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Diamagnetism as a probe of exciton localization in quantum wells

K. J. Nash and M. S. Skolnick

P. A. Claxton and J. S. Roberts
Science and Engineering Research Council Central Facility for III VS-emiconductors,

Department of Electronic and Electrical Engineering, Uniuersity of Shield, Mappin Street, ShefPeld Sl 3JD, United Kingdom
(Received 27 September 1988)

Exciton photoluminescence (PL) is an important technique for the characterization of quantum
wells (QW's). We discuss the etfect of localization on the diamagnetic energy shift of an exciton in a
QW. It is shown how the diamagnetism of an electron in the ground state, with arbitrary geometry,
depends on the dimensions of its wave packet. We consider the properties of free excitons in QW s,
introducing an effective electron-hole interaction. We use dimensional analysis to relate the finite-

barrier problem to the simpler case of perfect confinement. For a bound exciton, localization in the
plane of the QW causes the diamagnetism to be smaller than for a free exciton. The efFect of locali-
zation is not important if the range is much larger than the free-exciton Bohr radius. The exciton
diamagnetic shift is reduced by localization in 10 and 20 A (In,Ga)As/InP QW s grown by solid-

source molecular-beam epitaxy. Uncertainty about the value of the free-exciton diamagnetic shift
limits the sensitivity of the diamagnetism as a probe of exciton localization. Despite this, the
method still provides valuable information on exciton localization, particularly when combined
with studies of the phonon sideband of PL.

I. INTRODUCTION

Low-temperature photoluminescence (PL) is one of the
most important techniques for the characterization of
quantum wells (QW's). ' The PL spectrum is dominated
by excitonic recombination. ' Most of the information
available from low-temperature PL originates in the
study of excitons and often includes comparison with the
excitonic states observed in absorption-type experiments
such as photoluminescence excitation (PLE) spectrosco-
py, photoconductivity, or electroreAectance. ' The exci-
ton diamagnetic shift is one quantity that is frequently
studied. ' In this paper we consider how the diamag-
netic shift is related to the spatial extent of the excitons
observed in PL.

Except in QW's of very high quality, emission occurs
at a lower photon energy than the excitonic absorption. '

This "Stokes shift" arises because at low temperature the
excitons that recombine radiatively are bound in
disorder-induced states in the low-energy tail of the exci-
ton band. These states observed in PL have a very low
density and therefore do not play a significant role in ab-
sorption processes.

Some properties of the luminescent excitons cari be
determined from the PL spectrum. The exciton localiza-
tion energy is equal to the Stokes shift. Information on
the spatial extent of these bound excitons, in the plane of
the QW, is less direct. Both the strength of the phonon
satellites of exciton PL, ' ' and the exciton diamagnetic
shift, are determined by the dimensions of the bound-
exciton wave packet, albeit in a complicated mariner.

The defects that bind excitons in a QW do not neces-
sarily have rotational symmetry about an axis normal to

the plane of the QW, but are likely to be elongated in one
direction of this plane. In the preparation of III-V com-
pound semiconductors by molecular-beam epitaxy (MBE)
or metalorganic chemical vapor deposition (MOCVD),
the crystallographic growth surface is usually (001). The
point sytnmetry of the unreconstructed (001) surface is

Cz, . Therefore the [110] and [110] directions in the
growth surface are not related by symmetry, although
these same directions are symmetry related in the bulk
crystal. The low symmetry of the (001) surface is
relevant, even in thick layers of material, when defects
have been incorporated at the growth surface. For exam-
ple, the bound-exciton PL of certain defects in thick lay-
ers of M BE GaAs is strongly polarized parallel to
[110]. ' ' Each distinct center with strongly polarized
emission is a complex of a small number of defect atoms,
incorporated at the growth surface with [110]preferred
to [110]as the direction of the electric dipole.

The efFective potential that binds an exciton in the
plane of a QW arises not from point defects, but from
fluctuations in well width or alloy composition. Here,
too, the inequivalence of the [110]and [110]directions of
the growth surface can be important. For example,
refiection high-energy electron diffraction (RHEED) stud-
ies have shown that the MBE growth of GaAs proceeds
by the formation of monolayer islands elongated along
the [110]direction. The width fluctuations that always
occur in a QW are likely to be elongated. We do not
have specific evidence for such elongation in our QW's
but, for generality, we discuss defects of arbitrary shape
as well as the more frequently considered case in which
the defect has rotational symmetry about an axis parallel
to the growth direction.
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We begin our study of diamagnetism by considering, in
Secs. II and III, the diamagnetic energy shift of a single
electron in a QW, and show how this is related to the
geometry of the electronic wave packet. Section IV
discusses exciton diamagnetism. In Sec. IV A we use di-
mensional analysis to express the properties of free exci-
tons in QW s with finite barriers in terms of results previ-
ously calculated for perfect confinement in the QW (i.e.,
infinite barriers). In Sec. IV B we argue that the diamag-
netic shift is always smaller for a localized exciton than
for a free exciton. Section IVC considers the effect of
high magnetic field, and Sec. IV D discusses nonparaboli-
city of the electron subbands.

In Sec. V we present experimental studies of the exci-
ton PL for a series of (In,Ga)As/InP QW's grown by
solid-source MBE. In the narrower QW's the exciton
diamagnetism is smaller than the free-exciton value, es-
timated using position-dependent effective-mass theory.
We attribute this reduction of the diamagnetism to exci-
ton localization. In Sec. VI we discuss the use of di-
amagnetism as a probe of exciton localization.

II. DIAMAGNETISM OF A BOUND ELECTRON IN
EFFECTIVE-MASS THEORY

In effective-mass theory, the Hamiltonian for a single
electron in a uniform magnetic field B is

Ho =H00+ S-B,gPa

e 1 1HI= —P A+ A
e m

p
e

2 ~'
~II

2m,*

The Hamiltonian

1
~oo =p p

—e V, (r)
2m

applies when 8=0. For a given direction of the magnetic
field B, let us express the eigenvalues; E of the full Hamil-
tonian H,~ as a power series in B, in which, E„ is the
term nth order in 8. Let the eigenfunctions of H00 be
li ) =g;(r), corresponding to eigenvalues, EO. Crriffith29

has shown that for the case of a bound state of V, (r), ,E„
is gauge invariant for n 2. His proof is for the case
V- Ao=V g=0 with m,*=const, but is readily general-
ized to arbitrary Ao(r), y(r), and m,'(r).

