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The tight-binding approximation and the recursion method are used to study the size dependence
of the band gap for small CdS and ZnS crystallites (20-2500 atoms). Because of the lack of accurate
experimental data, a simple model of the crystal is considered; one which has no dangling bonds and
a symmetrical shape. It is then possible to have a good evaluation of the band gap, even for the
largest crystallites. The optical-absorption spectra exhibit an excitonic peak; we determine the peak
position from a simple evaluation of the binding energy. The results are compared with the results
of other calculations based upon the effective-mass approximation and some experimental data.

I. INTRODUCTION

Size effects on the electronic properties of semiconduc-
tor crystallites is a subject under intense investigation.!
It is of fundamental interest to understand how these
properties vary as the crystallite size grows from the mol-
ecule to the bulk material. In addition, new applications
of semiconductors, using, for example, unusual catalytic
and photochemical phenomena, could be developed.

A lot of experimental difficulties arise from the syn-
thesis and characterization of small crystallites. Among
the different methods, synthesis by controlled chemical
reactions has been used extensively.?”’ Small crystallites

of CdS and ZnS of 20-50 A diameter have been obtained..

Strangely, they exhibit the same zinc-blende structure
(with the same lattice constant) as the bulk material. Un-
fortunately, the shape and the surface structure are not
well characterized, although it is clear that they strongly
depend on the surrounding medium. Interesting features
have been pointed out by optical-absorption experiments.
For example, the threshold of the optical spectra is blue
shifted by several tenths of an electron volt and a peak
appears when crystallite size decreases. This peak is as-
signed to an exciton energy level. Its position depends on
the average size of the crystallites in solution and its
shape is related to the distribution of the sizes.

Calculations of this energy level based on the effective-
mass approximation have been proposed.®”!! All the au-
thors have used the same Hamiltonian except Brus,®°
who includes the potential energy due to dielectric polar-
ization. They have solved the Schrodinger equation by
variational methods which differ by the choice of the trial
wave function. However, similar results are obtained for
the smallest crystallites, typically for a radius lower than
that of the bulk exciton. In this case, they have shown
that the electron and the hole are practically uncorrelat-
ed and can be considered to be individual particles. In
this range of sizes a good evaluation of the ground state is
given by Kayanuma:'°
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where m* and mj are, respectively, the effective masses
of the electron and the hole, and d and € are the diameter
and the dielectric constant of the semiconductor. The
first term is the kinetic energy of both the electron and
the hole. The second is their Coulomb attraction. The
last term corresponds to the correlation between the two
particles. For a CdS crystallite of 50 A diameter these
three terms take, respectively, the values 0.42, 0.18, and
0.015 eV. The kinetic energy is dominant but the
Coulomb interaction cannot be neglected. The correla-
tion term is about 7% of the total energy, confirming that
the two particles can be considered to be independent.
The effective-mass approximation apparently gives a
good understanding of the blue shift of the optical-
absorption threshold. However, this approach fails for
the smallest crystallite sizes because of the oversimplified
description of the crystal potential as a spherical well of
infinite depth. This can be understood from the band-
structure scheme. In the effective-mass approximation
the highest valence band and the lowest conduction band
are assimilated closer to their extrema (at k =0) to para-
bolic curves of the form #?k2/2m *, where k is the ampli-
tude of the wave vector. As k increases, this expression
varies more steeply than the true dispersion relation. The
ground state of the spherical well is given by this disper-
sion relation with |k|=27/d (quantum size effect). Thus,
the first term in Eq. (1) is the difference between the gap
of small crystallites and that of infinite semiconductors.
Its value and consequently the exciton peak position will
be overestimated in comparison. with the true value for
the small diameters.

A better description of the band structure can be ob-
tained from a tight-binding framework. Since the atomic
structure is implicitly considered, this method is more
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adequate for small crystallites. In this paper we use it to
evaluate the band gap of CdS and ZnS crystallites as a
function of their size. The electronic energy levels are
the eigenvalues of the Hamiltonian matrix H and the
main problem arises in trying to calculate them, because
of the matrix size, typically ~10*. We use the recursion
method,'>!3 which does not require the storage of all the
matrix elements of H. A simple model of the crystallite is
developed. We have taken into account the experimental
data and the optimization of the precision of the numeri-
cal computations. First, we consider crystallites without
dangling orbitals. It is well known that these orbitals
create localized states in the gap and consequently make
its precise determination difficult. For this we work with
a basis of sp> orbitals and a computer program excludes
all such orbitals that are not involved in bonds. In fact,
the dangling orbitals are certainly saturated by molecules
of the colloid, but the real atomic structure of the surface
is not known. We think that our approach is reasonable
in the absence of precise experimental information.
Second, we build the crystallites by connecting the suc-
cessive shells of first-nearest neighbors. The crystallites
have the symmetry of the T, group and the precision of
the numerical computations is optimized, as will be de-
scribed later. For a comparison with experiments we
have to calculate the lowest exciton state. Since our cal-
culation gives the band gap of small crystallites, an evalu-
ation of the binding energy is required. The first term of
Eq. (1) is related to the band gap and the third one can be
neglected. Thus, the Coulomb attraction can be assimi-
lated to the binding energy. This term does not depend
on the effective masses and a correct value is expected.

