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The cluster model often applied to the study of transition-metal ions in ionic crystals is rigorously
formulated in the framework of the theory of electronic separability (TES). This theory shows that
the cluster-lattice coupling appearing in the effective cluster Hamiltonian should include two
separate operators: (1) the lattice effective potential containing nuclear attraction, Coulomb, and
exchange terms, and (2) a lattice projection operator enforcing the cluster-lattice orthogonality re-
quired by the Pauli principle. The analysis of the TES equations also suggests a hierarchy of lattice
models for dealing with the cluster-lattice interaction in an approximate way. Using a Hartree-
Fock-Roothaan description for the intracluster interactions, three of these models are investigated
and illustrated by means of several examples. First, the familiar point-charge model is deduced
from the TES equations. The main conceptual and practical deficiencies of this model are dis-

cussed. Then, a TES-consistent lattice model in which the cluster-lattice exchange interactions are
approximated by Slater Xa formula is presented. It is shown that this scheme, named the PXa
model, does not suffer from most limitations of the point-charge approximation and gives a
coherent and reasonable description of the equilibrium geometry of the (CrF6) unit in KCrF3 ~ Fi-
nally, the model potential (MP) lattice model is presented and discussed. In this model the lattice
ions are described by accurate local model potentials without resorting to the Xe approximation.
The MP scheme gives satisfactory equilibrium geometries and relative stabilization energies for V,
Cr, and Mn impurities in KMgF3.

I. INTRODUCTION

The electronic structure of transition-metal (TM) ions
in ionic crystals has been analyzed in terms of cluster
models for more than 25 years since the seminal paper
by Sugano and Shulman' on KNiF3. Many contributions
following this work ' have generally been successful in
understanding some local properties of the TM com-
pounds, i.e., those quantities essentially determined by
the electron density within the cluster volume. More re-
cently, cluster calculations incorporating noticeable
theoretical refinements have been reported for TM-
concentrated Auorides, oxides, ' chlorides and
bromides, " as well as for TM-diluted systems.

Although a rigorous calculation of the isolated cluster
can give reasonable results for highly localized properties
of these systems, the appropriate treatment of the
cluster-lattice interactj. on becomes an essential com-
ponent of the cluster model. In fact, the cluster-in vacuo
approximation is completely improper for the analysis of
questions like (a) the relative stability of different ioniza-
tion states of the TM ions since different lattice effects
will appear for ions of different charge; (b) electronic
transitions involving delocalized states with electronic
densitities spreading outside the cluster. This may be the
case for many d-s, d-p, and ligand-to-metal charge-

transfer transitions; (c) effects of external perturbations
such as temperature jumps or external pressure since
these agents modify the whole crystal; (d) the shape of
potential energy surfaces since the cluster-in vacuo im-
ages dissociate in a way that is irrelevant in the solid.
Due to the action of the crystal structure, the cluster-in-
the-lattice nuclear potentials of bound electronic states
should be more symmetric around their minima than
their cluster-in vacuo counterparts. Also, the nuclear po-
tentials of highly charged clusters like (CuC16) are
repulsive at the cluster-in vacuo stage.

These few examples reveal the need for a detailed
analysis of the cluster-lattice interaction within the clus-
ter model. It appears that most treatments of this in-
teraction follow intuitive developments directed to a
better description of the experiments. From this
viewpoint one can claim with Brener and Callaway ' that
a rigorous basis for the cluster model in many-body
theory does not yet exist, although several important no-
tions have been advanced in this direction. The
problem of the cluster-lattice interaction is in essence a
requirement for mathematical and physical consistency
between the structure of the cluster and that of the rest of
the lattice, being then intimately related to the theoretical
basis of the cluster model.

In this work we study the cluster-lattice consistency by
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means of an approach that more than intuition follows
basic quantum-mechanical ideas. Our purpose is to
present, discuss, and apply a rigorous formulation of the
cluster model derived from a first-principles description
of the entire crystal and consistent with the theory of
electronic separability (TES). Following the work by
Parr et al. , ' Phillips and Kleinman, Szasz,
Weeks and Rice, ' McWeeney, ' ' Huzinaga and his
group, ' and Barandiaran and Seijo, we consider, in
Sec. II, a cluster Hamiltonian which contains the ortho-
gonality constraints required by the conditions of
cluster-lattice separability. Using a restricted variational
procedure, we discuss obtaining the Hartree-Fock (HF)
cluster wave functions consistent with a given electronic
structure of the lattice. We also show how to recover
electronic properties of the whole crystal from the local
description of its different parts.

The relevant contribution of the TES to this approach
appears in the treatment of the cluster-lattice interaction.
The TES gives us general rules for dealing with it while
maintaining the required cluster-lattice orthogonality.
Specifically, the TES shows that the cluster Hamiltonian
should contain (a) an effective potential representing the
quantum-mechanical nature of the lattice ions, and (b)
appropriate lattice-projection operators to secure the
orthogonality constraints.

These general rules leave us with two further, very im-
portant decisions to make, namely, the definition of the
lattice effective potential and the choice of wave func-
tions for the lattice ions. The first question leads to a
hierarchy of approximate lattice models. The second
suggests the idea of ion-lattice consistency, a goal that
can be reached by following a TES-consistent, ion-in-
the-lattice approach.

In Sec. III we study different stages of this hierarchy of
lattice models. First, there is the limit of a totally
neglected cluster-lattice interaction, i.e., the cluster-
in vacua level, studied here with a Hartree-Fock-
Roothaan (HFR) approach. " Next, we deduce from
the TES equations the point-charge lattice model. We
discuss how this often used but conceptually unsatisfacto-
ry approach may lead to qualitatively erroneous results,
mainly because its lack of short-range or overlap interac-
tions.

The more elaborate lattice models introduced and dis-
cussed in this hierarchy are quantum-mechanical images
of the crystal lattice containing long-range Coulomb and
exchange lattice interactions as well as lattice projection
operators. In this way, the necessary short-range
cluster-lattice interactions emerge from a rigorous formu-
lation of the cluster-lattice separability through the
orthogonality requirements.

First, we introduce a model that makes use of Slater
Xa formula to describe the cluster-lattice exchange in-
teractions. Its application to the (CrF6) unit in KCrF3
removes the more important deficiencies of the point-
charge model. Then, we discuss the model potential
(MP) lattice model in which the lattice ions are represent-
ed by accurate local model potentials. We apply the MP
model with very satisfactory results to the determination
of the equilibrium geometry and the relative stability of

several chromium, vanadium, and manganese impurities
in KMgF3.

Although, following Huzinaga's viewpoint, our aim
has been to simplify a complex solid-state problem more
than to develop a sophisticated many-electron theory, we
hope that the present work might contribute to show that
(a) the TES can be an adequate formalism to make pro-
gress in the theoretical foundation of the cluster model,
(b) the quantum effects are essential components of the
cluster-lattice interaction, and (c) the TES can also be a
useful guide for developing rigorous and practical treat-
ments of the this interaction.