The nth-order energy;E„ is easily evaluated. The spin
term in Ho 'contributes precisely +—,'gp~B to the energy.
Ei (th.e Zeeman energy) is the sum of this spin energy

and the first-order perturbation due to Hr. ;E2 is the
sum of two terms:

IE2 —iE2+iE2 (3)

H, s.=[p+e A(r)] [p+e A(r)]1

2m,*(r)

—eV, (r)+ S B,gPa

where B=VR, A, the charge on the electron is —e,
pii =eiii/(2m, ), V, is the potential for. electrons, and the
other symbols have their usual meanings. The spin-orbit
term in H,~ is ignored. The usual kinetic energy term
has been generalized for a position-dependent effective
mass m, (r). This modified kinetic energy is Hermitian,
gauge invariant, has the correct form for m, =const, and
gives "current-conserving" boundary conditions ' at a
discontinuity in m,*.

The most general time-independent form of the vector
potential A(r) is

where;E2 is the first-order perturbation due to Hrr and

,E2 is the second-order perturbation due to H, . Griffith
shows that;E, and;E2 are gauge invariant, but that the
separate contributions, E2 and; E2 to;E2 are not. ;E2 is
the diamagnetic energy, and we shall consider the bounds
that can be placed on its value.

The first contribution to the diamagnetism is

,-E2= g A ) &0 .
2m

(4)

The second contribution to; Ez is the "second-order Zee-
man term, "

I& i IIfil j & I'

j(&i) i 0 j 0

A= Ao+ VX (2)
For the ground state (i =0), the well-known result of

second-order perturbation theory gives OEz ~0. Substitu-
tion in Eq. (3) yields

where Ao(r) represents one choice of potential, and y(r)
is an arbitrary function. The eigenvalues; E
(i =0, 1,2, . . . ) of the Hamiltonian H,& are gauge invari-
ant, i.e., independent of y(r). Let us consider the mag-
netic field as a perturbation and, following Griffith,
write

Ho+HI+ H

where

OE2 ~DER .

The value of OEz depends on the choice of gauge; the
smaller OEz is, the better it is as an estimate of OE2, and
the smaller the magnitude of OEz is. In Appendix A we
show that there exists a choice of A(r) such that
OEz =OEM'. Thus, for any fixed Ao(r), the minimum value
of OE2 with respect to variations in y(r ) is the exact value
of the ground-state diamagnetic energy OE2. A.iso, apply-
ing Eq. (4) to the ground state gives OEz )0.
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III. EXAMPLES OF DEFECT STATES AND THEIR
DIAMAGNETISM

A. Axial or spherical symmetry

If the defect has axial symmetry, i.e., V, (r), m,*(r)
have an axis of rotational symmetry that lies parallel to
8, then 8 L is a constant of the motion. We choose the
Dingle gauge A= —

—,'r R, 8, with the origin on the defect
symmetry axis. H, is equal to e /(2m, *)B L.

The 8 =0 ground state ~0) has magnetic quantum
number m& =0. Thus (B L) ~0):—0 and so

(i ~e/(2m, *)B L~O) =0 .

It follows that the second-order Zeeman term +z van-
ishes, and the diamagnetism is equal to the ground-state
expectation value

(defining the direction of 8 as the z direction).

B. States extended in one dimension in the plane normal
to magnetic field

Suppose the confining potential V, (r) and the effective
mass m,*(r) are functions of x and z only, with magnetic
field 8 parallel to z. With B=0, the stationary states are

P(x,y, z)=e ' (I)(x,z) .

Griffith's theorem does not apply to these unbound
states. The perturbation theory is still gauge invariant,
but there is the complication that the lowest unperturbed
state of the continuum does not necessarily evolve into
the lowest perturbed state when B is increased from zero.
This property depends on the choice of gauge.

With the Landau gauge A=(O, B(x —xo), 0), k~
remains a good quantum number for 8%0. If xo is
chosen so that ((x —xo)/m, *)=0 then, to second order
in 8, the state with k =0 remains lowest for 8%0. Per-
turbation theory is valid for small B if the unperturbed
ground-state wave function is confined in the x direction
by V, (x,z).

With this choice of gauge, the second-order Zeeman
term vanishes for the state with k =0, and the diamag-
netic shift is equal to

In (homogeneous) 2D or 3D systems, m,* is indepen-
dent of position; but in a layered structure (with inter-
faces perpendicular to z ) the barrier material will have a
larger effective mass than the well, at least in a type-I ma-
terial system. The discontinuity in effective mass means
that the effective barrier height depends on the in-plane
wave vector.

For a free electron in a QW the Schrodinger equation
is separable. When B =0 the solutions are
%k, (z, )exp(ik p, ), where (Hk, E)%—,1(z, )=0,

fi d 1 d
2 dz, m,~(z, ) dz,

Ak —eV, (z, )
2m,*(z, )

(9)

by using the Hellmann-Feynman theorem to find the
derivative of the eigenvalue of Eq. (9) with respect to k .
The k dependence of %'k, (z) implies nonparabolicity of
the in-plane dispersion relation; we ignore this k depen-
dence and the resulting nonparabolicity, setting k =0 in
%1„(z). Then we approximate the ground-state wave
function po as the product $0(x,y, z)=qlo, (z)%~~(x,y).
Thus,

,y =',y
m~

where f (x,y) is a function of coordinates in the plane of
the QW.

It is convenient to express the diamagnetic energy oE2
in terms of the "diamagnetic length" ad, defined by

2eR =4
P8

The results of Secs. IIIA and IIIB can be written in
terms of ad, noting that these expressions derived using
m, are exact only if m, is position independent.

