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Variational calculation of two-dimensional-polaron energy levels in a magnetic field

Domenico Ninno and Giuseppe Iadonisi
Dipartimento di Scienze Fisiche, UniUersita degli Studi di Napoli, Padiglione 19,

Mostra O'Oltremare, I-80125 Napoli, Italy
(Received 19 December 1988)

Energy levels of two-dimensional Frohlich polarons in a magnetic field are calculated variational-
ly by use of a generalization of the Lee-Low-Pines ansatz for the variational wave function allowing
the phonon distribution function to depend on the electronic coordinates. It is shown that this
choice leads to the correct interpolation between the weak- and strong-field limits. Comparing our
ground-state energies with those obtained within second-order perturbation theory and the path-
integral method, we argue that neither of these methods gives a satisfactory description of the dy-

namics of the electron-phonon interaction under the inhuence of an external field.

I. INTRODUCTION

Polarons have recently gained revitalizing interest be-
cause of the ability to form two-dimensional (2D) elec-
tron gases in semiconducting heterostructures. In partic-
ular, the polaronic effects in the presence of a magnetic
field plays a crucial role in the interpretation of experi-
mental data such as cyclotron resonances. From
the experimental point of view, 2D polarons have been
observed in several structures. Some examples are
GaAs-Ga, Al„As heterojunctions' and metal-oxide-
semiconductor (MOS) structures.

As far as theoretical calculations of polaron Landau
levels are concerned, there has been great interest for the
perturbative approach because of the possibility to give
exact closed-form expressions for the second-order
perturbation-theory shifts. Corrections up to the
fourth order have been calculated numerically. More-
over, ground-state energies have also been calculated
within the path-integral method, ' although there exists
no mathematical proof that in the presence of a magnetic
field the calculated ground-state energy is an upper
bound to the exact value.

When a polaron is placed in a magnetic field we can
immediately consider two opposite limits comparing the
cyclotron frequency co, =eB/mc and the longitudinal
optical-phonon frequency coL. For simplicity we intro-
duce the dimensionless magnetic field A, =co, /coL and use
as units of length and energy the polaron radius
R =(iii'/2mcoL)' and the phonon quantum iricoL, respec-
tively. In the weak field limit k «1 the ground-state en-
ergy is given by '

where a is the Frohlich coupling constant. The above
equation is a well-known result of the second-order per-
turbation theory. Since A, «1, the orbit of the Landau
level is greater than the polaron radius and hence the po-
larization field can follow the electron motion. In fact, in
Eq. (1) we can see that the ground-state energy is given

by the sum of the polaron self-energy ( —an/2) and of the
Landau energy (A, /2) corrected by the polaron effective
mass (1—am. /8). Weak-field formulas for any Landau
level have been given in the literature.

On increasing the magnetic field the orbit of the Lan-
dau level becomes comparable and eventually smaller
than the polaron radius. There are two high-field limits:
A, ~ oo with ai/A, ~O and A.~ oo with ai/A. ~ oo. In the
first case (A,~ oo, ai/A, ~O) the second-order perturba-
tion theory ground-state energy is

(2)

In the second case (kaz oo, ai/k —woo) the polarization
field can no longer follow the electron motion; the
effective electron-phonon interaction reduces to that be-
tween phonons and a static distribution of charge and the
electronic and phonon wave functions are decoupled.
The ground-state energy is given by

E i/Acr/2 . ,

2 2
(3)

Larsen has observed that neither the second-order
perturbative ground-state energy nor that calculated by
Xiaoguang, Peeters, and Devreese within the path-
integral method are able to account for the continuous
change of the nature of the interaction going from
av'A, —+0 to ai/A, —& oo. In fact, for the case a ((1 he has
calculated the fourth-order perturbative correction to the
ground-state energy showing that this correction goes
positive for strong field and that the true ground-state en-
ergy exceeds both second-order perturbative results and
those obtained with the path-integral method.

