can be achieved by going to higher operat-
ing temperatures: raising T/T, from 0.25 to 0.5 will cut
the recovery time by a factor of 40 (i.e., to r~/4). The
time evolution of the attenuation tracks that of the QP.
On the other hand, the phase velocity recovers its equilib-
rium value much faster: After dropping from 3.35X10
m/s to a minimum of 3.07X10 m/s during the pulse
time, the phase velocity recovers 85%%uo of its lost velocity
in the next 4to (e.g. , 4.7 ns for g =0.73).
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B. Perturbative Formulation

In the above procedure for determining the electro-
dynamical response, we determine the QP density
n&p/n&p from solutions to the RT equations; we put the

FIG. 10. Transient response of the attenuation and phase ve-
locity of a Nb/Nb2O5/Nb waveguide at T=0.25 T, . The
response of 17 GHz (solid line) and 240 GHZ (dashed line) guid-
ed waves to a laser pulse of duration 1.2~& with
Q = 1.6 X 10' (Q' =3).
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QP density into Eq. (3.8) and solve numerically for T*
[this requires numerically determining the value of the in-
tegral in Eq. (3.5) repeatedly in the equation solver]; and
finally we use T in the numerical evaluation of the in-
tegrals in the MB expressions. When we solve for the
case in which the fields vary in time, the passage from the
solution n&p(t)/n&p to the time-dependent electro-
dynamic response, e.g., o(t), requires numerically deter-
mining T* and then the MB integrals at every "t" in
some mesh. If we were to add spatial dependence as well,
say with the solution n&p(r, t) in Eq. (2.42), the entire
procedure would have to be repeated over each point in
the space mesh.

It would be convenient to have an equation directly re-
lating o to the solution n&p(r, t). We can develop such an
expression by evaluating the MB equations to first order
in 5b, and 5T, then relating 5T to 5b through the BCS
gap equation, and finally using the 6rst-order approxima-
tion relating 5b to 5n&p. We now describe such a first-
order perturbation theory and then show numerical com-
parisons between it and the exact T* method—
comparisons which demonstrate the method's usefulness.

Recalling that the complex conductivity from the MB
equations has the functional form cr =o ( 6' = irido/b„
p=b, /kT) (where from here onward we shall understand
that 0 stands for the normalized conductivity 0./a„, un-
less the o.„appears explicitly), we notice that the conduc-
tivity is a function of two variables whose values are
changed by the external fields, namely, b, [where
5b, =b,(T') —b, lT)] and T [where 5T= T*—T]. The
BCS gap equation gives b, ( T), a function which can be in-
verted to yield 5 = T(b ), so that o is implicitly a func-
tion of 6 alone. Thus the total derivative can be written
as

definition b,z =6/5(0), we notice that

5T BT 56
T BA T

av T,~ 5~
ab, ~ Tb, (0) b,

av p 5s
BA~ 1.764

(4 8)

We now need to determine a'T/ab, ~. Again, using the
weak-coupling approximation, '7= 1.7646,&(1/p), we
have

(4.9)

where the BCS gap equation tells us that in(b, ~)=F(p),
so that

P=F '(1n(b~)), (4.10)

a 1 —1

as~ F '(1 nq(~-) ) ~, aF ''"
ap

and thus

(4.1 1)

aV 1.764
ah~ p

(4.12)

where

aF F
ap p 2 0 2

=—+— x sinh 'x sech —(1+x )'~

and, here, F ' is the inverse of the function defined by
Eq. (3.7). After some algebra we find that

GO BET

dh ab.
(4.4)

Xtanh —(1+x )' dx .
2 (4.13)

or
With this result, Eq. (4.8) becomes

5T 1—
T

1

BF
(4.14)

BcT

ah
6b+ ' 5T. (4.5)

Since o depends explicitly on b, through 6 and p, the
partial derivatives become

ao. ao. aA + ao apaa, ae, as+ ap, aa

Finally, Eqs. (4.6) and (4.7) substituted into Eq. (4.5), to-
gether with Eq. (4.14), gives us

5 =H(8, p) = [H, ( 6',p)+iH2(6, p)]
n

(4.15)
ao. ao.