II. THEORY OF ELECTRONIC SEPARABILITY
IN IONIC SOLIDS

A. Group wave functions and restricted
variational principle

In the study of an ionic solid with an arbitrary number
of electrons N, we assume the Born-Oppenheimer separa-
tion and look for the best approximate multielectron
wave function N(1,N). Our second assumption will be
that the crystal can be divided into a number of weakly
interacting electronic groups ( A, B, . . . , R, . . . ) with
X~,X~, . . .N~, . . . , electrons, respectively. The R
group contains vz nuclei (vz & 0) and will be represented
by the group electronic wave function Nz(1, Nz). The
assumed weak interaction between any two groups does
not imply that the interaction energy is small. It rather
means that the electronic structure of a given group is
mainly determined by the intragroup interactions.

We will write now the crystal electronic wave function
in the form '

N(1, N)=MA I @q (1,N„)4~(N„+ 1,N„+N~ )

where M is a normalization constant and 2 the antisym-
metrizer.

Furthermore, the group wave functions have to satisfy
the strong-orthogonality restrictions

I C R(x) x' x~' )+s(x) x' ~ ~ ~ x' ~ ~ ~ )dx) 5gg

where x, are the space and spin electronic coordinates
and 6zz the Kronecker symbol.

Under these restrictions, the total electronic energy of
the crystal may be written in the form

E gER+ g +Rs
R R )S

where E is the net energy of the R group and E the
interaction energy between groups R and S. Appropriate
expressions for these energies in a Born-Oppenheimer
configuration are, in hartrees,
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ER= T[e(R)]+V [n (R),e(R)]+V[e(R),e(R)]+ V[n (R), n (R)]
NR Nz

T, —g gZ r, '+Jr; ' 4R + QZ ZpR p',
i=1 i=1 a=1 i &j a&p

E = V [e(R),n (S)]+V [e(R),e(S)]+V[n (R), n (S)]+V[n (R),e(S)]
NR S N~ VS

NR g g Zpr p' O'R + CR g [Vc~(i)+ V~(i)] 4R + Q g Z ZpR p'

i =1 P= 1 i=1 a=1 P=l
Ns VR

+ +s — Z.r,.' es

(4)

(5)

where we have used e for electronic and n for nuclear; T
and V for kinetic and potential energy, respectively; in-
dices i,j correspond to electrons, greek indices to nuclei;
Vc and Vz are, respectively, the Coulomb and exchange
potentials produced by the electrons of the S group. No-
tice that E =E

Now we want to know how the different group wave
functions and energies can be obtained. It is clear that
we are not interested in all these functions. As a matter
of fact, we are generally interested in a particular subsys-
tem in which the appropriate self-consistent-field (SCF)
equations can be solved. We will call this subsystem the
active group A. All other groups SPA, called frozen
groups, will be kept frozen in the SCF process. The best

is obtained by means of the restricted variational
principle. To see this, we simply recall that all energy
terms in E depending explicitly upon @A can be collected
in the effective energy of the 3 group

N~ N~ v~

H, ff= g h, ff(i)+ g r;~
'+ g. Z ZpR p',

i=1 i &j a&p

h,"ff(i)= T(i)—g Z r;

+ g [V,ff(i)+P (i)] .
SPA

(10)

In Eq. (10), V,ff(i) represents the potential energy of
the ith electron of the active group in the Geld of the
frozen group S. This energy contains the nuclear attrac-
tion and the Coulomb and exchange electron interactions

Vs

V ff(i)= —g Zprp ' + Vc(i)+ Vx(i)
P= 1

If S has a closed-shell structure these terms become

EA —EA+ y EAR
RWA

Using Eq. (6), the total energy can be written as

(6) Vc(i) = g 2J
gES

V (i)= —g K
gES

(12)

(13)

E EA + y ER+ y ERS
RWA R &S

Since the second and third terms in Eq. (7) are indepen-
dent of 4A, we could obtain the best NA by minimizing
the effective energy E,z while maintaining the ortho-
gonality restrictions with the frozen groups. ' This is
the restricted variational principle given the best total en-
ergy of the crystal for a chosen set of frozen-group wave
functions.

B. EfFective Hamiltonian and projection operators

In many instances, the frozen groups can be adequately
described by single Slater determinants. This is the case
for a system of closed-shell frozen groups. The restricted
variational procedure is then greatly simplified since the
effective energy of the active group can be derived from
an effective Hamiltonian" '

E, =~CA lH."ffleA &+ y [ V[n(a), n($)]

+ V[n ( A), e(S)]I, (8)

where the effective Hamiltonian is

where g counts occupied oIbitals of S. J and K are
Coulomb and exchange operators, respectively.

P (i) is an operator that projects the occupied levels of
the S frozen group out of the active-group electronic
wave function to be obtained in the SCF process. Thus,
it represents the orthogonality restrictions holding be-
tween the active group and the S frozen group. For a
closed-shell S group P (i) becomes

(14)
gES

where g runs over the occupied orbitals of S with orbital
energies c;x are the projection factors discussed below.

In the present formalism, the orthogonality constraints
of Eq. (2) have been incorporated into the efFective Ham-
iltonian by means of the projection operators. Accord-
ingly, the best electronic wave function for the pctive
group can be obtained by minimizing the effective energy
in Eq. (8) without further constraints. Thus, the available
atomic and molecular SCF programs can be easily adapt-
ed to incorporate environment effects by means of this
formalism.

Finally, the interaction between the nuclei of the active
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group and the electrons and nuclei of the frozen groups
in Eq. (8) can be written in the form

[ V[n(A), n (S)]+V[n(A), e(S)]j

g Z V,jr(R ), (15)
SW A a=1

where V,jr(R ) represents the effective potential of the S
frozen group at the position of the o. nuclei of the active
group. It may be noted that only the nuclear and
Coulombic terms of the effective potential contribute to
the energy in Eq. (15) since there are no exchange terms
between electrons and nuclei. On the other hand, this en-
ergy is a constant if the nuclear geometries of the active
and frozen groups are kept fixed, but it changes when one
or more of these groups undergo vibrational motions.

C. Eft'ective potentials, description of the frozen
groups, active-group basis set, and projection factors

The equations above constitute a rigorous tool for the
accurate treatment of the active group under the effects
of a given environment. As noted in Sec. I, two impor-
tant questions must be considered in order to make this
calculation feasible: (1) an approximate and accurate rep-
resentation for the effective potential of each frozen
group must be selected; (2) the orbital functions and ener-
gies of the frozen groups must be specified.

The first question appears because the use of the exact
forms for the Coulomb and exchange operators in the
effective potential would lead to the calculation of all
multicenter integrals over the active and frozen groups.
Then, the calculation of the electronic structure of the ac-
tive group would be as expensive as that of the whole sys-
tem. This question is also the origin of the hierarchy of
lattice models referred to above.

The second question would generally be answered in
terms of HF theory. We may note here that, in crystal
simulation, the (in Uacuo) HF solutions are not necessari-
ly the best description of the frozen groups. SCF wave
functions and orbital energies containing the effects of the
crystal environment will certainly be a better choice.