A theory which is capable of correctly describing the
continuous change of the effective electron-phonon in-
teraction from weak to strong fields with n constant can
be based on a variational scheme. This is the problem ad-
dressed here. The variational calculation presented in
this paper has two main features. First, the conservation
of the total angular momentum' in the direction of the
magnetic field is explicitly exploited introducing bosonic
variables symmetry adapted to the axial symmetry of the
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problem. This has the advantage of simplifying the
mathematics and gives the possibility of studying the ex-
cited states with definitive values of the total angular
momentum. Second, a Lee-Low-Pines ansatz for the trial
wave function is introduced in which the phonon distri-
bution function depends on the electronic coordinates.
This choice, already made in the theory of polaronic exci-
tons" and surface polarons, ' has the desirable feature of
giving a satisfactory description of the dynamics of the
electron-phonon interaction under the inAuence of an
external field.

The plan of the paper is as follows. In Sec. II we define
the Hamiltonian and the transformation to the angular
variables, in Sec. III we present our variational scheme,
and in Sec. IV we give the numerical results and our con-
clusions.

II. THE HAMILTONIAN

where P&= (i Ip—)Bldg, P = —i(BIB~), A, =co, lco„
Vk = i(2iralk—S)', p and k are the two-dimensional
coordinate and wave vector, and S is the normalization
area. From Eq. (4) it can be seen that we adopt a strictly
two-dimensional approximation in the sense that we
neglect the finite extension of the electronic wave func-
tion in the z direction.

The electronic part of the Hamiltonian in Eq. (4) is
written in polar coordinates in the plane perpendicular to
the field. In order to take full advantage of the axial sym-
metry, it is convenient to rewrite the phonon terms in an
alternative form by transforming canonically the boson
operators ak into the angular momentum representation

1 I'2

a„„=&k
(2m )

f 'e„*(pk )ak dpk,

The model Hamiltonian that we use for describing the
motion of a 20 polaron under the inAuence of a static
and uniform magnetic field oriented in the z direction
reads

H=P +(P + —,'kp) +g a„a„+g(Vke'"'i'a„+H. c. ),
k k

(4)

Kl

L, = i— + dk gnai, „a„„
0

(10)

commutes with the Hamiltonian in Eq. (8) and we can
therefore classify the energy levels according to the
values of L, .

It is well known that the problem of an electron in a
static magnetic field can be solved exactly. ' The eigen-
functions in polar coordinates are given by

(p)P'

e i' 4P'p mleimqM( —n, , lml + 1 p' I4P

with the eigenvalues

imp+m+1
2

(12)

In Eqs. (11) and (12) n and m are the radial and the
angular-momentum quantum numbers, respectively. In
Eq. (11) I3 =2/k, 3 is a normalization constant, and
M(a, b, x) is the standard confluent hypergeometric func-
tion. We shall see in the next sections how a variational
calculation is able to determine the polaronic corrections
to the energy levels of Eq. (12) for the set of states with
n =0 and for any value of m.

P

III. VARIATIONAL CALCULATION

The electron-phonon interaction in Eq. (8) depends on
the electronic coordinates p and P. Since our aim is to
implement a variational calculation of the Lee-Low-Pines
type which consistently take into account the (p, P)
dependence of the electron-phonon interaction, our trial
wave function is chosen to be

Tk „(p)=i"&kSJ„(k ) .

The Hamiltonian in Eq. (8) now exhibits the axial symme-
try for rotations around the direction of the magnetic
field. In fact, it is easy to show that the angular momen-
tum operator

where

e in/1

&2~ where

(13)

Using Eq. (5) and the expansion S(p) = f dk g [fk „(p)*ak„fk„(p)ak „]-
n

(14)

e'"i'=2m+i" J( kp) e„(P) e„*(P k),

where J„(x)are the Bessel functions of integer order and

P, P„are the p and k polar angles, respectively, the Ham-
iltonian in Eq. (4) becomes

H=Pp+(P~+ —,'Ap) + f dk g ak nak „
0

+ f dk g [ V „T„( )pe(P) „a„+H.c.], (8)
0

where

and ~0& is the phonon vacuum. The electronic wave
function @ (p) is defined in Eq. (11) where we set n =0
and consider P as a variational parameter.

