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Thermal activation energy of steady-state photoconductivity in undoped amorphous silicon
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Jeffrey Zhaohuai Liu and S. Wagner
Department ofElectrical Engineering, Princeton University, Princeton, Peto Jersey 08544

(Received 11 January 1989)

The physical origin of the commonly observed small thermal activation energy of the steady-state
photoconductivity in undoped hydrogenated amorphous silicon (a-Si:H) and silicon-germanium al-

loys (a-Si,Ge:H,F) is identified as the strong temperature dependence of the quasi-Fermi level for
electrons. Using the Simmons-Taylor steady-state statistics [J. G. Simmons and G. W. Taylor,
Phys. Rev. B 4, 502 (1971)],we have derived analytical expressions for the activation energy and the
temperature derivative of the electron quasi-Fermi energy. The result agrees with the experimental
data for a-Si:H and a-Si,Ge:H,F alloys.

Steady-state photoconductivity is one of the most ex-
tensively used tools in the study of transport and recom-
bination processes in hydrogenated amorphous silicon
[a-Si:H(F)] and its alloys. The interpretation of photo-
conductivity, like that of other transport properties, how-
ever, is not straightforward. An outstanding question has
been the physical origin of the relatively small thermal.
activation energy E," of the photoconductivity. E,"" is
about 0. 1 —0.2 eV, while the quasi-Fermi energy for elec-
trons (which dominate photoconductivity) lies about
0. 3—0.S eV below the conduction-band edge (see Table E).
Does the relatively small E,""imply any special gap states
around an energy level lying E," below the conduction-
band edge, or can it be explained in the model of ex-
ponential band tails plus defect states? The question
must be answered to understand transport and recom-
bination processes in a-Si:H(F) and its alloy under il-
lumination. An early model proposed by Spear, Love-
land, and Al-Sharbaty' invokes recombination between
localized states and relates the activation energy to an en-
ergy level E~ which lies about 0 2 eV below the
conduction-band edge. In the region of temperature and
generation rate in which we are interested in this paper,
this model equates E,"" to the difference between the
conduction-band edge and E~. More recently, numerical
calculations have been carried out based on the
Simmons-Taylor steady-state statistics in semiconduc-
tors with continuously distributed gap states. Such nu-
merical calculations have proven helpful but the question
of E," addressed above remains unsolved.

In this paper we use the steady-state statistics of Sim-
mons and Taylor to derive an analytical expression for
the thermal activation energy. We will also show that the
temperature coefficient (derivative) of the quasi-Fermi
level is much larger than those of the other relevant ener-

gy levels, i.e., the conduction-band mobility edge and the
Fermi energy in dark. The results identify the physical
origin of the relatively small thermal activation energy of
the photoconductivity as the large temperature depen-
dence of the quasi-Fermi energy. To explain the small
thermal activation energy E,"", there is no need for a spe-

cial energy level which lies E," below the conduction-
band edge, or for recombination paths between the local-
ized states. Our theoretical results agree well with exper-
imental data on undoped a-Si:H and a-Si,Ge:H,F alloys.

The photoconductivity o.
zh is defined as the conductivi-

ty under illumination minus the dark conductivity. We
will restrict ourselves to the region of temperature and
generation rate where the photoconductivity is larger
than the dark conductivity. a-Si:H(F) and a-Si,Ge:H,F
without intentional doping are slightly n type. At high
enough temperature, the contribution of the hopping
conduction is negligible. Therefore the free electrons
make the major contribution to photoconductivity. That
is, o.zh=poen, where po is the mobility of the free elec-
trons, e the absolute value of the electronic charge, and n
the concentration of free electrons. We take po to be in-
dependent of temperature. Then, 0.

h and n are
equivalent within a constant factor. n is given by

n ——iVcexp

where Xc is the effective density of states in the conduc-
tion band, E~ the energy of the mobility edge of the con-
duction band, EI„ the quasi-Fermi energy for the free
electrons, k the Boltzmann constant, and T the absolute
temperature. We will neglect the weak temperature
dependence of Nc. Equation (1) actually is the definition
«EFn.