Selection of the projection factors x in Eq. (14) is re-
lated to the quality of the active-group basis set. Were
this basis complete, the active-group function 4A could
be orthogonal to the frozen-group functions. In this case,
the expectation value of the projection operators

D. Global properties and cluster models

From the above discussion we see that the cluster mod-
el can be readily formulated in the context of the TES.
We identify the active group with the cluster and the
remaining lattice ions with the frozen groups. Once the
wave function +A and the effective energy E,~ are ob-
tained through a cluster calculation, the local properties
of the crystal can be computed. It is interesting to recall
that global properties of the system can also be computed
once the electronic structure (C&„and E,"fr) of each group
has been determined. To see this, it is helpful to intro-
duce the additive energy of a group A,

EA EA+ ] ~ EAS
add 2

SPA
(17)

which is immediately obtained as a by-product in the cal-
culation of E ff and 4A. We can see that for an AB crys-
tal the total energy becomes

add +Eadd (18)

This equation has been written in a graphical fashion
in Fig. 1. In general, for the A, Bb C, . . . crystal we have

E =aE dd+bE, dd+CE dd+ (19)

Notice that Eqs. (18) and (19) hold for molecular sys-
tems and infinite crystals as well. The total energy ob-
tained through these equations can then be used to com-

A
flllcA AGCY

In crystal simulation, however, one has to use reduced
basis sets. If the active-group basis does not have func-
tions in regions where the frozen-group orbitals have ap-
preciable amplitude, the required orthogonality will be
incomplete. Then, the projection energy [Eq. (16)] no
longer vanishes and becomes an approximate nonortho-
gonality correction to the effective energy. Under such
circumstances, some reduction of the x 's may be con-
sidered. Such reduction may give results resembling
those obtained when the exchange interactions between
active and frozen groups are neglected. A judicious
selection of the active-group basis set would take into
consideration the orthogonality requirements with the
chosen frozen-group functions.

E "(proj, s)=(@„xp (i) 4„)i=1
(16)

I ~

elecA ~elec&

would vanish.
Hojer and Chung have compared the active-group

Fock equations derived from the effective Hamiltonian
with the Fock equations for the whole system and have
concluded the following for complete basis sets: (a) the
orbital functions and energies obtained for a closed-shell
active group coincide with the solutions of the complete
Hamiltonian; (b) for open-shall active groups the coin-
cidence is nearly complete; (c) the projection factors are
x =2.

AllcA

S
i1Ucg

elecA ~elec&
V&

FIG. 1. Graphical representation of the relationship between
the additive energies E,«, E,dd and the total energy of the AB
system [Eq. (18)].
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pute the cohesive energy and elastic constants of the crys-
tal. On the other hand, since the global wave function is
given by Eq. (1), the orthogonality conditions in Eq. (2)
lead to a first-order density function

(20)

4L

AM L

E(R,a) =E,"s(R,a)+E,"„,(a), (7')

where E„„does not contain any contribution from the
active group and is then independent of R. If we fix the
geometry of the crystal at a given value of a, we could ob-
tain the equilibrium geometry of this group by minimiz-
ing its effective energy with respect to R. This procedure
corresponds to the treatment of the equilibrium geometry
as a local property and gives a different value of R for
each a. On the other hand, if the geometry is considered
as a global property, we have to find the optimum values
for R and a. Then, the quantity to be minimized is no
longer the effective energy but the total energy of the
crystal.

III. (MF6)" CLUSTERS IN CUBIC
FLUOROPKROVSKITES

Many transition-metal compounds with the AMF3
cubic-Auoroperovskite structure are known. In TM-
concentrated crystals with this formula, M + is the
transition-metal ion and 2 is most often an alkali cat-
ion. The M + cation is surrounded by an octahedral
coordination of F ions (see Fig. 2). In TM-doped
perovskites, the M + site is occupied by a M'+ TM ion.
Thus, in this section we deal with (1NIF6) TM units
(n =6—z) embedded in the perovskite lattice.

A. Hartree-Fock-Roothaan calculation
of the (MF6)" cluster in vacuo

The electronic structure of the (MF6)" units in vacuo
has been computed here with the cluster methodology

where p (r) is the first-order density for the S group

p (r)=Ns f @s(1,Ns)4s(1, Ns)ds, dx2. dx~ . (21)

In this way, we can obtain the second-order density
and the transition densities for the whole system and,
from them, the one- and two-particle properties. In sum-
mary, once we have chosen a given partition for the sys-
tem we compute the group wave functions and energies
through the restricted variational principle; from this in-
formation we can recover the global properties of the sys-
tem and make an appraisal of the selected partition.

To end this section, we will make a final remark on the
equilibrium geometry of the TM cluster in a crystal, al-
though the argument is general enough to be useful for
other crystalline systems as well. The equilibrium
geometry may be considered either as a local or a global
property. The present formalism gives the appropriate
equations. To see this, let us assume, for simplicity, that
the geometry of a crystal is given by the a vector and that
of the active group in this crystal by the R vector. Equa-
tion (7) can now be written in the form

p p ci/2

(ae,p,p)

X

FIG. 2. Crystal structure of the cubic Auoroperovskite show-

ing the octahedral coordination of the M + ion.

developed by Richardson et a/. " which is an application
of the open-shell HFR formalism to the problem of a
TM ion in a crystal lattice. For the sake of computation-
al economy, the frozen-core approximation is adopted. "
Core-valence orthogonalities are fulfilled by using ade-
quate core-projection operators in the Fock Hamiltonian,
as suggested by the TES. ' Ligand-ligand interactions
are accurately computed by means of the renormalization
correction described by Kalman and Richardson ' and
adapted by Francisco to the last version of this methodol-
ogy. As in an earlier work, we used the reduced Slater-
type orbital (STO) basis set of Richardson et aLs" 54 for
the metallic cations. The Auoride basis is that of Ref. 14.
In all calculations reported here the valence space is
made of the 3s, 3p, 3d, 3d', 4s, and 4p atomic orbitals
(AO's) of the metal ion, and the 2s and 2p AO's of the six
fluoride ions. 3d' is the inner STO of the regular 2$ AO
of Ref. 53.

From our experience on these systems, we know that
cluster-in vacuo calculations of these computational
characteristics give (a) equilibrium M Ldistances within-

the experimental range determined in families of com-
pounds; (b) accurate d-d electronic spectra and reason-
able M Ldependence of th-e optical parameters; (c) a
consistent picture of the metal-ligand covalency and its
variation with the M Lseparation;s (d) 3d-4s tr-ansitions
in reasonable agreement with observed data; (e) first-
order density matrices and deformation electron densities
in qualitative agreement with well-known bonding mech-
anisms, such as the 3d orbital symmetrization and radial
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deformation, M-L covalency, ligand hybridization, etc.
It then appears that these cluster-in Uacuo calculations

are a reasonable starting point for the analysis of lattice
e6'ects on the electronic structure of TM clusters.

B. Point-charge lattice model

Simulation of the lattice ions surrounding the cluster
by motionless point charges obeying Coulomb's Law has
been a common practice in cluster-type calculations on
transition-metal systems. References 20, 23, 26, and 61
are recent examples. Here we will discuss the relation-
ship between this approximation and the rigorous equa-
tions of the TES presented above. Furthermore, we will
give some numerical examples that show some of the
more important conceptual and practical limitations of
the point-charges model.