(4.6) where

and H(h, P)= —e +ae o„, aF/aP aP o„

(4.16)
0

BT
ao ap
ap @aT

p ao
T ap

(4.7)

Recalling the definition 'T=T/T, and introducing the

To evaluate this expression for H, we must determine the
derivatives, with respect to 8 and p, of the four MB ex-
pressions for the real and imaginary parts of o /o. „,both
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for A~) 2h and %co (2A. The MB expressions for o/cr„
involve integrals with square-root singularities. With
some simple changes of variables, these singularities can
be removed, the derivatives calculated, and the resulting
integrals obtained numerically with rapid convergence.
This process is outlined in the Appendix and the resulting
expressions are given there.

The final result shown in Eq. (4.15) for the normalized
change in conductivity is material independent: It is a
universal property of BCS superconductors, in the same
sense as the original MB expressions themselves.

Returning to the Glover-Tinkham expressions for the
thin-film transmittance, as described in Sec. IV A, we find
that

S
5 1 2= —2(1 —t~/ )

i /2+ ( 1 t i /2
) (4.17)

and that

5t, = —2(Bf +B2) '(B,Hi+B2H2 ) (4.18)

where in this last equation we have introduced the
definitions

(4.19a)

B2=
O~

(4.19b)

These equations for the change in transmittance of a su-
perconductor driven from equilibrium, with respect to its
transmittance in either the normal or the equilibrium-
superconducting state, are material dependent only
through the value of t& appearing on the right-hand
sides.

Finally, we note that all of the above expressions for
the changes in electrodynamical response functions are
directly proportional to 55/b„which itself can be ex-
pressed in terms of the change in QP density, by use of
the well-known first-order approximation to Eq. (3.1):

b,(0)
(4.20)

where n =n&p/4N(0)h(0) now refers to the nonequilibri-
um QP density. Equation (4.20) leads to

—15"gp b, (T)
ti oop b (0)

As mentioned in Sec. II, the response of the QP density
to the driving currents can be highly nonlinear for weak
drive fields (e.g., Q'-=10 at T=0.25T, ). How good is
the linear relation in Eq. (4.20) far from equilibrium (e.g.,
Q' = 1, at T=0.25T, )? Calculations of 6b, /b, versus

Snap/n &p, with the exact T* scheme and with Eq. (4.21),
for T=0.25T, and 0.5T, and out to Q'=-5 (for Al), show
a 3% deviation of the approximation from the exact re-
sult.

When Eq. (4.21) for 56/b, is substituted into the equa-
tions for 6o. or 5t„we see the following: At a given re-
duced temperature T=T/T, (i.e., for a given P) the
value of 6( T)/6(0) —needed in Eq. (4.21)—is deter-

mined (by the BCS gap equation), and H( 6,P) as a func-
tion of the normalized frequency (@=fico/b, ) is also
determined. Thus, the complete time (and space) depen-
dence of the nonequilibrium response functions [o (r, t )]
only requires our substituting the solution for n& (pr, t)
from the rate equations. The complex function H(@,P) is
a universal function, in the sense that it applies to any
BCS (weak-coupling) superconductor driven from equi-
librium, independent of the material properties and in-
dependent of the strength of the driving force or of its
space and time dependence. We only need to tabulate the
values of H(6', P) once, for all nonequilibrium supercon-
ducting electrodynamics, regardless of the functional
form of the driving field (subject, of course, to the
aforementioned limitations of the theory itself).

Although we have developed this perturbation theory
principally with the aim of facilitating calculations for ar-
bitrarily complicated time (and/or space) dependence, it
is most straightforward and reasonable to test it for the
case of a uniform steady-state driving field. From Eq.
(2.19), we know that

5ttgp/tigp=(tigp ngp)/ttqp=(1+Q) 1

and, thus, at T/T, =0.5 we have that

ob, /b, = —0.045[(1+Q)' —1] .

Using this result in Eq. (4.17), for example, we can find
the change in transmittance, 5t, /tz, which is shown in
Fig. 6 (dashed curves) as a function of Q'. Figure 6 al-
lows us to compare the perturbative results with those of
the exact T* model. The figure, which goes out to
Q =10 (Q'=0. 5 for Al) —well beyond where the linear-
ized kinetics breaks down —indicates that the perturba-
tive theory, to first order in 5b, /b„gives a reasonable ap-
proximation (at Q =10, there is a 17%%uo deviation for
6 =0.5 and only a 2.6%%uo deviation for 6 =1.5).

Figure 7 presents the perturbative results (dashed
curves) next to the exact T' results for T/T, =0.2518.
Although the values of Q are 4 orders of magnitude
greater in Fig. 7 than in Fig. 6, with 5n/n thus 2 orders
greater (for the same range of Q', i.e., the same external
drive strength), the approximation for 6t, /tjv is almost as
good.

