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Relationship between the conductivity and the glass temperature for hopping systems
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A relationship between the glass temperature and the steady-state conductivity is derived for
hopping-conduction systems generally. The glass temperature is given simply in terms of experi-
mentally obtainable quantities. The steady-state conductivity just above the glass temperature de-

pends only on the density of states and the relaxation time to steady state.

cr=o. e opx(
—g )=ooexp[ f(To/T)]. — (2)

Here the exponent g corresponds to optimal percola-
tion. 3 Critical percolation occurs at g, =g —2v. The
reason for the distinction between critical and optimal
percolation is discussed in detail by Pollak and is related
to the areal density of current paths. At critical percola-
tion this density vanishes as the inverse square of the
correlation length, (g —g, ) . The constant v=0. 9
gives the critical behavior of the correlation length.
Values for v given in the literature are in the range
0.7&v&0.9. The value g, then corresponds to the
slowest transition [u =uoexp( —g, )] on the critical
path. The function f(To/T) often has the form of a

power law,

The problem of hopping conductivity in disordered
systems is generally treated within the framework of per-
colation theory. Hopping rates u between initial and final
states i and f are written, in general,

u fuoexp( '—g;f) =uoexp( —2r f Ia —b,f IkT) (1)

with r,f a hopping distance, 6,f an energy, a the localiza-
tion radius, uo a constant frequency related to the so-
called phonon frequency, and kT the Boltzmann constant
times the temperature T. The applicability of this rela-
tionship is not restricted to systems in which the intersite
Coulomb interaction can be neglected, such as amor-
phous semiconductors, but it may be applied to systems
where this interaction is demonstrably important, such as
impurity conduction systems, as well. When successive
correlations are important a more sophisticated treat-
ment is necessary. In the former case uo =v h, the pho-1

non frequency. As is discussed in the book by Mott and
Davis this phonon frequency may often be taken as the
Debye frequency. This frequency varies from material to
material but it has been assumed for over a decade to lie
between 10' and 10' Hz. In the latter case u is given as
a product of the phonon frequency and a constant factor
y dependent on disorder energy, Coulomb interaction en-
ergy, and the resonant energy. The applicability of per-
colation theories requires a very wide distribution of the
values of the u;f, provided for by the exponential depen-
dence of the u,f on the random variables r,-f and 6;f.

The dc conductivity is then usually written

f(To/T) =(To/T)~, 0.25&p & 1.0.

A plot of lno. versus T ~ yields in this case a straight line
with slope —TIO. It is very important to note here that al-
though results of percolation theories for interacting sys-
tems are still not generally accepted, the experimental
form for the relationship f (To/T) still seem to be given
quite generally by Eq. (3).

Recently some authors' ' have asked the question of
what happens when the slowest rate, u, on the percola-
tion path is smaller than the inverse of the experimental
time t. It is evident that in this case one cannot measure
a steady-state dc conductivity. This situation occurs
below a finite temperature T, . Calculations of T„called
the glass temperature, have been obtained for both in-
teracting and noninteracting systems, and T, has in each
case been shown to depend weakly on the experimental
time through the factor ln(tuo). It is the purpose of this
note to exploit the relationship between transport and
equilibrium properties to develop a general relationship
between To and T, . This can be used to determine T,
even when To can only be determined experimentally.
This fact is particularly useful as the result derived here
may be used even in interacting systems where the per-
colation theories available at this time do not give unam-
biguous results for f. It should be noted that the prob-
lem of nonergodic behavior in hopping systems with in-
tersite Coulomb interactions has been also treated by
some other authors. ' In their investigation the applica-
bility of the ergodic hypothesis to the "electron glass"
was considered in the limit of infinite time. Their ap-
proach has been to investigate the behavior of an order
parameter (corresponding to the modified Edwards-
Anderson order parameter in spin glasses). They have
found strong evidence for a phase transition to a glassy
state at a finite temperature. In the treatment discussed
here, however, we consider the applicability of the ergod-
ic hypothesis for experimentally feasible times and it
proves unnecessary to invoke the Coulomb interaction in
order to produce nonergodic behavior. Thus a tempera-
ture is determined which describes a trarisition to glassy
behavior even for noninteracting systems. For this
reason it seems evident that the glass temperature as cal-
culated here will also for interacting systems be
significantly higher than that calculated rigorously in the
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=f ( To/T) .

For the condition T=T, we have

t '=u =uoexp( —g, )

(4)

thermodynamic limit. The work of these authors de-
pends on the applicability of the ergodic hypothesis, but
even at temperatures above the glass temperature which
they calculate it is likely that an infeasibly long time will
be required for the approach to thermodynamic equilibri-
um.

To calculate T, we first write g as

o ( T, ) =o oexp[ f—( To /T, ) ]

=o oe '/tuo

=7[%(E )] ' a ' (kT) e /tu (10-)

The last equality uses a result for o.
o without interactions

from Pollak. It can be seen that ooEe /t, uo is the
value of the steady-state current at optimal percolation,
which occurs at a time t, after turning on an electric Geld
E. For earlier times a calculation of the time dependence
of the polarization current has yielded

or

g, =ln(tuo) .

In this case we also have

=f (To/T, ) . (7)

(see Ref. 6 for calculation which would lead to another
exponent on the ln factor). The time dependence of the
current due to the evolution of the percolation cluster it-
self can be shown to be given by

(12)

ThUs

2o +ln(tu0 ) =f ( To/T, )

or

T, =Tolf '(ln(tuo)+2v) = To/[ln(tu 0) +2 v]'~~,

the latter equality following if f (x)=x~. This result
gives the glass temperature T, purely in terms of experi-
mental quantities, p and To. Even if it is not possible to
represent f (x) as a power law it is possible to make a
prediction of the glass temperature. Using this we have,
for o(T, ),

The results for the time-dependent current and their im-
plications on experiment near the onset of percolation as
well as on the ac conductivity will be considered in depth
in a forthcoming paper. ' We mention them here, how-
ever, in order to describe roughly the behavior of the dc
response near the onset of percolation.

If 0 0 is obtained from a plot of 0. versus T it is then
possible (using u —10' Hz) to obtain the critical value of
t from Eq. (10). Conversely, an observation of the time
required for percolation yields, with the aid of Eq. (10),
information on the density of states.

The author is grateful to Michael Pollak for a very
helpful discussion.
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