In order to have a trial wave function which is an
eigenstate of L„ the commutator between L, and S(p)
must vanish:

[L„S(p)]=0.

This condition is satisfied by choosing



39 VARIATIONAL CALCULATION OF TWO-DIMENSIONAL-. . . 10 965

fk, (P) Fk, (P)e (16)

where the functions B„are defined in Eq. (6). With Eq.
(15) it is easy to show that the trial state 4 is an eigen-

I

state of L, with eigenvalue m. The phonon distribution
function fk „(p) and I3 are determined by minimizing the
expectation value of the Hamiltonian in Eq. (8) which
reads

k2
l(I', +j,)'+(I'q+j ~)'+ p(I—'q+j ~)+ p'+ f ™dk& IVf„„(p)I'

where

+ f "«X Ifk, .(p)l' —f "«y [~k ~„k(p)e„(4')fk „(p)+c.c. ]l4
n n

(17)

j,= —f dk X fk,.(p)
' —fk. (p)

n

@k,.(P), ~fk, (P)fy=
2 f, dk X —fk,.(p)

(18)

(19)

—V fk „(p)— z Vfk „(p)2

+fk,.(p) = I'k 'rk, .e.* . (20)

This equation shows that the electronic charge distribu-
tion and the polarization field are linked in such a way
that they should be determined self-consistently. This is
the key point in our variational theory.

The self-consistent solution of Eq. (20) for any 4 is a

The current densities j and j4, in Eqs. (18) and (19) van-
ish provided fk „(p) is chosen in the form of Eq. (16) with
the radial part Fk „(p) either real or purely imaginary
and independent on the sign of n. Assuming this to be
true, we shall see that the resulting fk „(p) is consistent
with this assumption. The functional variation of Eq.
(17) with respect to fk'„(p) leads to the following partial
dilferential equation for fk „(p):

very dificult task. However, if we make a variational
choice for 4', we can solve Eq. (20) and then minimize
the resulting total energy. A very good choice for &0 is
given by Eq. (11), that is, the exact wave function in ab-
sence of the electron-phonon interaction. In Eq. (11) we
now set n =0 in order to have the lowest energy levels

P
for a fixed m. Inserting Eqs. (16) and (11) in Eq. (20) we
have an ordinary differential equation for the radial part
of fk „(p) which reads

d Fk n 2lml+1 p dFk, n

dp P P dP

2

+I
P

The exact solution of the above differential equation can
be found in terms of the conAuent hypergeometric func-
tions M and U(Ref. 14)

S

Fk,.(P)= Vkk, n k
XM(a, b, p /2P )f e " ~ Tk*„(x)U(a,b, xi/2/32)dx

p 2P

V

+ U(a b p /2p )f 2
e " ~ Tk „(x)M(a b x2/2132)dx (22)

where I is the y function and The final expression of the expectation value of Eq. (17) is

s= —'[ —lml+(m +n )' ],
a= —'[—lml+(m +n )' +P ]

b=l+(m +n )'i

v= —,'[1+lml+(m +n )' ],
(23)

2A, 2

E (P)= + (m+1)+
2P' 2

(24)
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where we have defined the effective potential

2

U,~(p) =aI dk g ~Fk „1+
n

'
P

dFk+ ' —2V~ J„F~„
dp

(25)

for any value of the total angular momentum m. It is
nevertheless interesting to look for simple close-form
asymptotic expressions for FI, „. We shall discuss the
weak and strong magnetic field limits for the ground state
only obtained setting m =0. Let us first consider the case
A, ((1 with n constant. Since in this case P~ cc, we can
use the following asymptotic limits for the confluent hy-
pergeometric functions

which describes the effect of the electron-phonon interac-
tion on the Landau levels. The minimization of Eq. (24)
with respect to /3 allows us to determine self-consistently
the magnetopolaron energy levels and wave functions.