In the following section we give more details of our
theoretical approach. In Sec. III we give the numerical
results for the band gap of CdS and ZnS. Finally, Sec. IV
is devoted to a comparison with the experimental data
and the results of other calculations.

II. METHOD OF CALCULATION

For a bulk semiconductor, the band gap is the energy
difference between the bottom of the conduction band
(BCB) and the top of the valence band (TVB). We extend
this definition to the crystallites, even though they have a
finite number of energy levels. The energy levels are ob-
tained by using a semiempirical tight-binding theory.
This method has been extensively used in solid-state
physics and is successful in the determination of the elec-
tronic properties of semiconductors.!*!3 It has also been
applied to metallic clusters, for which interesting features
have been pointed out.'®~ 13

With this method the energy levels and the wave func-
tions are, respectively, the eigenvalues and the eigenvec-
tors of the Hamiltonian matrix H. The matrix elements
of H are expressed in a basis of atomic orbitals or of
linear combinations of them (hybridization) in terms of
two-center integrals.!* In a semiempirical approach,
these integrals are considered as free parameters and
fitted to known band structures. Experimental work has
shown that the atomic structure of small crystallites is
similar to that of the bulk. Thus, the parameters can be
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adjusted in order to reproduce as well as possible the bulk
band structure. The conduction band is never fully de-
scribed by the tight-binding approximation. To obtain a
good description of the valence band and of the lowest
conduction band it is necessary to consider the interac-
tions up to the second-nearest neighbors with a sp> basis
or to include the d orbitals. However, we choose, for fa-
cility, to limit the interactions to the first-nearest neigh-
bors. In this case, a real improvement of the description
of the lowest conduction band is obtained by adding an
excited state s* per atom as was proposed by Vogl
et al.’® Only 13 parameters are required and they are
calculated in order to obtain a correct band structure
compared with those obtained by more elaborate
methods or by experiments. Application of this method
to CdS and ZnS will be discussed in the next section.
Note that the elements of the Hamiltonian matrix can be
easily modified if the interatomic distances differ from
those of the bulk. We should also take into account the
relaxation around a defect or at the surface. For exam-
ple, the d ~2 law of the bond-orbital model of Harrison'
could be used.

Once the tight-binding parameters are known, we can
calculate the eigenvalues of H. This matrix is formed by
5X5 block matrices describing the interactions on the
same atom (intra-atomic) or between two first-nearest
neighbors (interatomic). If N is the number of atoms in
the crystallite, the dimension of H is 5N and a direct di-
agonalization becomes impossible for several hundred
atoms. To circumvent this problem we use the recursion
method. This is an iterative algorithm which does not re-
quire the storage of all the elements of H. A lot of papers
have been published on this method,'>!3 and we study its
application to crystallites.

The recursion method generates a basis set of vectors
|j ) from a “starting vector” |0). In this basis the Hamil-
tonian matrix is reduced to a tridiagonal matrix H of di-
mension M <5N. The basic relations are

|1)=(H —ay)|0) , (2a)
j+1)=(H—aplj)—b;lj—1), 1<j<M . (2b)

The diagonal and subdiagonal elements of H are respec-
tively a; and (b;)'/2. They are obtained by imposing the
orthogonality of the |j). Only two vectors occur on the
right-hand side of (2b) and the storage of all the elements
of H is not required. The relation (2a) shows that only
the wave vectors having a projection on |0) are generat-
ed. Thus, the eigenvalues related to the eigenvectors
which have no projection on |0) are not found from H,
and we can have M <5N. In other words, the recursion
method generates the tridiagonal matrix H, in the small-
est invariant subspace containing |0). We will see how
the choice of the crystallite shape and the starting vector
|0) give the smallest M value. This point is important
because the finite precision of computers imposes the cal-
culation of the smallest number of recursion coefficients.
As j increases, the orthogonality of the |j) deteriorates
and the elements of H, go away from their exact values.
In this case, H, must be truncated and only some approx-
imate eigenvalues can be expected. However, because H
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is a sparse matrix, its eigenvalues have some remarkable
properties. For example, the lowest eigenvalues are ob-
tained very accurately from a small number of iterations.
For the band gap the convergence is slower, but correct
values are obtained. In practice we calculate all the re-
cursion coefficients a; and b; for clusters of less than 100
atoms and we limit their number for larger crystallites.
In this latter case the stability of the band edges is
verified; in other words, additional coefficients do not
modify these levels in a noticeable way. The effect of the
truncation of H, for a finite system is at the present time
not clear and would require a more rigorous study. How-
ever, our empirical approach is sufficient for the present
purpose. Now, we develop three specific points of our
model: the crystallite shape, the starting vector of the re-
cursion method, and the surface atomic structure.