In the present formulation, the interaction between a
cluster electron and a lattice ion has four terms IEqs. (10)
and (11)]: nuclear attraction, Coulomb repulsion, ex-
change interaction, and lattice-ion projection. If the elec-
trons of the lattice ion collapse into their nucleus, the
nuclear-attraction and Coulomb terms would merge into
a single nuclear-attraction term corresponding to the
point-charge ion resulting from the electronic collapse.
Also, we could expect that the remaining exchange and
projection terms disappear in the collapsing process,

given their intrinsic electronic nature.
It may be interesting to model the point-charge ap-

proximation by means of some functional representation
of the lattice ions. This modeling could be worked out in
a number of ways. Here we represent the electronic col-
lapse by describing the lattice-ion orbitals with Dirac-5
functions

P (r)=5(lr —Rs ), (22)

where Rs is the position vector of the S lattice ion. Us-
ing Eq. (22), the Coulomb lattice potential becomes

Vc(r) = g N f P (rz)*lr —rzl 'P~(r2)dr&
gES

= g Ns f 5*(lrz —Rsl)lr —r2I '5(lrz —Rsl)dr2
gES

= g N lr —Rsl '=Nslr —Rsl
gES

(23)

where Ng is the electron population of Pg. Equation (23)
and the nuclear potential of the lattice ion form the
pointlike nuclear attraction

V,s(r)= (Z N—s)lr ——Rs I (24)

The exchange interaction between lattice ions and a
cluster wave function becomes

&gl V~I/) = —g f g*(r, )5(lr, —Rsl)dr, f 5*( r2 —Rsl)g(r2)lr& —rzl 'dr2
gES

= —X f 4*(r»5(lri —Rsl) ri —Rsl '«i0«s)
gES

= —y q(Rs)l'IRs —R, l-' .
gES

(25)

If the cluster-lattice orthogonality is satisfied, the
&/sly) overlap integral must vanish. Using Eq. (22),
this integral becomes

&P~IQ) = f 5'(lr —Rs )P(r)dr=/(Rs) . (26)

Equation (26) tells us that the exchange matrix element
in Eq. (25) is a sum of 0/0 terms that will vanish if the
cluster-lattice overlap goes to zero faster than the linear
denominator. This matrix element will tend to —~ if
the cluster-lattice orthogonality is not completely
achieved, i.e., if g(Rs)%0. Analogous results are ob-
tained for the off-diagonal matrix elements of the ex-
change interaction.

Furthermore, Eq. (26) gives the following result for the
matrix elements of the lattice projection:

bital energy associated with a Dirac-6 orbital. Thus,
Dirac-5 representation of the lattice ions drives us to im-
portant conceptual problems related to the exchange and
lattice-projection terms. This fact is not astonishing,
given the specific quantum origin of these terms.

In summary, the point-charge Hamiltonian is given by
a simplified form of Eq. (10), namely,

h, fr(cluster) =h (cluster)+ V,„,(r), (28)

where h(cluster) is the one-electron Hamiltonian for the
cluster in vacua, " and V,„,(r) the Madelung potential of
the crystal lattice at the point r, minus the contributions
from the ions forming the cluster

V,„,(r) = — g (Z Ns) lr —RsI—
SP cluster

&g'I&'lg) = g &g' p,')( —x,'E,')&p,'lp)
gGS S8 cluster

zslr —Rs I
(29)

=Q'(Rs)'g(Rs) g (
—xgEg) .

gCS
(27)

The equation shows the difhculty of evaluating the or-

In Eq. (29), z =Z Ns is the point ch—arge of the S
ion. The sum in this equation runs over all ions in the
lattice excluding the components of the cluster. It can be
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computed adequately by means of the Ewald
method. Once we have calculated numerical values
of this lattice potential throughout the cluster volume, we
can use an appropriate analytical expression to represent
them as accurately as desired. The form of this analytical
representation should be chosen with two ideas in mind.
First, it should be particularly accurate in those regions
of the cluster where the electron density is high. Second,
its matrix elements within the cluster basis set should be
analytically calculable without difficulty. Details are
given in the Appendix.

The lattice potential V,„,(r) has two characteristics
that deserve comment. First, it is a homogeneous func-
tion of the electron coordinates of degree —1. Thus, if

a=(a, b, c) is a unit-cell vector, we have

V,„I(sr;sa)=s 'V,„,(r, a), (30)

where s is a scale factor.
Second, V,„,(r) must transform according to the totally

symmetric irreducible representation of the point group
of the cluster. Otherwise, it would connect cluster wave
functions belonging to different representations and
would reduce the symmetry of the cluster Hamiltonian.

Let us see now results for the electronic ground state of
the (CrF6) cluster embedded in the point-charge lattice
of KCrF3. This crystal has a high-temperature
perovskite phase with a =4. 158+0.004 A (7.857+0.008
bohr) (Ref. 66). In parts (a) and (b) of Fig. 3 we show the
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TABLE I. Cluster valence energy of the (CrF6) unit in Uacuo Eo and embedded in the point-charge lattice Epc for three values
of the cell constant a. [EcL(PC) is the cluster-lattice energy computed as Ecl(PC) =Epc Eo. All numbers in atomic units. ]

Calculation

In vacua
KCrF3
(a=4.010 A)
KCrF3
(a=4.158 A)
KCrF3
(a=4.242 A)

Quantity

Eo+224
Epc+ 224
EcL(PC)
Epc+ 224
EcL(PC)

Epc +224
EcL(PC)

3.26

—0.663 89
—3.744 73
—3.080 84
—3.630 93
—2.967 04
—3.570 43
—2.906 54

3.425

—0.908 18
—3.997 79
—3.089 61
—3.881 24
—2.973 06
—3.81960
—2.91142

Z(Cr-F)
3.59

—1.049 72
—4.151 06
—3.101 34
—4.030 79
—2.981 07
—3.967 61
—2.917 89

3.772

—1.126 76
—4.245 64
—3.11888
—4.11975
—2.992 99
—4.054 25
—2.927 49

3.99

—1.149 17
—4.297 85
—3.148 68
—4.162 32
—3.013 15
—4.092 85
—2.943 68

4.19

—1.127 86
—4.315 62
—3.187 76
—4.167 36
—3.039 50
—4.092 65
—2.964 79

4.39

—1.081 68
—4.324 19
—3.242 51
—4.157 97
—3.076 29
—4.075 90
—2.994 22

form of V,„,(r) along the xy plane for this phase. We can
observe that this potential is practically Hat in the range
0+r ~2. 5 bohr around Cr + ion. Farther away from
this ion, V,„,(r) decreases along the 100 and nearby direc-
tions, stabilizing the negative charges more as their sepa-
ration from the metal ion becomes larger. On the con-
trary, V,„,(r) increases along the 110 and nearby direc-
tions, raising the energy of the negative charges. Since
the cluster electron density concentrates along the M-L
(100) axes, the behavior of V,„,(r) along these directions
will dominate the cluster-lattice energy. Moreover, the
total electron-lattice energy should be larger, in absolute
value, than the total nucleus-lattice energy because the
total charge of the cluster is —4 a.u. All these qualitative
arguments suggest that the cluster-in-KCrF3 value of
R, (Cr -F ) should be larger than the cluster-in uacuo
value. This is indeed the result of our HFR calculations,
as the ground-state energy curves depicted in Fig. 3 re-
veal. The cluster total energy decreases by about 3 har-
tree (80 eV) when this lattice potential is included in the
calculation.

The effects of the lattice potential in the equilib-
rium properties of the cluster are the following. The
M I. distance i-ncreases from R, (Uacuo) =2.099 A to
R, (KCrF3)=2. 191 A. The a,s vibration frequency de-
creases from ai, (uacuo)=488 cm ' to co, (KCrF3)=334
cm '. The observed value for R, (KCrF3) is 2.079+0.002
A 66

The nuclear potential obtained with this point-charge
lattice [Fig. 3(d)] is noticeably asymmetric with respect
to a vertical axis passing through R, . However, a rather
symmetric nuclear potentia1 should be expected since the
fIkuoride ions of the cluster are located in the middle of
the segment connecting two Cr + ions. Thus, this feature
is surely in error.