The Simmons-Taylor statistics is general. For simpli-
city and without loss of physical significance, we will
make several assumptions and simplifications. (1) Elec-
tronic transitions between gap states (which are localized)
are neglected. (This assumption is included in the
Simmons-Taylor statistics. ) (2) The optical excitation en-
ergy is larger than the optical band gap so that the hole-
electron pairs are mainly generated by transitions be-
tween the extended states. (3) Only one species of gap
states is considered. By this we mean that the ratio of the
capture cross section of the gap states for free electrons,
s„(E), to the capture cross section of these states for free
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holes, s (E), is independent of the energy of the gap
states. With this assumption we can define the quasi-
Fermi energy for the trapped electrons, E,„, and the
quasi-Fermi energy for the trapped holes, E, . In what
follows, we further regard s„and s as constants for sim-
plicity. (4) The material is undoped or only slightly n

type so that the energy level Ed, which separates the
donor1ike gap states and the acceptorlike gap states lies
near the middle of the gap. (5) The increase of the densi-
ty of the gap states above EF„with E is not faster than
that of the inverse Boltzmann factor exp(E/kT). (At the
end of the paper, we wi11 discuss the failure of this as-
sumption. ) (6) np ))nopo and s„n ))s~p, where n and p
are the concentration of free electrons and free holes un-
der illumination, respectively, and np and pp are their
counterparts without illumination. The condition
s, n )&s p enables us to equate E„„to E„at the last stage
of the simplification. With these assumptions, we
have ' '

E
w„' =Us„ f N (E)dE,

da

(2)

(3)

where G is the generation rate, ~„ the recombination life-
time of the free electrons, U the thermal velocity of the
free electrons, and N(E) the density of gap states as a
function of energy. Equations (1)—(3) are our basic equa-
tions. This set of equations is also called the Rose mod-
el.

The therma1 activation energy of the photoconductivi-
ty at any temperature is defined as

large range of T around 300 K (Ref. 8). With Eqs. (5) and
(6), E,"(T) can be expressed in several forms:

E~"(T)= (Ec E—F„)+5kT 6—kT .

Substitution by Eqs. (5a) and (6a) results in

E~"(T)= (Eco EF—„) Hk—T

Eco( T) EFno( T)

(7a)

(7c)

d in(n)
d ln(G)

1 dEFn

kT d(lnG)
(9)

Equation (7a) implies that the temperature dependence of
Ec, given by 5 ()0), increases E,"" above Ec EF„—.
Therefore, to explain the experimental observation that
E,"& E& —EF„,we turn our attention to the temperature
dependence of EF„,given by 0.

It will be clear later that 0 and E," are best expressed
in terms of the exponent y of the power dependence of
the photoconductivity on the generation rate. We there-
fore first derive the expression for y. y is defined as

d ln(n)
d ln(G)

We now derive the exponent y and the thermal activa-
tion energy from Eqs. (1)—(3). These equations contain
two independent variables: the temperature T and the
generation rate G. n and EF„are functions of T and G,
while Ec depends on T only. Ed, is a constant by
definition. We assume that Nc, vs„, and N(E) are in-
dependent of temperature. From Eq. (1) we obtain

d in(o h)EPh T
d [1/(kT)]

d(Ec EF )= (Ec EF„)—T—

Equations (2) and (3) give

(4) Combination of Eq. (9) with Eq. (10) yields

(10)

We note that there are two contributions to the thermal
activation energy: The first term in Eq. (4) originates in
the Boltzrnann statistics and the second term in the tem-
perature dependence of Ec and EF„. We can also define
the following quantities:

'c
Eco(T) =Ec(T) T— (5a)

1 dEc5(T):——
kdT

dEF„
EF„O(T):EF„(T) —T—

dT
1 dEF„

&(T)—=-
kdT

(5b)

(6b)

We call 6 and 0 the temperature coe%cient of Ec and
EF„respectively. Minus signs are used in the definitions
of both 6( T) and 8( T) to make the values of these two
quantities positive. Note that Eco(T) is generally not the
value of Ec at T =0 K, unless Ec varies with T linearly
from 0 K to T. The same comment applies to E~,p. Ecp
usually is independent of temperature and 6=2.5, in a

where Tp is in general a function of EF„and is defined by

kTO= f N(E)dE .
Fn da

(12)

1 d 1n(n) 1 9
k dT (kT)' ' " kT

(13)

Note that 5 is incorporated in Eco. Equations (2) and (3)
lead to

1 d in(n) =us„r„N ( E~„)0 . (14)

This general expression for y is useful in discussing the
dependence of y on EF„ if N(E) is given. When the den-
sity of gap states depend exponentially on the energy be-
tween Ed, and EI; Tp and thus y are constant, and Eqs.
(11) and (12) reduce to the result of the well-known Rose
model for a constant y.