For the case of axial symmetry,

V, (z, ) is the potential due to the QW for k=0, and

p, =(x„y, ). The wave functions %k, (z, ) are henceforth
assumed to be normalized.

The in-plane mass for the electron at k=0, m „is
determined from Eq. (9) as

= j" dz, lq'k, (z, )l'

ad= —'(x +y ) .d 2

C. Application to multilayer systems

We consider an electron bound in an imperfect QW,
with B normal to the QW interfaces. In expressions for
the diamagnetism such as Eq. (8), it is convenient to take
the effective mass m,' outside the expectation value. We
introduce an approximation which makes this possible
even when m,* is position dependent. Then we express
the diamagnetic energy shift in terms of a length ad.

For the hydrogenic donor, the analytic solution in three
dimensions ' and in two dimensions leads to the well-
known results ad =aii in 3D, and ad =

—,'U'3as in 2D (for
B perpendicular to the plane), where a~i is the effective
Bohr radius (4~ecoll )/(e m,*). For s'tates extended in
the y direction (perpendicular to B),

ad =2(bx )

where Ax is the uncertainty in x.
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D. Defects whose form is unknown

The diamagnetic length ad can be determined by mea-
surement of the diamagnetic energy shift, and is a length
scale related to the dimensions of the wave packet for the
electron ground state. In Sec. III C, ad is calculated from
the ground-state wave function fo for certain simple
cases. Now we consider the value of ad for an arbitrary

We take B to be parallel to z and choose the origin of
our coordinates so that (r/m, ")=0. We first treat the
case where m,* is position independent.

We can obtain a useful inequality by applying the
gauge of Sec. III B, A=(O, B(x —xo), 0), where
xo=(x). Now, (A )=8 (bx), where bx is the un-

certainty in x; but the second-order Zeeman term does
not necessarily vanish, and so

(b,x) ~
—,'ad . (12)

We can choose the x axis to lie along an arbitrary n in the
plane normal to B. If we know the value of the di-
amagnetism, and hence ad, Eq. (12) places a lower bound
on the spread of the wave function along any direction
normal to B. It is the best possible lower bound, if there
is no other information on the nature of the defect
ground state. Equality is achieved in the limit where the
defect state is extended in one direction normal to B so
that (b,x ),„))( b,x );„(Sec.III 8).

Figure 1 shows an example of an elongated defect, to-
gether with the vector potential A(r) for four choices of
gauge, and the value of ( A ) for each. The figure shows
that the value of ( A ) depends strongly on the choice of
gauge, as it does for any defect. It also shows that for the
elongated defect, the value of ( A ) for the Dingle gauge
does not give a good estimate of the diamagnetic energy,
although it gives the exact answer for a defect with axial
symmetry (Sec. III A). For any A such that B=VX A,
[e /(2m~, )]( A ) is an upper bound on the diamagnetic
energy: The smallest value is the best estimate. The ac-
tual value of the diamagnetism determines a lower bound
on b.(r n), the spread of the wave function for directions
n perpendicular to B. For the case illustrated in Fig. 1,
the diamagnetic length ad is slightly less than 2' Ay.

Suppose we want to calculate the diamagnetism of an
electron in the ground state of a particular defect. Equa-
tion (12) places an upper bound on ad and is the best pos-
sible upper bound if (b,x );„is the only information we
have on the defect ground state.

The question of a lower bound on ad is more prob-
lematic. If the defect ground state is intermediate be-
tween a state with axial symmetry (Sec. III A) and a state
free in one direction normal to B (Sec. III B), for example
the elongated defect of Fig. 1, then we expect
ad = A, (b,x );„with 1 & A. & 2. However, defects with iso-
tropic ( r, r ) provide an interesting contrast. The quan-
tity (r, r ) is a second-rank tensor, and the "isotropy"
refers only to directions in the plane perpendicular to B.
If (r;r~ ) is isotropic then ((r n) ) is independent of n,
i.e. , (hx);„=(b,x),„. Thus, the Dingle gauge chosen in
Sec. III A gives

2

oEz= B (bx);„.4m,

However, if the defect lacks axial symmetry (i.e. , is aniso-
tropic) then oE2 is nonzero in the Dingle gauge, and so
A, (1. An extreme example of an- anisotropic defect with
isotropic (r, r ) is shown in Fig. 2. The potential is
chosen so that, in the limit R /8'~ ~, Ax ~ R. A small
repulsive potential is needed near the origin to prevent
the formation, in this limit, of a bound state that is in-
dependent of R. It is possible to choose the gauge so
that when R /W —+Do, oEz is related only to W (Appen-
dix B). Thus there is no general lower bound on ad in
terms of (b,x );„or (b,x ),„, though it seems likely that
ad can be given a lower bound in terms of a loosely
defined "minimum dimension" of the defect (in this case
W), which is also closely related to the actual value of ad.

Another defect geometry with an interesting diamag-
netic shift is the broken ring of Fig. 3. An unbroken ring
has axial symmetry, and thus ad =(R —

—,
' W)/&2. How-

ever, when the ring is broken the gauge can be chosen so
that, when R /W~ ~, oE2 is related only to W (Appen-

(a)

r s

r t )

(c)

FIG. 1. The electron is confined within the curve (a contour
in the x-y plane), which represents the edge of an elongated de-
fect in the plane of a QW. The length and direction of each ar-
row form a vector proportional to the value of A at the mid-

point of the length of the arrow. A( r ) is illustrated for
four choices of gauge; for each choice we give the value of
( A'). (a) A=( —By, 0,0); ( A') =B'(by )'. (b) A=(O, Bx,O);

( A') =B (bx) . (c) A= —'( By, Bx,O); ( A ) = —'B [(b )x-
+(by )']. (d) A= ( —B(y+yo), 0, 0); ( A ') =B'[(by )'+yo].
The coordinate system used in these expressions has its origin at
the defect center of symmetry, so that the expectation value

(r/m, *)=0.
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R

FIG. 2. Edge (defined as in Fig. 1) of an anisotropic defect
with isotropic (r; r, ).

dix B). As for the defect of Fig. 2, W is the "minimum
dimension" of the defect that is likely to be related to ad.