A conclusion of the numerical comparisons is that the
conductivity change remains linear in the gap change
well beyond where the gap change itself has departed
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from linearity as a function of the driving current. It is
very easy, especially at low temperatures (T=0.25T, }, to
be in a regime where the QP density is a strongly non-
linear function of the external drive (laser intensity), but
the gap change is linear in the QP density change, while
the conductivity change is linear in the gap change. In
other words, it is legitimate and useful to linearize the
electrodynamics while by necessity retaining a nonlinear
theory of the kinetics.

V. DISCUSSION AN@ CONCLUSION

In this paper we have examined a formalism for treat-
ing superconductors that are driven from equilibrium by
external fields —specifically optical laser fields —whose
amplitudes may vary in time and/or space. This formal-
ism is based on the framework of Parker's T' model, in-
corporating the RT and MB equations. To solve the RT
equations with time and/or space dependence, we have
introduced an adiabatic elimination of the phonons from
the kinetics. We have shown how elimination of the pho-
nons from the RT equations leads to a single equation for
the QP.

In applying this formalism, our interest focused
specifically on the QP response to a pulsed optical laser
field, and on the resulting, transient, microwave electro-
dynamics of superconducting thin films and thin-film
waveguides. We presented analytic solutions for the QP
response to a pulsed-laser field, of arbitrary strength, and
to a weak oscillating electromagnetic grating. Our nu-
merical implementation of the theory was performed for
the case of sgperconducting Al and Nb films illuminated
by a uniform pulsed laser.

The laser pulses considered here were of length
1.2Yz =(22 ps)(l+s„/rii ), which for a reasonable value
of around 50 for r„/r~ means nanosecond time scales.
Recovery times were seen to be around 10 times the rise
time at 0.25T, and 40 times faster at 0.5T, . Within this
time scale, at 0.25T„a (60—200)-fold increase in the real
part of the conductivity was calculated for frequencies of
17 to 240 CxHz. An accompanying 4 to 2.5 fold increase
in the thin-film transmittance was found, suggesting the
possibility of an optically controlled switch for mi-
crowave radiation. Required power fevels are from
mW/cm (Al) to a few W/cm (Nb).

On the same time scale, the laser pulse was calculated
to enhance the attenuation of Nb/Nb20~/Nb waveguide

from 20 to 2 X 10 dB/m, suggesting the possibilities of a
microwave intensity modulator using pairs of appropri-
ately timed laser pulses. Faster times might be achieved
by using superconductors with faster recombination
times —either by raising the reservoir temperature (there-
by increasing the small microwave losses of the device) or
by utilizing materials with a higher T„such as NbN or
possibly the new ceramic oxides. Lower laser powers can
be achieved with (1) a light source that optimizes the ra-
tio of absorptance to penetration depth, (2) a substrate
that increases the value of r„/rz [though at the sacrifice
of slower speeds —see Eq. (2.53}],or (3) thinner films.

Still on the same time scales, but for the longer wave-
lengths ( ~60 GHz), the calculations here showed that
an optically driven Nb/Nb20~/Nb waveguide can
significantly depress the phase velocity without serious
attenuation: Almost a 90 phase shift was calculated for
a 60-GHz wave over a propagation distance of 1 mm.
Since it is usually sufticient to operate on a microsecond
scale for phase shifting applications, larger values of
r„/rz could be used, to permit very low laser intensities
to achieve large phase shifts.

In order to treat the problem of QP diffusion in the
laser field, we shall have to solve the QP kinetic equation,
Eq. (2.17), numerically. Diffusion codes exist for such

purposes. To go from the solution for the QP density to
the electrodynamics (assuming always that the conditions
for the validity of the MB equations hold) may be very
computer intensive. It would be very convenient to have
a direct relationship between the change in the conduc-
tivity and the change in the QP density. Such a relation-
ship would also link the conductivity change to the fun-
damental superconducting time and distance scales, and
would greatly facilitate extracting information on the
properties of superconducting thin films under nonequili-
brium conditions from measurement of the perturbed mi-
crowave characteristics. For example, if the drive
currents are pulsed, one can directly extract the none-
quilibrium QP recombination time by measuring the time
evolution of the change in the microwave transmission,
5t„as discussed in Sec. IV. To that end, we have
present;ed here a perturbative theory, based on a series ex-
pansion of the MB equations to first order. Our numeri-
cal work has shown that such equations for the electro-
dynamic response carried out to first order in 5nqp/ngp,
are valid for Q' on the order of unity —a value for which
the QP response, at even moderately low temperatures,
can be deep within the nonlinear regime.