At this point, it is interesting to show a further
deficiency of the point-charge lattice potential in KCrF3.
Let us imagine a breathing vibration of the whole crystal
and let us compute the cluster nuclear potential for
difFerent values of the cell constant s, without making
any other change in the crystal structure. Results for
a=4.010, 4.158, and 4.242 A can be seen in Table I and
Fig. 4. According to this amazing result, the size of the
cluster increases when the cell constant decreases, and
Vice uersa. This unphysical response is not a curiosity
but a consequence of the form of V,„,(r) and its scaling
property, Eq. (30). We find analogous results for (VF6)

C. PXa lattice model

This TES-consistent lattice model is a quantum-
mechanical representation of the crystal lattice defined as

-227.2

~6

+ "228.0

3.2
I

4.0 44

Q~ F (bohr)

FIG. 4. Ground-state nuclear potential for the (CrF6) unit
in the point-charge lattice of KCrF3 computed for three
different values of the cell constant a [a/2=2. 005 (lower curve),
2.079 (middle curve), and 2.121 A (upper curve)].

and (MnF6) . They reveal the need for short-range con-
tributions to V,„,(r). In this numerical experiment, these
contributions will be larger for the smaller lattice and
would restore the expected response. As noted in Sec. I,
the short-range lattice potential can be incorporated in
the cluster calculation in many different ways. In the rest
of the paper we will analyze the effects of the particular
choice suggested by the TES.
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the analysis by Hojer and Chung suggests the adoption
of the second choice, some advantages may be obtained
by following the first one. Using the soft projection
(xs =1) in calculations of this type may be viewed as a
partial remedy to the incomplete basis set of the cluster
and to the approximate treatment of the cluster-lattice
exchange. As we discuss in detail elsewhere, ' the soft
projection may give rise to values of R, a few hundredths
of an angstrom larger than those obtained with x =2,
since the lattice projection acts as a repulsive potential on
the part of the crystal lattice.

The matrix elements of the lattice projector contain the
product of two cluster-lattice overlap integrals. These
terms decrease exponentially with the separation of the
lattice ion from the cluster. This means that only the
closer ionic shells do contribute to the expectation values
of the lattice projectors. With the basis set used in the
present calculation we find that the 8 K+ ions at the
(+a/2, +a/2, +a/2) positions and the 6 Cr + ions at
(+a, 0,0) form the dominant contributions to the lattice
projection. The 24 F ions at (+a, +a/2, 0) are also im-
portant. The contributions from the remaining lattice
ions are smaller than 10 hartree and have been neglect-
ed.

We collect in Table II ground-state total energies,
lattice-projector expectation values, and effective poten-
tial energies for (CrF6) in KCrF3 at three difFerent
values of the cell constant. We observe that the lattice
projection represents a small but relevant contribution to
the nuclear potential, given its fast variation with the
M-L coordinate R and the cell constant a. As noted
above, it acts as a repulsive interaction that tends to
reduce the cluster-in Uacuo value of R, .

The effective potential makes the cluster total energy
some 4—5 hartree more negative. Its expectation value
increases, in absolute value, with the cluster size and
turns out to be 1-2 hartree more negative than that cor-
responding to the point-charge scheme. Since the molec-
ular orbitals (MQ's) obtained in the point-charge and
PXa calculations are very similar, this enhancement may
be attributed to more intense Coulomb interactions in the
latter description, as well as to the action of the exchange

-228.2I I I I I I

-227.6 ~, ga)-

~ point-charge model

(b)

-228.0-

-4-
-229.0-

~ PXa model f
3.6 4.0 4.4
R( F (bohr)Cr,F

-4-

-229.2'3.2
I I

4.43.2 3.6 4.( l

RCr F (boh. )

FIG. 6. Ground-state nuclear potential for the (CrF6) unit
in KCrF3. (a) Results for point-charge and Pga lattice models.
(b) PXa, model results for three values of the lattice cell con-
stant a.

potential. The effective lattice potential acts as an attrac-
tive interaction on the part of the crystal lattice that
tends to increase the cluster-in vacuo value of R, .

The more significant differences between the point-
charge and PXu lattice models in the determination of
the cluster nuclear potential can be seen in Fig. 6(a). The
R, (KCrF3) obtained with the latter is 2.112 A, in good
agreement with the observed 2.079+0.002 A. The
reduction in R, (KCrF3) with respect to the point-charge
value (2.191 A) is clearly due to the action of the lattice
projection. Furthermore, the PXcx nuclear potential is
much more symmetric than that obtained with the
point-charge model, in agreement with the expectations
commented above. Compared with the in cluster-
in Uacuo stage, the PXa lattice model produces a slight
increase in the value of R, (0.013 A) and a noticeable in-
crement in the vibration frequency (162 cm ').

Using the PXa lattice model, we have repeated the nu-
merical experiment of lattice vibration discussed above.
Results can be seen in Fig. 6(b). It is satisfactory to see
that these nuclear potentials are highly symmetric
around the equilibrium position and that the predicted
values for R, follow correctly the variation of the cell

Z(Cr-F)
3.59a/2 (A) 3.99 4.39Quantity 3.26 3.425 3.772 4.19

—4.861 02
0.163 23

—4.360 36

—5.141 93
0.221 21

—4.454 96

—5.312 31
0.301 62

—4.564 21

—5.403 85
0.429 69

—4.706 78

—5.397 87
0.669 36

—4.91806

—5.267 68
1.023 93

—5.163 75

—4.966 22
1.590 56

—5.475 10

E~x~+ 224
(P)

EcL(PX0.)

2.005

—5.001 36
0.163 64

—4.11528

—5.11220
0.232 13

—4.217 57

—5.156 37
0.359 09

—4.366 29

—4.990 70
0.839 91

—4.748 93

—4.540 39
0.088 78

—3.975 28

—4.823 40
0.120 30

—4.035 52

—5.11908
0.545 05

—4.536 27

Ep~ +224
(P)

EcL(PXn)
2.079

—4.835 87
0.11533

—3.901 48

—5.007 67
0.252 12

—4.11062

—4.91977
0.585 72

—4.423 81

—4.996 66
0.381 55

—4.250 35

—4.375 47
0.062 60

—3.774 18

—4.657 38
0.084 85

—3.83405

—4.950 59
0.163 37

—3.987 20

EI~ +224
(P)

Eci.(PX& )

2.121

TABLE II. Valence energy of the (CrF6)~ unit in the PXa lattice E~z for three values of the cell constant a. [EcL(PXa) is the
cluster-lattice energy computed as Ep& —Eo. (P) is the expectation value of the lattice-projection operator. All numbers in atomic
units; a/2 in A.]
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constant. Moreover, the difference between R, and a/2
0

in this imaginary crystal is always smaller than 0.05 A,
indicating a good agreement between model and experi-
ment. We also notice that the effective energy of the clus-
ter decreases, and the vibration frequency increases, for
smaller values of the cell constant. As commented in Sec.
II, the optimum valae of the cell constant a cannot be ob-
tained from the effective energy of the cluster: We would
need the total "molecular" energy of the crystal. In view
of all these results, we can conclude that the PXa lattice
model gives a qualitatively correct and quantitatively
reasonable .description of the equilibrium geometry of
this chromium cluster in KCrF3.