If the potential that confines an electron to the broken
ring is finite, the wave function will penetrate the barrier
which constitutes the gap in the ring. The diamagnetism
will be very sensitive to the probability density in the gap.

When rn,' is position dependent the bound given by
Eq. (12) is no longer exact, but is subject to the approxi-
mations discussed in Sec. III C.

IV. THEORY OF EXCITON DIAMAGNETISM
IN A QUANTUM WELL

A. Free excitons

The spread of the electron and hole wave functions
from the QW into the barrier material has an important
effect on the properties of the exciton. We introduce an
approximate form for the electron-hole interaction which
leads naturally to a simple quantification of this spread.
The properties of a free exciton in a QW with potential
barriers of finite height can then be expressed, using di-

where

g2 d2 d'2

2mme dx dg

2

+ U(p),
4m@,~o

2+ 22Mph dxp

(13)

mensional analysis, in terms of the corresponding results
for an exciton perfectly confined in a QW. The latter can
be obtained from published calculations. "

The penetration of the wave function into the barrier
also afFects the in-plane electron mass m~, [Eq. (10)]. For
wide QW's, m, is close to the 3D electron mass in the
well material; as the well width decreases and the wave
functions penetrate the barrier more and more, m, in-
creases towards the 3D electron mass in the barrier ma-
terial (Fig. 4). The free-exciton diamagnetism is very sen-
sitive to I,.

The hole subbands in a QW (Ref. 37) are much more
complicated than the electron subbands because the ki-
netic energy has the four-band Luttinger form. For
k =0 only, the energies and wave functions %'„h (z„)of the
heavy-hole subbands are given by the eigensolutions of a
Hamiltonian with the same form as Eq. (9). ' The in-
plane dispersion of the heavy-hole subbands depends
strongly on the mixing of heavy- and light-hole wave
functions which occurs for k&0, is significantly nonpara-
bolic, and cannot be expressed in a simple form like Eq.
(10). We take the lowest heavy-hole subband to have
constant in-plane effective mass rn I, . Recent work
which uses the full Luttinger Hamiltonian is briefly dis-
cussed in Sec. VI.

Henceforth, the k dependence of 'Pk, (z) and 'Pkh(z) is
always neglected: We set %'k =NO and drop the subscript
k. All forms of nonparabolicity are also neglected.

If the QW is neither too narrow nor too wide, the in-
tersubband excitation energies are large compared to the
exciton binding energy, and the overlap of the exciton
ground-state wave function with subbands other than the
lowest can be ignored. The motion of an electron-hole
pair in the plane of the QW is governed by the Hamil-
tonian

Ul
Ul
& 0.05.

~~
4J
Ch7

UJ

100
Well width a (A)

200

FIG. 3. Edge (defined as in Fig. 1) of the broken-ring defect.

FIG. 4. The effective mass m~, for motion in the lowest elec-
tron subband, as a function of well width. Calculated from Eq.
(10) for an Ino 53CTao 47As/InP QW.
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P (x») P Ph P. =(x,», » Ph (xh 3h )

The effective interaction U(p) is the 2D Fourier trans-
form of f(q—)/q, where

f(q)= I dz, f dzh~e, (z, )~'~eh(zh)~'

Xexp( —q~z, —
zh ~) .

H„i=
p

1 d d 1+
2

+ U(p)
2 dx dg a~

(16)

where a~ is the effective Bohr radius

The Hamiltonian, Eq. (13), can be written as a kinetic
energy term representing the center-of-mass motion, plus
the Hamiltonian for the relative motion

Now, following the approximation due to Price, we
write f(q ) as

4ne, ~Oh
Qg =

e p
(17)

1f 'q'= 1+ ,'L. -q

where

= f /~, (z) /' /eh(z) /'dz .

(14)

(15)

and p is the reduced mass mz, mph /(mz, +m h ).ph
In the QW there is a discontinuity in e' at each inter-

face. A full treatment of the electron-hole interaction in
a QW requires the discussion of image charges. In the
present case, the fractional discontinuity in e is small,
and we interpolate between the values for large and small
well width a with the formula

where Ho, &o are Struve and Neumann functions of zero
order. Thus Price's approximation gives a universal form
for the real-space effective interaction, which has the
correct behavior for large p and the correct singularity at
p=O. It is particularly convenient that this approximate
electron-hole interaction has a closed form both in real
space and in reciprocal space.

e~
200-

OP

~ ~
OP

V
UJ

100
Well width a (A)

200

FIG. 5. EA'ective well width L, defined by Eq. (15), as a func-
tion of well width a. Calculated for an Ino 53Crao 47As/Inp QW.
The dotted line is L =a.

This expression has the correct form at q=O and for
large q and is also a good approximation for intermediate
q. L is a length, which is equal to the well width a if
'P, lz), %'h(z) are perfectly confined in the QW. Thus L
can be considered to be an "effective well width, " equal
to the width of the QW that would have the same
electron-hole interaction if perfect confinement were as-
sumed. Figure 5 shows L as a function of well width for
an Ino 53Gao 47As/InP QW.

Equation (14) is equivalent in real space to

U( )
377 ~ 3p ~ 3p
2L ' L ' I

= f dz ~%', (z ) ~

&ea

Now, Price's expression for f(q), Eq. (14), is a good
approximation; therefore the form factor f(q ) for wave
functions %,(z), %h(z) may be approximated by the f (q)
for any other wave functions tahich have the same L.
This correspondence in the electron-hole interaction for
different wave functions exists whether or not the
description of the electron-hole interaction explicitly in-
volves f (q).

The Hamiltonian for the relative motion of the elec-
tron and hole in a QW, Eq. (16), thus has the length scale
as, the energy scale E~ =Pi /(2@a~ ) (the three-
dimensional effective Rydberg energy), the dimensionless
parameter (L /az ), and no other parameters. The results
of calculations of exciton properties may be generalized
by expressing them in terms of a~, E~, and L. In partic-
ular, the results of calculations that assume perfect
confinement of the electron and hole in the QW can be
generalized to the case where the penetration of the bar-
rier is treated, by replacing the well width a by the
effective width L. Two significant assumptions have been
made in reaching this conclusion. The first is that the
electron and heavy-hole in-plane dispersion curves are
parabolic with effective masses m, and m h, respectively
(absorbed into the reduced mass p); a full treatment of
nonparabolicity would introduce further dimensionless
parameters. The second assumption is that the intersub-
band excitation energies are large compared to the exci-
ton binding energy. This assumption breaks down both
for very narrow and for very wide QW's; again, this
breakdown is manifested by the appearance of additional
dimensionless parameters.