The temperature coef5cient 0 of EF„ is derived by
starting with Eq. (1),
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With Eqs. (8), (10), (13), and (14) we obtain

Ec0 EFn
O=y (15)

Because y) 0, 8&0. That is, EF„decreases with T [Eq.
(6b)]. Substitution of Eq. (15) to Eq. (7b) yields the
thermal activation energy

Ea"=«co EFn—)(1—)') . (16)

Equation (16) gives a relation between the activation
energy, the quasi-Fermi energy, and y. Since the ob-
served values of y lie between 0.5 and 1, one can immedi-
ately see from Eq. (16) that E,"" is about half or less of
Ecp EF, in agreement with experiment. In Table I, we
list the experimental data of E~" and the calculated
values of E," and 8 for a-Si:H and a-Si,Ge:H,F alloys, to-
gether with other relevant properties of the samples. In
this table, samples 1 and 2 were prepared by dc excited
glow discharge and samples 3 and 4 were prepared by rf
excited glow discharge. Sample 1 is a-Si:H grown from
SiH4,' the other samples are a-Si,Ge:H,F alloys grown
from SiF4, GeF4, and H2. Samples 1, 2, 3, and 4 corre-
spond to our laboratory sample labels GP70, GP47,
RC102, and RC97, respectively. o.

I, is the photoconduc-
tivity when an almost uniform generation rate of about
10 cm sec ' is applied by illuminating the sample
with band-pass filtered light. Table I shows satisfactory
agreement between the experimental EP" and the calcu-
lated EP"„&. We will discuss the dN'erence between E,"
and E,"„]for sample 1 later in some detail. The calculat-
ed values of the temperature coeScient 8 in EF„are equal
to or more than 10, much larger than those of Ez ( =2.5)
(Ref. 8) and the dark Fermi energy EF ( = 1.4) (Ref. 9).

Within the assumptions we made, our derivation does
not depend on the form of the density of gap states. In
particular, the gap states at energies above E„„have no
effect. States above EF„(including the extended states in
the conduction band) are approximately in thermal equi-
librium. Each of these gap states has the same capture
and emission rates for free electrons. Therefore these
states do not contribute to the net recombination rate.
As shown below, the contribution of these states to the
net recombination rate can be neglected only under as-
sumption (5): their density does not increase with energy

~c N(E)
&d, 1+exp[(E E~„)/kT]—

The contribution by the states in EF„&E&Ec to the
recombination rate is reduced by the Boltzmann factor
exp[ —(E Ez„)/(kT)]—compared with that by the states
in Ed, (E (E~„. With Eqs. (1), (2), and (17) as the basic
equations, we again can derive the expressions for y, 0,
and Ei'". y still can be expressed formally by Eq. (11),
but now To is defined by

N(E)

kTD = Ed. 1+exp[(E E)/kT)—Fn

1 Ec NE dE
~d. 4cosh [(E EF„)/2kT]—

(18)

faster than the inverse Boltzmann factor. In a-Si:H and
its alloys, E~" is much smaller than Eco E—F„(Table I),
i.e., EF„O is much closer to Eco than is EF„[Eq. (7c)].
This is not because of a peculiar gap state density near
EF„Q, but because the density of the gap states between
Ed, and EF„ is such that the temperature coe%cient of
EF„becomes large.