%'e will finally refer to some spectral properties of this
cluster whose sensitivity to the modeling of the external
lattice may be smaller than that found for the ground-
state nuclear potential.

First, in Fig. 7 we depict the orbital energies of the
cluster valence shell at several states of our calculation.
All entries correspond to R(Cr +-F )=3.99 bohr. In
this figure we observe (stage B) that the valence levels of
the free Cr + ion increase their energy by about 40 eV,
and those of the F ion by some 10 eV, as a consequence
of the pure electrostatic interactions with the rest of the
cluster ions. Stage 8 gives a reasonable estimation of the

0.5"

0 4.-

Io &0

cluster-in v(2cuo description (stage Q, although the split-
ting of the levels is missing. The lattice interactions de-
crease the energy of all these valence levels by some 20
eV. Differences between the point-charge (stage D) and
PXa (stage E) lattices are very small, although in some
cases they can be of 2 eV. Although the relative separa-
tion of these levels changes very slightly in passing from
Uacuo to the lattice, the position of the 3d levels with
respect to the 2p Auoride band may be modified. For in-
stance, the mainly 3d, half-filled 2t2g level is located 0.12
(stage C) and 0.03 eV (stage D) below the fully occupied
6t, „(2pml ) level, respectively. This slight departure
from the aufbau principle is neither unusual nor incon-
sistent with the description of the optical spectrum in
terms of multielectron wave functions and energies. In
any case, in the PXa calculation (stage E) this ordering is
reversed and the 3d level appears 1.04 eV above the top
of the filled band.

Second, we present in Fig. 8 the dependence of the
t 2&( 3)e g( I) Es~t2-g(2)eg(2) T2s ele-ctronic transition of
this cluster with the metal-ligand distance R. This transi-
tion, called 6 or 10Dq, varies with R in a way that can be
accurately described by the inverse-power law
6/ho=(RO/R)". The three lines in Fig. 8 correspond to
(a) cluster-in Uacuo calculations, (b) point-charge lattice
model, and (c) PXa lattice model. The small ordinate at
the origin is a measure of the accuracy of the inverse-
power equation. This equation is folioed slightly better
when the lattice effects are included, particularly for the
I'Xcz model. According to this calculation, the best
values of n are 5.28 (Uacuo), 5.45 (point charges), and 5.63
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FICE. 7. Orbital energies of the cluster valence shell at several
stages of the calculation (R =3.99 bohr). A: free ion. B:
plus the efFect of a point-charge cluster. C: (CrF6) in Uacuo.
D: (CrF6):KCrF3, point-charge lattice. E: (CrF6):KCrF3,
PXa lattice.

FICE. 8. Variation of the transition energy 6= 10Dq
=E('T2g ) —E( Eg ) with the metal-ligand distance R according
to several calculations on the (CrF6) unit in Uacuo and embed-
ded in KCrF3.
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(PXa), indicating that the lattice effects are small and
slightly increasing with R. For R =3.93 bohr, the dis-
tance observed in cubic KCrF3, we obtain b, =15.4 (va-

cuo), 15.0 (point charges), and 14.6X10 cm ' (PXa).
These numbers lie some 30%%uo above the experimental
range reported by Oelkrug for this transition:
(10—13)X10 cm '. The value of b, obtained at the
theoretical equilibrium distance in the PXa calculation is
b, (2.112 A) = 13.3 X 10 cm ', in reasonable agreement
with the observed range, although such agreement may
be accidental.

Lattice effects obtained here for other d-d transitions
are very similar to those shown in Fig. 8 and will not be
discussed. Thus, we conclude that the cluster-lattice in-
teraction introduces small effects in the vertical d-d spec-
trum at the observed R, . This conclusion is in agreement
with that discussed by Florez et al. for the d-d spectra
of Mn + in octahedral Auorides, and it is related to our
result that the occupied cluster MO's are slightly
modified by the external lattice potential. On the other
hand, the more diffuse and empty 4s and 4p MO's show
larger lattice effects. We can thus expect important lat-
tice contributions in 3d-4s and 3d-4p electronic transi-
tions. Furthermore, the cluster-lattice interaction can
produce indirect but very significant effects in transition
energies, vibrational structure, and intensities, when com-
puted-at the theorejical R„doe to the changes induced in
the curvature of the nuclear potentials.

D. Local model-potential lattice models

We have shown the theoretical and practical advan-
tages of a quantum-mechanical lattice model, such as the
PXa model, over the classical description of the crystal
in terms of point charges. However, since the cluster-
lattice exchange interactions are substituted in the PXa
model by the statistical approximation, we should consid-
er the possibly unwanted consequences of this substitu-
tion in the cluster-in-the-lattice calculation. One of these
consequences can be suspected from the information de-
picted in Fig. 5. In this figure we have seen that the ex-
change charge deduced from the Xa approximation is
rather long ranged and does control the lattice effective
potential for r ~2 bohr. This behavior would be unim-
portant in atomic or muffin-tin applications where the
relevant contributions to the total energy and wave func-
tion are determined by the inner and central parts of the
potential. In the present application, however, the slowly
decreasing value of the exchange charge may produce un-
physical effects on the cluster MO's. For these reasons
we present now an alternative quantum-mechanical lat-
tice model also deduced from the TES and free from the
Xo.' exchange approximation.

The idea of this new model is to represent the lattice
ions by means of adequate local MP of the form intro-
duced by Bonifacic and Huzinaga. ' ' The difference
between this scheme and the PXa model is the modeling
of the ionic effective potentials. The use of lattice-
projection operators and the further collection of the in-
dividual ionic potentials in an analytical potential is the
same in both models.

In this final part we discuss some interesting systems
formed by 3d impurities in KMgF3. First, we discuss the
main differences between the MP and the PXa lattice
models. Then, we present numerical results for the equi-
librium geometry of these systems, and later we refer to
the question of the relative stability of different ionization
states of the 3d impurity.

Huzinaga and his group have shown ' that the elec-
trostatic effects of the electronic core on the valence shell
of an atom or ion can be accurately represented by a
one-electron radial function Vstt, (r) called the model po-
tential (MP). This potential is optimized with respect to
a particular atomic state and it is transferrable to other
states and configurations. It can also be used to study
the effects of the core electrons on the valence shells of
other atoms or ions. Here we make use of this latter ap-
plication.

Since obtaining a MP is well documented in Refs. 73
and 74, we will simply list here the main steps of this pro-
cedure: (a) A given all-electron (AE) atomic calculation
is chosen as reference. (b) A given basis set is selected for
the valence space. It may be the basis used in the AE cal-
culation or a smaller one. (c) Valence calculations are
performed with a Pock operator in which the core-
valence interactions are represented by the model poten-
tial

V~@(r)= —(Z N„„)r—
X 1+ g A (k)r"'"'exp[ a(k)r]—

k=1
(38)

plus a core projector that ensures the core-valence ortho-
gonality.

The AE solutions are used to define the core projector.
The MP parameters A (k), n (k), and a(k) are chosen to
minimize the error

val val—E ~+ y(1 —[(y y )[) (39)

where the c.'s are orbital energies.
In the present application, the reference state for the

lattice ions must consist of a core including all the occu-
pied orbitals of the ion because this will be the electron
density seen by the cluster valence. We have chosen the
(Ar)4s' S ground state of the K atom and the (Ne)3s' S
ground state of the Mg+ ion as reference states for the
K+ and Mg + ions, respectively. As AE basis sets we
have used the 2-g set and the multi-g set of Ref. 70 for
the K atom and the Mg+ ion, respectively. The AE bases
have also been used, without reduction, for the valence
space.