The method can be applied, for example, to the binding
energy E&, of a free exciton in a QW. Both Bastard et
al. and Shinozuka and Matsuura have calculated
E&, /Ez as a function of a /az, i.e., have found the func-
tion u(x ) such that E&, =Ez u (a /as ) for a QW with per-
fect confinement. The generalization to the case of finite
barriers is E„=Ecru(L/as), with the same function
u(x). The value of L refiects the spread of the electron
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and hole wave functions normal to the plane of the QW.
Equation (15) and the a dependence of L (Fig. 5) express
quantitatively the "spilling of the wave function" out of a
QW, with which Greene et al. explain the a dependence
of their calculated E„. Their E„has its peak value for
a =30 A in GaAs/Ga07Alo 3As QW's. Rogers et al. '

describe the exciton binding energy with an empirical
"dimensionality parameter" D, ~ At zero magnetic field

D& =v/4.
The unitary transformation given in Ref. 44 reduces

the problem of a free exciton in a magnetic field to a
Schrodinger equation in terms of the relative coordinate
p, in which magnetic terms are added to the Hamiltonian
for relative motion, Eq. (16). The electron-hole interac-
tion has rotational symmetry about the z axis, and the
free-exciton diamagnetic shift I; E2 is given by

FE2= (x +y )

[cf Eq. (7)]. We can define the diamagnetic length ad,
for the exciton ground state (whether free or bound) by

E2= ad (18)
4p

where E2 is the exciton diamagnetic energy. Fad, the
free-exciton value of ad, is equal to the ground-state ex-
pectation value —,'(x +y ) and can be expressed as
Fad-=asm(L/as). The function w(L/a~) is obtained,
by the method discussed above, from the calculation of
Bugajski et ah. ,

"which assumes perfect confinement, and
which uses the trial wave function of Shinozuka and
Matsuura. w is equal to (x ) /as, whose square root is
plotted in Fig. 4 of Ref. 36. Figure 3 of Bastard et al.
plots (2w)'~ . Figure 1 of Bugajski et al. " plots a quanti-
ty equal to w multiplied by (in their notation) —,'y . The
empirical "dimensionality parameter" D 2, used by
Rogers et al. ' to describe the exciton diamagnetic shift,
is equal to w.

We calculate the eigenfunctions of Eq. (9) with
Ino 53Gao 47As masses I,*/I, =0.05, mh*/me =0.5, InP

masses I,*/m, =0.08, I&* /m, =0.6, conduction-band
offset 230 meV, valence-band offset 380 meV. mz, (a),
L(a) and as(a) are found from Eqs. (10), (15), and (17),
respectively, and are given in Table I, together with
w(L/as). In Sec. V we use these values to calculate the
free-exciton diamagnetism, and we compare the results
with experiment.

B. Bound excitons

A bound exciton is an exciton that is localized at some
defect. The binding potential that localizes the exciton
motion in the plane of a QW is most likely to arise from
fluctuations in well width or in alloy composition.
The former, and probably also the latter, are such in the
(In,Ga)As/InP system that a fiuctuation that is attractive
to electrons is also attractive to holes, in contrast to the
Coulomb field of a shallow donor or acceptor.

The potential energy for the two-particle (electron-
hole) problem is

V, (r, )+ V, (r, )+ V, '(~r, —r~~) .

When at least one of the particles of the exciton is tightly
bound by the defect potential, the effective-mass wave
function can be approximated as a product form. The
motion of the tightly bound particle (subscript 1) is dom-
inated by the single-particle binding potential V, ; the
other particle may also be tightly bound (by Vz) but, even
if V2 is negligible, the particle will at least be bound in a
pseudodonor or pseudoacceptor state by the Hartree po-
tential of the other particle (i.e., by V&2). The case in
which the hole is tightly bound and the electron is bound
mainly by the Coulomb attraction of the hole is similar to
the isoelectronic donor model of exciton binding at cer-
tain point defects in bulk semiconductors, and describes
the excitonic recombination in (In, Ga)As/InP QW's
grown by atmospheric pressure MOCVD. ' '"

When the wave function has a product form, the di-
amagnetism is the sum of separate contributions from the
electron and hole, and the analysis of Sec. III can be ap-
plied directly to the exciton problem. Thus

TABLE I. Theoretical and experimental parameters for the exciton diamagnetism in (In, Ga)As/InP
W's.

10 A
Well thickness

20 A 28 A 50 A

mp, , (m,, ), in-plane electron mass
0

a& (A), ' effective Bohr radius
L (A), effective well width
w(L /a~ )

Fad (A), ' FE diamagnetic length
Fad (A ), ' FE diamagnetic length

E2 (peVT ),
"' FE diamagnetic energy

E2 (peVT ), observed, low field

ad~ (A), observed

0.0719
94.7
82.7
0.50

66
83
28
14
48

0.0626
111.9
64.7
0.42

72
90
37
16
47

0.0584
121.9
66.1

0.41
77
97
46
45
77

0.0535
136.2
82.4
0.43

88
111
65
75
96

'Free-exciton (FE) value, calculated with m &
= ~.

b
ph

Taken from Bugajski et al. (Ref. 11), see Sec. IV A.
'Free-exciton (FE) value, calculated with mph: mp /0 3.
Calculated from E2 using Eq. (18), the theoretical mass mp, , and mp/
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Ph 2 Pe
ad/ +

mpe +mph mpe +mp

where ad, and adI, are single-particle diamagnetic lengths
for the electron and hole, defined by Eq. (11) with masses
m, and m &, respectively.