Equation (22) holds for any magnetic field strength and

lim M(a, b, x!a) =x" )~ Ib, (2/x ), (26)a-~ ' ' 1(b)
lim U(a, b, x/a)l (1+a b)=—x" "' Kb, (2&x ),

(27)

TABLE I. A table showing the ground-state energies for 0, =0.1, 1.0, 4.0, and for different values of
the dimensionless magnetic field A. . The column headed Ef are the energies calculated with the path-
integral method and are taken from Ref. 8; column E~ lists the results of second-order perturbation
theory [see Eq. (31)], and column E, gives the results of our variational theory. For a=4.0 we list the
variational and path-integral energies only. The column headed E, are the energies calculated with Eq.
(30) and (n ) is the average number of virtually excited phonons. The numerical accuracy on the values
of E, is estimated to be +0.005, +0.05, and +0. 1 for 0.=0.1, 1.0; and 4.0, respectively. The energies
are in units of AcoL.

Ef

0.1

0.2
04
0.6
0.8
1.0
1.5
2.0
4.0

10.0
20.0

—0.109 51
—0.061 49

0.034 51
0.13049
0.226 47
0.322 47
0.562 61
0.803 00
1.767 59
4.682 67

—0.109 05
—0.061 05

0.034 92
0.13086
0.226 80
0.322 75
0.562 80
0.803 13
1.767 63
4.682 67
9.576 85

—0.108
—0.057

0.044
0.141
0.238
0.336
0.579
0.823
1.801
4.755
9.707

0.4373
0.6732
0.9114
1.8747
4.8018
9.7197

0.0787
0.0804
0.0816
0.0874
0.0901
0.0943
0.1019
0.1097
0.1362
0.2000
0.2782

0.1

0.2
0.4
0.6
0.8
1.0
1.5
2.0
4.0

10.0
20.0

0.1

0.2
04
0.6
0.8
1.0
1.5
2.0
4.0

10.0
20.0

—1.592 02
—1.560 80
—1.498 15
—1.435 09
—1.371 52
—1 ~ 307 39
—1.145 16
—0.983 30
—0.327 48

1.826 27

—8.2067
—8.2057
—8.2031
—8.1996
—8.1952
—8.1899
—8.1728
—8.1502
—8.0090
—7.7004

—1.540 55
—1.51049
—1.450 81
—1.391 40
—1.332 01
—1.272 45
—1.122 04
—0.968 70
—0.323 74

1.826 71
5.768 46

+=1.0

a =4.0

—1.52
—1.45
—1.38
—1.32
—1.23
—1.14
—0.99
—0.82
—0.02

2.56
7.08

—6.1
—6.1
—6.1
—6.1
—6.0
—6.0
—6.0
—6.0
—5.9
—4.8
—2.4

—0.1266
—0.0175

0.1138
0.7467
3.0183
7.1975

—2.0066
—2.3199
—2.5449
—3.0132
—2.9266
—1.2099

0.791
0.812
0.840
0.876
0.909
0.943
1.020
1.097
1.362
2.003
2.701

3.163
3.280
3.371
3.517
3.635
3.773
4.080
4.390
5.448
8.104

11.129
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where I„(x) and K„(x) are the modified Bessel functions.
Inserting Eqs. (26) and (27) in Eq. (22), a lengthy but
straightforward calculation leads to

pT 0fc

+k „(p)=,&„(&p) . (28)1+0
This result shows that the phonon distribution function
and therefore the polarization depends on the electronic
coordinates, that is, the polarization follows adiabatically
the electron motion. The ground-state energy obtained
with Eq. (28) and with A, =O is rr7r/—2, that is, the pola-
ron self-energy without field. For a weak but nonvanish-
ing field we did not find a simple expression for the ener-
gy. The mathematical difficulty is that such calculation
requires the sum of several series containing Bessel func-
tions. This can be done analytically only for A, =O. How-
ever, numerical calculations show that for n~O the vari-
ational ground-state energy is the same as given by Eq.
(1), the weak-field limit of second-order perturbation
theory.