To better appreciate the differences between this pro-
cedure and the PXa model, we present in Fig. 9 the
effective charge —r V,z for K+ and Mg corresponding
to (a) the MP lattice model just described, (b) the PXa
model, and (c) a Coulombic effective potential obtained
through Eqs. (11) and (31) but with the exchange part
neglected. We can observe that the MP charge is larger
than the Coulombic charge for the Mg ion in the range
0 + r ~ 1.5 bohr. The same result is found for the K+ ion
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FIG. 10. Equilibrium geometry obtained from cluster-
in Uacuo and cluster-in-KMgF3 calculations for several 3d im-
purities.

second-neighbor effects in detail and will stop the discus-
sion of this question here.

Finally, the tripositive impurities turn out to be slight-
ly smaller (some 0.05 A) than the Mg + ion, according to
our cluster-in vacuo results. Thus, we can expect in-
wards relaxations of the first neighbors upon this substi-
tution. Our HFR results give RL &Rp and a very small
difference (about 0.01—0.02 A) between R ~ and RL.

To end this section, we will present some numerical ex-
arnples showing that the cluster-lattice interaction plays
also a substantial role in determining the relative stability
of different ionization states of the 3d impurity in the ion-
ic host. For a cluster as those discussed in this paper, the
relative stability can be analyzed as a function of the in-
ternuclear coordinates along different cluster vibrations.
We will refer here to the a,s vibration of several (MF6)"
clusters: M=Cr, V, and Mn; n =2—5. This vibration is
characterized by the single metal-ligand coordinate R.

Let us discuss first the cluster-in vacuo description. At
infinite separation (R = ~), we have the free-ion energy
of the M'+ impurity ion plus six times the free-ion ener-
gy of the F ion. At this configuration, our basis gives
an energy for the (M'++6F ) systems that increases
with increasing metallic ionization, in qualitative agree-
ment with the observed ionization potentials (IP). For in-
stance, the Cr + ion appears 13.64 eV above the Cr+ ion,
the Cr + 29.62 eV above the Cr +, and the Cr + 50.03
eV above the Cr +. These numbers compare well with
the observed IP's of chromium: 16.50 (Cr+), 30.96
(Cr +), and 49.1 eV (Cr +). At very large values of R, the
(in vacuo) intracluster interactions can be well represent-
ed by the classical limit

E [(MF6)"; large R]=E„„,[(MF6)" ]

=E (R = ~ )+ 3 /R, (40)

ionic radii and suggests that the lattice effects will tend
to decrease R~. We can thus expect that R~)RI.
Moreover, since the ionic radii of the 3d dipositive cat-
ions are larger than the radius of Mg +, the impurity sub-
stitution should induce an outwards relaxation of the first
neighbors, i.e., we can also expect that Rg )Rp ~ Oui
theoretical results agree with both expectations. Also,
our value of RI for Mn:KMgF3 (2.070 A) nearly coin-
cides with those derived by Moreno et al. from the ob-
served superhyperfine constant A, (2.070+0.020 A) and
10Dq (2.064+0.004 A ).

According to our cluster-in vacuo results, the ionic ra-
dius r(Cr+) can be 0.4 A larger than r(Mg +). This
would lead to a large outwards lattice relaxation, with
Rv & RL & R, . Although both inequalitits are confirmed
by our HFR results, the cluster contraction predicted in
passing from vacuo to the lattice 0.22 A is possibly too
big. Our calculation give Rl =2. 198 A, 0.15 A below the
2.35+0.02 A estimated semiempirically from the
constant observed in Cr+:KMgF3. This discrepancy can
be qualitatively understood in terms of the limitations of
our impurity model. The Cr+ ion is possibly too large to
induce relaxations only on the first neighbors. If we in-
clude relaxations of other shells, the difference ~RI —R ~~

tends to decrease. However, we have not analyzed

A =6qMql +[6(2)'~ + ,']qL . — (41)

In Eq. (41), qM and qI are point charges representing the
metal and fluoride ions, respectively.

The relative positions of the infinite-separation
configurations hold for large values of R, although this
regime clearly corresponds to unphysical cluster sizes.
When R goes down to the order of a few angstroms, the
pure electrostatic interaction is enough to rearrange the
energy ordering of these clusters. Moreover, at small R's
the nonclassical intracluster energy becomes important,
modifies the energy in Eq. (40), and the minima of the nu-
clear potentials appear. The sum of the energy in Eq.
(40) and the nonclassical contribution produces a new or-
dering of the cluster energies at the bonding region, as
can be seen for Cr, V, and Mn hexafluorides in Figs.
11(a), 12(a), and 13(a), respectively. According to these
cluster-in vacuo results, the state of highest ionization
lies at the bottom of each series and has the smaller clus-
ter size. As the metallic charge decreases, the size of the
cluster increases and the energy at the minimum in-
creases. In these charged and highly ionic systems the

where the constant 3 is given by the point-charge in-
teractions
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FIG. 11. Nuclear potentials for chromium impurities in fluoride crystals. (a) Cluster-in vacuo results. (b) Cluster-in-KMgF3 re-
sults.

nonclassical contribution to the nuclear potential, albeit
very important, is a small amount of the total valence en-
ergy of the cluster. In the cases considered here, the non-
classical energy is smaller than 1 hartree and the valence
energy is larger than 200 hartrees. This fact suggests that
the relative energy position, near R„of different ioniza-
tion states of these impurities can be very sensitive to the
action of an extracluster potential.

Our cluster-in-the lattice calculations for these impuri-
ties in KMgF3 reveal that the relative stabilities of
different ionization states change very much when the
cluster-lattice interaction is included. These results can
be seen in Figs. 11(b), 12(b), and 13(b). In Fig. 11 we ob-
serve, for instance, that the interminima energy separa-
tion for Cr+ and Cr + is 29.63 eV in Uacuo, but only
10.93 eV in the MP potential of KMgF3. The 21.86 eV
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FIG. 12. Nuclear potentials for vanadium impurities in fluoride crystals. (a) Cluster-in vacuo results. (b) Cluster-in-KMgF3 re-
sults.
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M'+:KMgF3 —M' ':KMgF3+e (42)

where the resulting electron has been considered as a
zero-energy particle. The redox process to be considered
should be

M'+:crystal —M'+ ':crystal+ e:crystal (43)

and adequate attention should be paid to the final state of
the electron into the crystal. Such detailed description
has been not attempted in this work.

IV. CONCLUSIONS

The cluster model is an important tool to compute the
electronic structure of transition-metal ions in ionic lat-
tices. However, many important properties of these sys-
terns cannot be described by a cluster-in vacuo approach.
The cluster-lattice interaction becomes an essential part
of the theoretical analysis. We have tried to show in this

separating the Cr + and Cr + ions in vacuo are reduced
to 1.20 eV in the lattice. Figure 11(b) shows that these
two ions can be stable in KMgF3, depending upon the
metal-ligand distance. The relation between the rates of
the redox process and the lattice relaxation would deter-
rnine the most stable configuration. In Figs. 12 and 13 we
can see that the dipositive state is more stable than the
tripositive state for V and Mn in KMgF3.