When neither particle is tightly bound, i.e., V, and V2
are weak or very extended, the exciton motion is dom-
inated by V, 2, the electron-hole interaction. The electron
and hole are extended over a large region R, but the
electron-hole motion is correlated and can be considered
as that of a free exciton whose center-of-mass motion is
bound within R. Thus as the minimum dimension of R
tends to ~, the bound-exciton diamagnetism approaches
that of the free exciton. Electron-hole correlation must
start to become important when the charge distributions
for both the electron and the hole have dimensions com-
parable to the radius for the internal motion of a free ex-
citon, i.e., Fad, the free-exciton value of ad„. The efFect

of localization on the diamagnetism is not significant if
the minimum range of localization is much larger than
~-ad . We therefore suggest that the diamagnetism of a
bound exciton is always smaller than that of a free exci-
ton; and, if it is much smaller or if a pseudodonor or
pseudoacceptor model is thought to apply, that it can be
interpreted in terms of the dimensions of the uncorrelat-
ed electron and hole wave packets. The limiting of the
diamagnetism by correlation contrasts with the behavior
of a single electron bound within the same region R, for
which ad is related to the minimum dimension of A, how-
ever large.

An apparent exception to the upper bound on the exci-
ton diamagnetism occurs when an electrostatic potential
localizes the electron and hole in separate, difFuse bound
states, far apart in the plane of the QW; however, in this
case the electron-hole pair can hardly be considered an
exciton.

penetration of the barrier by the electron and hole wave
functions increases. This means that the electron
efFective mass for in-plane motion, mp„becomes more
and more barrierlike (Fig. 4) and, for small enough well
widths, the e6'ective well width L„which measures the
spread of the electron and hole wave functions in the
direction perpendicular to the interfaces, increases (Fig.
5). These two trends are important in determining the
free-exciton diamagnetism as a function of well width
(Sec. IV A). They are expected from simple physical con-
siderations and do not depend specifically on the
e6'ective-mass theory.

Conduction-band nonparabolicity is also important
and is often considered in connection with diamagnetism
(e.g. , Ref. 10). It will cause some correction to L and, in
particular, to m „but no qualitative di6'erence to the
dependence of these quantities on well width. The size of
the nonparabolic correction to m, in narrow
(In, Ga)As/InP QW's is unclear. The nonparabolicity in
bulk Ino 53Ga047As is larger than predicted from k.p
theory. However, the efFect on the exciton reduced
mass p of the increased m, in narrow QW's is offset by a
reduction in m &

from the large value appropriate in wide
QW's towards the smaller value of the narrow-well limit.
This fact was first demonstrated by the interband magne-
toabsorption experiments of Rogers et al. ' on
GaAs/(Al, Ga)As QW's, although the precise value de-
duced for m

& depends on the method used to fit the exci-
tonic Landau levels at high magnetic field. ' ' ' Ossau et
al. ' have also argued that p is insensitive to well width,
using the four-band Luttinger Hamiltonian to calculate
the dispersion of the heavy-hole subband. It is very
difFicult to estimate the overall eA'ect of electron nonpara-
bolicity and the complicated structure of the valence
band on the free exciton diamagnetic shift.

V. EXPERIMENTAL RESULTS

C. High magnetic fields

The second-order perturbation theory for the di-
amagnetism is valid only if the magnetic length
I~ =(A/Be )' is somewhat larger than ad„. Thus, a de-
fect with a large value of ad„(and hence a large diamag-
netic energy) has a small value for the magnetic field at
which second-order perturbation theory breaks down.
At high field, bound-exciton energy levels can cross for
some binding-center geometries (e.g. , the unbroken ring
of Sec. III D). In contrast, the free-exciton ground state
at high field lies at some (weakly B dependent) binding
energy below the lowest free-particle Landau level.
An exciton bound at a simple defect probably behaves
similarly.

D. Nonparabolicity

Throughout this paper we have used position-
dependent efFective-mass theory. The "wave functions"
(envelope functions) are eigenfunctions of a second-order
Hermitian operator. As the well width is reduced, the

Photoluminescence (PL) measurements were per-
formed on an (In, Ga)As/InP structure (PMB117) grown
by solid-source MBE and discussed elsewhere.
The structure consists of five nominally lattice-matched
(In,Ga)As QW's with thicknesses d =110, 50, 28, 20, and
10 A, grown in that order on the same InP substrate, and
separated by 1000-A barriers of InP. The QW
thicknesses were measured by transmission electron mi-
croscopy 56 PL was excited by -50 m% cm-2 of 5145-A
Ar+-laser light and measured at 4.2 K in a magnetic field
of up to 9.6 T, directed normal to the QW interfaces.

The 4.2 K PL spectrum at zero magnetic field has been
reported in Ref. 25. Electron-hole recombination in each
QW gives rise to a single strong peak in the PL spectrum.
In the QW's with d ~50 A, this is the zero-phonon line
(ZPL) of exciton recombination. The spectrum also in-
cludes weak LO-phonon satellites of these ZPL's. ' Cou-
pling to LO modes of both InP and (In, Ga)As is ob-
served. The strengths of these satellites and their depen-
dence on magnetic field are related to the length scale of
exciton localization. '

The 110-A QW contains l.4 X 10" cm free elec-
trons, and in magnetic field the PL spectrum splits into
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lines corresponding to difT'erent free-electron Landau lev-
els. ' The free electrons have screened out the exciton
diamagnetic shift, so this QW will not be discussed fur-
ther.

Figure 6 shows the energy shift E(B ) of the ZPL for
each QW with d ~ 50 A. Experimental and theoretical
results are presented in Table I. F„E2(B),the quadratic
diamagnetic shift for a free exciton with m z

= ~, is cal-
culated using the theory of Sec. IVA and is plotted in
Fig. 6. Since ~„Ez(B)uses an overestimate of m i„ it is
expected to form a lower bound for the free-exciton ener-
gy shift FE(B ) at low fields, but it will exceed all experi-
mental energy shifts in the high-field (quasilinear) regime
(Sec. IV C).

The 50-A QW has a quasilinear energy shift for B )4.6
T, but slightly exceeds F E2(B) below this field [Fig.