In general, E,""and y vary with measurement tempera-
ture and generation rate and are defined differentially
[Eqs. (4) and (8)]. Equation (16) must be compared with
experimental data measured at the same temperature and
generation rate. For example, Eq. (16) agrees at least
qualitatively with the observation of anomalous thermal
quenching of photoconductivity. Within the temperature
region in which the thermal quenching is observed, EP" is
negative and y is larger than 1; beyond this region, E~" is
positive and y is smaller than 1; at both ends of the re-
gion, E,""=0and one rpay expect that y = 1. In this case,
Eq. (3) for r„may need to be modified to allow another
species of defect states with a di6'erent capture cross sec-
tion. But we may still have r„=f(EF„(T, 6) ), where f
represents a function. With this expression of ~„, Eqs.
(15) and (16) can be derived similarly.

We now discuss the consequence of dropping assump-
tion (5). While this assumption is valid for a-Si,Ge:H,F
(see Ref. 11 and Table I), there are some experimental
data for a-Si:H which suggest the existence of a
conduction-band tail sharper than the inverse Boltzmann
factor. If such tails states exist, Eq. (3) should be re-
placed by the more general form

TABLE I. Experimental values for optical gap Eg, inverse slope of the conduction-band tail E„(T}measured at T by time of Bight,
photoconductivity o.

ph, photosensitivity kTln(o ph/ad ) where o.d is dark conductivity, activation energies E, of o.
d and E, of o.

ph,

and photoconductivity exponent y. E«—EF„ is equal to E,"—kT ln(o ph/od ) (kT)dEF/d(kT), ~here EF is the dark Fermi energy
and dEF/d(kT) is taken to be 1.4 (Ref. 9). The experimental data for samples 3 and 4 are from Ref. 10. Also listed are calculated
values for the activation energy E, "„& of o» from Eq. (16), and for the temperature coeScient 0„& of E+„ from Eq. (15). T =300 K
unless otherwise specified. Sample 1 is a-Si:H and the other samples are a-Si,Ge:H,F alloys.

Sample
no.

Eg
(ev)

1.65
1.47
1.32
1.28

E„(T)
(eV}

0.05 (364 K)
0.05 (383 K)

Oph

(S/cm)

9.8E-6
3.8E-5
2.1E-6
5E-7

kT ln(oph/od )

(meV}

230
218
106
59

E cj

(eV)

0.590
0.620
0.63
0.56

EPh
Q

(eV)

0.038
0.079
0.15
0.15

0.80
0.77
0.77
0.73

Eco—EF
(eV)

0.324
0.366
0.49
0.47

phEa caj

(eV)

0.065
0.084
0.11
0.13

10
11
15
13
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0= [y(Eco E—F„)+(E" E—F„)(1 —y)],1

kT
Er"=(Eco E—*)(1—y),

(19)

(20)

where Eco—E is a weighted mean of Eco—E and is
defined by

Eco E

~c
(Eco E)d—E

da 4 cosh [(E EF„—)/2kT]
X(E)

da 4cosh [(E EF„—)l2kT]

(21)

The function I4 cosh [(E E~„)—I2kT] I
' peaks at

E =EF„and reduces to an exponential function when

~E Ez„~)—2kT. With this in mind, one can see that
these more general results reduce to Eqs. (12), (15), and
(16), when the assumption is made that the density of the
gap states in EF„&E & Ec does not increase faster than
the inverse Boltzmann factor.

Equation (21) implies that in general (Eco E*)—
~(Eco EF„). T—herefore, H~y(Eco EF„)kT—and E,""
~(Eco EF„)(1——y). That is, the contribution to the
recombination rate from the gap states in EF„&E & Ec
makes the temperature coefFicient of the quasi-Fermi en-

ergy larger and the activation energy smaller. This erat'ect

on E,"" explains the larger relative discrepancy between
Et'~ and E~"„~ for a-Si:H (sample 1) in Table I, because
the conduction-band tail in a-Si:H may be sharper than
the inverse Boltzmann factor. We note that even if the
density of the trapped electrons at Ez dominates so that
E'=E„, the activation energy is not Eco E~ (—Ref. 1)
but ( Eco E„—) ( 1 —y ).

In summary, we have calculated the temperature
dependence of the photoconductivity of a-Si:H and relat-
ed semiconductors. We have demonstrated that the low
activation energy is due to a strong temperature depen-
dence of the electron quasi-Fermi energy and that it is
not necessary to invoke a special energy level which lies
Ep" below the conduction-band edge, or recombination
paths between localized states to explain the observed low
activation energy. The calculated values agree with ex-
periment.
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