The strong field limit A, ~~ with a constant is ob-
tained by observing that when p~O in Eqs. (22) and (25)
we can retain only the n =0 term. Numerical calcula-
tions show that all the contributions from the n &0 terms
are negligible. Since a =P /2 and b =1 when P~O, it is
easy to show that Eq. (22) reduces to

Fk ()(p) = Vk*&kS e

From this equation we can see immediately that the po-
larization cloud forming the polaron is, in this case, in-
dependent on the electronic coordinates. This result cor-
responds to the adiabatic approximation for the total
wave function, that is, the electronic and phonon wave
functions are separated. In fact, the ground-state energy
which follows from Eq. (29) and Eq. (24) reads

E, =———&A.ir/2
A

(30)
2 2

(29)

which is identical with Eq. (3) obtained with a product
wave function.

2
(31)

IV. NUMERICAL RESULTS AND CONCLUSIONS

The general expression for the phonon distribution
function given in Eq. (22) allows the calculation of pola-
ronic effects on Landau levels with n =0 and any m.

P
This set of states includes the ground state (m =0) and
the excited states with m&0. However, in this paper we
confine our discussion to the ground state only.

The second-order perturbation theory ground-state en-
ergy is given by

It has already been shown that the above result is also ob-
tained within the path-integral method. '

In Table I we present the variational ground-state ener-
gies (E, ) calculated with the numerical minimization of
Eq. (24) together with those resulting from the second-
order perturbation theory [F. in Eq. (31)] and path-
integral calculations (Ef) described in Ref. 8. We also
give the average number (n ) of virtually excited pho-
nons and the energy E, calculated from Eq. (30). Table I
shows that E„does not difFer from E and Ef in the
weak-field limit. However, for strong field E, is larger
than both Ez and Ef. The field strength at which E, be-
comes larger than E and Ef increases on decreasing the
Frohlich coupling constant a. We also note that (n ) in-
creases with the magnetic field suggesting that the
effective electron-phonon interaction is an increasing
function of the field strength.

The above considerations show that our variational
theory is capable of giving a consistent description of the
dynamics of the electron-phonon interaction under the
inAuence of a static magnetic field. The correct asymp-
totic limits for weak- and strong-field strength are
recovered. A comparison of our numerical results with
those obtained within second-order perturbation calcula-
tions indicates that this approach may fail in giving the
correct ground-state energy. This failure should not be
surprising if one recognizes that the electronic charge dis-
tribution associated to the electronic motion and the po-
larization field are linked in such a way [see Eq. (20)] that
the determination of energies and wave functions requires
the solution of a self-consistent problem. Moreover, since
(n ) increases with the field strength, it is clear that the
validity of the perturbative approach is doubtful particu-
larly k ~ 1.

Recently Larsen has questioned the variational char-
acter-of the path-integral method of Xiaoguang, Peeters,
and Devreese for polarons in a magnetic field. He has
shown, evaluating the fourth-order perturbative correc-
tions to the ground-state energy, that the path-integral
method ceases to give an upper bound to the exact
ground-state for A, & 1.5 and in the limit +~0. Our vari-
ational calculations confirm this behavior and show that
the path-integral method is unreliable even for large
value of o.. As a matter of fact, it is well known the
path-integral method is not well defined from a
mathematical point of view. The problem is that the ac-
tion is a complex rather than a real function and this im-
plies that a variational principle cannot be proved. How-
ever, Xiaoguang, Peeters, and Devreese have found that
in the weak-field region the polaron behaves as a rigid en-
tity while in the strong-field region the polarization can
no longer follow the electron motion. Even if their con-
clusion is correct on physical grounds, the actual
ground-state energies disagree with our variational calcu-
lations.
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