(a) 50 A QW

4-

0::=-

8 - (b) 28A QW

4
E

~ ~ 0::= =-

I
8 (c) 20A QW

4

(d) 10 A QW

0

6(a)]. In the 28-A QW the quasilinear regime occurs for
B &6.0 T. The experimental values of E(B) lie below

Ez(B ) at low fields, but the difference is not large [Fig.
6(b)]. Exciton localization in the 50- and 28-A QW s is
not compact enough to be detected by comparison of the
experimental diamagnetic shift with our estimate of the
low-field free-exciton diamagnetism. The spread of the
electron and hole in the plane of the QW can be
represented by the uncertainty in their positions, Ax, and
Axh, respectively. The loose binding of the exciton in the
28- and 50-A QW's is confirmed by analysis of the
strength and magnetic field dependence of the phonon sa-
tellites, ' which shows that the bound exciton is localized
in a large region (Ax„bxl, ) 130 A). Since this spread is
somewhat larger than Fad, (values of which are given in
Table I for I h

= oo and m z =mz, /0. 3), any reduction
of the diamagnetic shift due to exciton localization is ex-
pected to be small.

The reasonable agreement between Fad (for m~h
= cc )

0
and the experimental ad in the 28- and 50-A QW's is fur-
ther supported by the high-field energy shift. The onset
of the high-field quasilinear behavior of E(B) occurs
when lii/Fad =1.4 in both QW's, in accord with the
qualitative arguments of Sec. IV C.

In both the 10- and 20-A QW's [Figs. 6(c) and 6(d)] the
diamagnetic shift at maximum field (9.6 T) is small (1.2
and 1.5 meV, respectively), refiecting a small ad„and so
the energy shift is expected to have a quadratic form. In
both QW's at 9.6 T, the experimental diamagnetic shift
E2 is less than half the value of F E2. It is also notable
that E2 drops considerably when the QW width is re-
duced from 28 to 20 A (Table I). We attribute the small
values of the diamagnetism in the 10- and 20-A QW's to
exciton localization, which causes the diamagnetic length
ad, and hence Ez to be smaller than for the free exciton.
The localization is more compact in the narrower QW's
because the inAuence of imperfections in the interfaces is
stronger. The phonon satellites are more intense in the
10- and 20-A QW's than in the 28- and 50-A QW's, and
much less sensitive to magnetic field, confirming that the
exciton is more compactly bound than in the wider
QW's. ' Combining the data from diamagnetism and
phonon satellite measurements, the exciton localization is
calculated to be rather more compact (hx„b,xh (60 A)
for the 10- and 20-A QW's than for the wider QW's. '

0::
I

5
lvlagnetic field (T)

10

FIG. 6. Energy shift of the exciton PL, measured at 4.2 K, as
a function of magnetic field. The circles are the experimental
values. The curves are the quadratic free-exciton diamagnetic
shifts F F2 calculated with the position-dependent effective-
mass theory of Sec. IV A (values from Table I). (a) 50-A QW;
(b) 28-A QW; (c) 20-A QW; (d) 10-A QW. For the 50- and 28-A
QW's the behavior is close to that of the free exciton. The small

0
experimental diamagnetism in the 20- and 10-A QW's is attri-
buted to exciton localization.

VI. DISCUSSION

The exciton diamagnetic shift in GaAs/Al„Ga& „As
QW's has been studied in Refs. 6—16. There is some
disagreement about the experimental value of the di-
amagnetic shift in comparable QW's. Now, the diamag-
netic energy is not quadratic in B for high magnetic
fields; in PL, the diamagnetism can be reduced by exciton
localization; and the Al fraction of the barriers may have
some effect (see Duggan, who has compared some of
these experimental results with calculations for parabolic
bands and perfect confinement of the QW wave func-
tions). However, not all discrepancies can be resolved by
taking these factors into account.
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APPENDIX A: THE GAUGE IN WHICH THE
ELECTRON DIAMAGNETIC ENERGY IS

((e /2m, )A )

Consider first a system whose ground state lo) is
bound. lo) is nondegenerate (apart from spin degenera-
cy) and therefore real, and Ht is an imaginary Hermitian
operator. Thus

(olH, lo) =o. (A l)

For a bound state, we may apply the results from Sec. II
that were derived from griffith's theorem. Thus, the di-
amagnetic energy +2 is equal to oEz if +z =0; using Eq.
(5), this condition implies that (i

l H, l
0 ) =0 for all i %0

H, lo) has no projection onto any eigenstate of Hop,
and so

H, lo&=o. (A2)

We vary A(r) by taking a fixed Ao(r), and adding the
gradient of an arbitrary function y(r) [Eq. (2)]. The con-

The sensitivity of the diamagnetism to the exciton re-
duced mass means that an accurate calculation of the di-
amagnetism requires a proper description of both the
fourfold degenerate valence band and nonparabolicity.
Recent calculations by Yang and Sham and by Bauer
and Ando ' of the free-exciton diamagnetic shift have in-
cluded a full treatment of the four-band Luttinger Hamil-
tonian. As stated by Yang and Sham, the agreement
of their calculation with the experiments of Ref. 6 is
poor. The results of Bauer and Ando ' agree well with
experiments of Ref. 12 on 120- and 180 A
GaAs/(Al, Ga)As QW's, although the agreement is best
when the energy and position dependence of the effective
masses is ignored and the 85:15 band-offset rule is used.
Clearly more work is needed, both to understand how to
calculate the diamagnetic shift when the hole is described
by the Luttinger Hamiltonian, and, in particular, to
resolve the apparent discrepancies between different ex-
perimental results.