APPENDIX

We present here the expressions for the derivatives that appear in Eq. (4.16) defining the function H(6, p). From the
Mattis-Bardeen equations, with the definitions that p=b. /kT and 6'=Ace/b, [where b. =b, (T) at equilibrium], we see

that for A'co & 26

=—J [f(E) J(E+6)]g(E)dE—,cr„cr„
where

(A 1)
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1

exp(PE ) + 1
(A2)

1+E +DE
(E2 1)1/2[(E+ @)2 1]1/2

Then after we make the substitution E=coshx, we find that

(A3)

a
~n

where

f [f,(x)coshx f&—(x)ep (c osh x+ 6')]e~"'""g,( xA')dx, (A4)

f, (x)=f(coshx), fb(x)= f(coshx+( ), and g, (x, 6)=g(coshx) .

Similarly, we have that

(A5)

a
ae =2f, [f.—fi] ag

2p f2e P( o +coshx )g
ae o

b 0 (A6)

where

Bg, (x, (n )

()(

—(2 coshx +6')

[(coshx+( ) —1] / (A7)

Continuing with the case of A'cu (2A, we write the MB equation for the imaginary part as

O2 =—f [1 2f(E+( )]q—(E)dE1

where

f + f [1 2f(E+6')]q—(E)dE,
1 —e/2 .

1+E(E+( )

(1 —E )'/ [(E+6) —1]'

(A8)

(A9)

We have broken the integral into two pieces; for the first we now use the substitution E+6'= coshx, and for the second
we use E =sinx. Then after some algebra, we obtain the following results:

2 2 cosh (1+e /2) 2 coshx
m. /2f, (x)e~"'""(coshx )C(x)dx+—, f, (x)e~'"" + '(sinx+6')S(x)dx

BP o„q ( o sin (1—4/2)

2 —(( /2)a o2 m/2 s= —[1—2f(1+(o /2)] + 1 2
BA 0„ (n

[4 (@/2)2](/2 sin (1 —6'/2)

2

+ cosh (1+6'/2) C
0

0 2p f n f2 P(sinx+ b)Sd
()(n sin (1—6/2)

(A 1 1)

~here the following definitions have been used:

f,(x)=f(sinx+( ),
1+coshx (coshx —6 )

[1—(coshx —( ) ]'
1+sinx (sinx + 6')

[(sinx+ @) —1]'
and thus,

BC —2coshx +6 BS —(2sinx +6 )

[1—(coshx —6') ] &( [(sinx+(n) —1]

(A12)

(A13)

(A14)

(A15)
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%e now turn to the ease in which fi~) 2b. First, for the real part, we have

+—f [1 2f—(E+@)]Ig(E)ldEo.„cr„o„6 (i —@)

0) f + f [1—2f(E+8)]g(E)dE . (A16)

In the above equation, the first term, o, /o „, refers to the expression in Eq. (Al), and the integral has been broken into
two parts. For the first integral we make the substitution E+b=coshx and for the second we use E= —coshx, and
then after performing the differentiation, we arrive at the following results:

a ~] a ~] a
BP o „z BP cr„& BP cr„

cosh {6'/2)
[f, (x )coshxe~'""'+ f& (x )( 6' —coshx )e@ "'""']Q(x, @)dx, (A17)

where the first term on the right-hand side, B(cr, /cr„)/Bp, is given by the expression in Eq. (A4),

f„(x)=f( 6' —coshx ) and Q(x, e ) =g, (x, —6 ), (A18)

B oi B

Be o„ p
B6 cr„

a
B@

0]

where

BQ 2coshx —6
[(coshx —6" ) —1]

+2f(6"/2) —2f [1 f (x) f—(x)] ——— dx
cosh (e /2) Q BQ

0 B6

—2Pf ™f&(x)e~'~+""'g(x 8)dx
—1

+2p f f2( ) p(N —coshx)Q(x
0

(A19)

(A20)

Next, for the imaginary part, and %co & 2b, we have

=—f [1 2f(E+6)]q(E)d—E .—1

(A21)

With the substitution E =sinx, we eventually find

and

m/2 f, (x)e~'"" + '(sinx+6)S(x)dx
BP o'„g 6 —m/2

(A22)

a
B6 cr„

[1—2f, (x)] —— dx —2Pf f, (x)e~'"" + 'S(x)dx .—~zz
' @ BB —~n ' (A23)
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