These numerical results have been presented here to
emphasize the importance of the cluster-lattice interac-
tion in the relative energies of different valence states of
3d impurities in ionic crystals. However, the present cal-
culation gives only a crude approximation to the problem
because we have considered the simple redox process

paper that the theory of electronic separability (TES) pro-
vides a rigorous framework to formulate the cluster mod-
el and to take adequately in account this interaction.

According to the TES, SCF cluster wave functions can
be obtained which are consistent with a given electronic
structure of the crystal lattice. Each ion in the lattice
contributes to the cluster effective Hamiltonian with an
effective potential operator, containing nuclear attrac-
tion, Coulomb and exchange interactions, and a projec-
tion operator which takes care of the cluster-lattice
orthogonality requirements.

Many approximate lattice models can be developed
from the basis equations of the TES, each model being
characterized by the particular form of the effective po-
tential and the wave functions selected for the lattice
ions. We have discussed here three TES-consistent lattice
models and illustrated their relative merits with appropri-
ate numerical examples.

The point-charge model can be deduced from the TES
by representing the lattice-ion orbitals by Dirac-6 func-
tions, if exchange and lattice-projection terms are
neglected. Neglect of these quantum-mechanical terms
may give rise to important deficiencies, as we have shown
for the ground-state nuclear potential of the (CrF6)
unit embedded in the vibrating lattice of KCrF3.

In the PXa model discussed in this paper, the lattice
ions are described by HFR wave functions whereas the
Xa statistical approximation is used to deal with the
cluster-lattice exchange. The model contains all the
terms appearing in the basic equations of the TES. In
particular, the lattice-projection terms play an essential
role in removing the deficiencies of the point-charge rnod-
el. On the other hand, some spectral properties, like the
vertical d-d spectrum or the orbital energies of the cluster
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states, seem to be rather independent of the lattice model
used.

Finally, we have examined a model-potential lattice
model that describes the effective potentials of the lattice
by means of an accurate local model potential. This
model gives a consistent picture of cluster equilibrium
geometries, vibration frequencies, relative stabilities of
different ionization states, and other electronic properties
of V, Cr, and Mn impurities in KMgF3.

We have tried to emphasize the convenience, in a clus-
ter calculation, of considering the cluster-lattice interac-
tion at a level of quality commensurate with that
achieved in the cluster-in vacuo description. The desir-
able balance is lacking, for instance, if a point-charge lat-
tice is interfaced with a highly sophisticated cluster
methodology. Our approximate results show that for a
given cluster description the quantum-mechanical repre-
sentation of the lattice may give results at substantial
variance with those obtained from the point-charge mod-
el. It is our view that rigorous descriptions of the crystal
lattice as those presented in this paper are thus
worthwhile and workable without prohibitive effort.

Several future developments can be advanced in con-
nection with the present TES formulation of the cluster
model. First, a more rigorous treatment of the important
cluster-lattice exchange interaction may be considered, as
in the recent work by Barandiaran and Seijo ' in which
a nonlocal exchange operator is introduced within the
MP formalism. Second, a description of the lattice ions
more realistic than that supplied by the (in vacua) HF
wave functions might be attempted in order to reach an
environment-consistent picture of the frozen lattice
ions. ' ' We are presently working on these develop-
ments.
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r =f
r 2

1

r'=f~+2f
r'=f4+ 3fs+6f6
r'= f, +4f, +6f9+ 12f,
r' =f» +Sf,2+10f,s+20f,4+30f„

We can write

V„„(r)=g c„r"' 'f„(x,y, z),
k

(A 1)

where the ck coe%cients are obtained through least-
squares minimization of the rms deviation

' 1/2N
tl= N ' g [V,„,(r, ) —V„,(r, )] (A2)

In this equation, N is the number of points r, where the

TABLE V. Point-charge lattice potential for the cubic phase
of the KCrF3 (a=4.158 A), Eq. (A1), and linear coefficients ck in
atomic units.

TABLE IV. Approximate analytical representation of the
lattice potential; (upper) I

&
functions for cubic groups; (lower)

expansion of the even powers of the radial coordinate r in terms
of the I

&
functions.

fo=l
fi =x +y +z

f,=x'+y'+z'
fs=x y +x z +y x +y z +z x +z y

f, =x4y4+y4z4+z4x4
fo=xyz +xyz'+xyz
f = "+ "+ "
f„=x'y'+x'z'+y'x'+y'z'+z'x'+z'y'
f&&

x6y4+x 6z4+y 6x 4+y6z4+z6x4+z6y4

f,4=x y z +x y z +x y z
f„=x y z +x y z +x y z

APPENDIX
ck

Totally symmetric
function

We want to find an approximate analytical representa-
tion V„,(r) for the lattice potential V,„,(r) which should
be simpler than the Ewald sum in Eq. (29) and accurate
enough to describe correctly the potential in those cluster
regions where the electronic density is high. V,„,(r) and
V„„(r) should transform as the totally symmetric irreduc-
ible representation I

&
of the cluster group. This require-

ment is immediately satisfied if we express Vs, ( r ) as a
linear combination of I

&
functions. A complete set of

such functions for the Oz and Td groups I fk(x, y, z)I can
easily be found in terms of the even powers of the radial
coordinate: r "=(x +y +z )", in Cartesian coordi-
nates. See Table IV.
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lattice potential is computed.
We would like to remark that a large number of points

thvoughout the cluster volume must be considered in or-
der to have accurate representations of the lattice poten-
tial. A set of points limited to the 100, 110, and 111
directions may give forms for V„,(r) which reproduce
poorly the features of the potential along the low-
symmetry directions. These forms may give rise to quali-
tatively erroneous results in the cluster-in-the-lattice cal-
culations.

When dealing with a cubic Auoroperovskite as the
KCrF3, the three planes passing through each two of the
100, 110, and 111 directions determine a volume element
that reproduces the entire space by symmetry operations.
Thus, we limit our search to points within this volume

element. On the other hand, we have found that the
features of the lattice potential relevant to the cluster cal-
culations discussed in this work are those within a sphere
centered in the metal ion and radius 5 bohr. According-
ly, we made the following selection of points: (a) 51
points along the 100 axis uniformly distributed within the
segment (0—5 bohr); (b) 20 points uniformly distributed
along every one of the 9 axes defined by the angles 0=90
and /=5m'(m =1 to 9); (c) 150 points randomly distri-
buted within the space limited by the sphere of radius 5
bohr and the 100-110-111volume element defined above.

The symmetry of the potential makes this set
equivalent to a set of 11586 points within the entire
volume. The present choice of points weights the repre-
sentation of V,„,(r) in the regions close to the xy, xz, and
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yz planes where the cluster electron density is higher.
In Table V we collect the final form for Vs, (r) adopted

in this work and the numerical coef5cients resulting from
the least-squares fitting to V,„,(r). The rms deviation is
smaller than 3 X 10 hartree. In Fig. 14 we plot V,„,(r)
and V„,(r) along several directions of interest. We can

observe that Vs, (r) reproduces uniforinly well the lattice
potential, with some appreciable deviations near the 111
direction and r =4 bohr. The interesting features of the
lattice potential of this cubic Auoroperovskites along
low-symmetry directions have been discussed in a recent
report.
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