The theoretical techniques used in Refs. 6—16, and in
the present work, require the assumption of parabolic
dispersion for the holes, in the plane of the QW, with an
estimate of the in-plane hole mass m z. m h is calculat-
ed to be somewhat smaller at k =0 than the heavy-hole
mass m&*, however, due to the large nonparabolicity, the
most suitable value for m & is not clear. The whole range
of experimental values reported for GaAs/(Al, Ga)As
QW's can be accounted for with choices of m~h that are
not implausible. This uncertainty about the value of the
free-exciton diamagnetism limits the sensitivity of the di-
amagnetic shift of exciton PL as a technique for assessing
the spatial extent of a localized exciton. This sensitivity
could be improved by a better understanding of the free-
exciton diamagnetism, either from theoretical considera-
tions or from absorption-type experiments on the same
samples. ' Even without this progress, the diamagnetic
shift is a valuable probe of exciton localization, particu-
larly when combined with analysis of the phonon side-
band of PL.

dition for oEz =0 can be expressed in terms of y by writ-
ing Eq. (A2) in full:

ttoV .VX +, (VX) (VPo)
1 2

me me

i 1 1
„Ao+Ao .p 4o. (A3)

though with the present method we know that

& ol(e'/2m, *)(Ao+ Vy)'Io &

is not merely stationary but has reached the value +z.
From Eq. (A3),

, V(for) fcz—1 1

m,* 0o

1
„Vfo

2

(A4)

where

iA 1P(r) = p', Ao+ Ao'
me

1
p P (r) .

me

Substituting from the Schrodinger
(Hpp pEp }go=0 Eq. (A4) becomes

equation

''v
2

1
, V[00(r)X(r)]

me

—[eV, (r}+oEp][gp(r)y(r)]=/(r) . (A5)

Equation (A5) is an inhomogeneous form of the
Schrodinger equation in goy, with P as the "forcing"
term.

id ~ QD(r)))(r)= D p A„+ Ar p 0)
iA 1

2
e e

=0

as for Eq. (Al). Thus P has no Projection onto fo and so
the solution to Eq. (A5) can be written as an eigenfunc-
tion expansion,

Id'r' P,*(r')P(r')
gp(r)y(r) =

)&o —Roi (wo]
)t(;(r)+Ago(r) .

(A6)

If ((e /2m, ")A ) is to exist we cannot permit a solution
of Eq. (A5) that grows exponentially as r~ ca; thus Eq.
(A6) is the most general solution, with A, as the only free

Following Eq. (6), this equation for y can also be ob-
tained as the Euler-Lagrange equation for

&& Ol(e'/2m, *)(Ao+ VX)'l0& =o,
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parameter. If the potential V, (r) in Hoo has no infinite
barriers, then the ground-state wave function $0(r) is
nonzero everywhere; hence a solution for y(r) exists.
This solution is unique apart from an arbitrary additive
constant arising from the A. term in Eq. (A6). The solu-
tion for A= Ao+ Vp is unique.

If there are regions from which go is excluded by po-
tential barriers of infinite height, the solution goy to Eq.
(A5) is also excluded, and y is undetermined in these re-
gions; but y is uniquely determined, apart from the A,

term, everywhere else, and this is sufhcient for any practi-
cal purpose. If the infinite barriers in V, (r) are regarded
as a limiting case of finite barriers, then y(r) in the bar-
rier regions depends on how the limit is approached.

In the derivation of Eq. (A3) we have assumed that ~0)
is a bound state. Consider now the case where the
motion is free in one direction, the y direction, perpendic-
ular to B. We have already found, in Sec. IIIB, the
gauge for which the diamagnetic shift is equal to OE2. By
direct substitution we can verify for this case that +z
and the orbital part of oE, vanish and that the vector po-
tential A(r) satisfies Eq. (A3). Thus Eqs. (A3) and (A5)
apply not only to a defect state of arbitrary extent in one
direction perpendicular to B, but also to the limiting case
where the motion in this direction is free.

We have demonstrated the existence of a vector poten-
tial for which the second-order Zeeman energy vanishes,
and the diamagnetism is given by ((e /2m, ')A ). The
solution Eq. (A6) involves an eigenfunction expansion
and is not simpler than the expression Eq. (5) for a non-
vanishing second-order Zeeman energy. However, the
existence of the solution implies that the exact diamagne-
tism can be found by variation of g to minimize
((e /2m, *)3 ). This variational principle can be used
to calculate the diamagnetism numerically; it requires
direct knowledge only of the ground-state density

~ go(r) ~

and does not make separate use of the Hamiltonian.

APPENDIX B: A GAUGE FOR THE DEFECTS
OF FIGURES 2 AND 3

We present a gauge for the defects of Figs. 2 and 3 that
has a low value of ( A ), dependent only on IV in the
limit R /W~ ac, but not necessarily the lowest possible
value. Each defect consists of elongated "arms. " We
choose A to be independent of z, with no z component;
and by analogy with Fig. 1(a), to be locally similar to the
Landau gauge, vanishing at the center of each arm and
pointing along its larger dimension. Following Eq. (2),
we first select a convenient Ao, and then determine a
suitable y by considering its contours in the x-y plane.

For the defect of Fig. 2, Ao = (0,Bx,0), with the origin
defined as the symmetry center (so that (r/m, *)=0, as
in Sec. III D). In the region of the "vertical" arms (those
parallel to the y axis), for ~y~ ) W, we set y=0; and for
the "horizontal" arms (parallel to the x axis) for ~x ) 8',
we choose y= —Bxy. If the electron is confined to the
defect by finite potential barriers, then ( A ) is insensi-
tive to y(r) sufficiently far from the defect, where the
electron charge is exponentially small (in the limit of
infinite barriers, ( A ) is independent of y(r) outside the
defect). Thus contours of g that pass through the hor-
izontal arms can be deformed to avoid the vertical arms.
Within distance 8'of the origin, 3 is comparable to the
Landau gauge value and is independent of R. Thus, as
R/W~oo, the contribution to ( A ) from this region
tends to zero, with the charge density near the origin.
The limiting value of ( A ) depends only on W, as re-
quired.

For the defect of Fig. 3, a suitable gauge can be ex-
pressed very simply. Ao= —

—,'r X B with the origin at the
center of the ring. In the region of the defect charge,
y = —

—,
' (R —,' W ) B8, whe—re 8= tan '(y, x ), sr & 0 & ~. —

Beyond the defect, the contours of g can be deformed to
pass through the gap in the ring, and can be closed.
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