Since the value of M must be as small as possible to ob-
tain an accurate band gap, we consider crystallites having
the symmetry of the T, group. In this case, H can be di-
agonalized into block matrices related to the irreducible
representations A,, A,, E, T, and T,. Each block ma-
trix can be obtained independently in tridiagonal form
with the recursion method. This is the best way to gen-
erate the smallest number of recursions. The crystals are
built by connecting the successive shells of first-nearest
neighbors. They have two distinct shapes as a function of
the parity of the number of shells n,. It can be shown
that the number of atoms N is related to n; by the rela-
tions

N=21(10n}—15n2+26n,—9) for odd n, , (3a)
N=1(10n}—15n2+26n,—12) for even n, .  (3b)

This approach can appear somewhat arbitrary, but in fact
no specific shape has emerged from experiments. The im-
portant feature of our model is that the crystallites grow
in three dimensions. However, more realistic shapes
could be easily included in our computer program.

The five irreducible representations of the T; group are
obtained from an adequate choice of the starting vector
|0). There is no single set to generate them and we give
one possible choice. The 4, and T, representations are
generated, respectively, by the s and p orbitals on the cen-
tral atom of the crystallite. Since the T, levels are triply
degenerate, the three components of the p orbital give the
same energy levels and only one is necessary. The E and
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T, representations are obtained from a combination of p
orbitals on the four first-nearest neighbors of the central
atom. This combination must have a d-like character.
The A, representation is generated by a combination of p
orbitals on the 12 second-nearest neighbors of the central
atom. The starting vectors are given in Table I.

Finally, the atomic structure of the crystallite surface
must be considered. Experimentally this structure is not
well characterized. In fact, it depends on the experimen-
tal conditions. The molecules of the colloid react with
the crystallite surface and form a complex structure. It
may seem that the dangling bonds are saturated and no
corresponding state appears in the gap. However, the
lack of experimental data precludes an accurate modeling
of the crystallite surface. We have, therefore, chosen to
exclude the dangling bonds from the orbital basis. The
elements of the Hamiltonian matrix are expressed in the
basis of sp> hybridized orbitals. A computer program
detects the sp® dangling bonds and sets to zero their
intra-atomic energy and their interactions with the other
orbitals. It is the simplest solution and we do not intro-
duce any arbitrary interaction as would be the case if, for
example, we were to saturate the dangling bonds with s-
type orbitals.

III. NUMERICAL RESULTS

The tight-binding parameters of the sp’s* model can
be obtained in different ways. We follow the approach of
Vogl et al.'® by fitting them on nine points of a band
structure and on atomic levels (see Appendix). We have
taken the atomic levels of Ref. 19 and the energy levels at
the I" and X points from the experimental and theoretical
work?°726 (Table II). The origin of energies is taken at
the top of the valence band. The values of the bulk band
gap of CdS and ZnS are, respectively, 2.5 and 3.7 eV.

The parameters are given in Table III. An accurate
determination of the crystallite band gap involves a good
description of the highest valence band and of the lowest
conduction band. The comparison with more elaborated
calculations?* ~26 shows that the valence band is correctly
described except near the states denoted by =" (along
the line K} —T7s). This discrepancy is typical of the
first-nearest-neighbor approximation, as previously no-
ticed by Chadi and Cohen.?’” A better description re-
quires second-nearest-neighbor interactions. Wang and

TABLE I. Components of the starting vectors of the recursion method which generate the irreducible representations of the T,
group. The s, x, y, and z are the orbital notations. The (a,B,7) give the reduced positions of the sites. They must be multiplied by

a /4, where a is the lattice constant, for the real positions.

Al TZ E Tl Az
5(0,0,0) x(0,0,0) xz(1,1,1) x2(1,1,1) xy(1,1,7) xp(1,1,1) xy(2,2,0) xp(2,2,0)
%z(1,1,1) xz(1,1,1) xy(1,1,1) x3(1,1,1) %p(2,2,0) X 5(2,2,0)

xz(2,0,2) xz(2,0,2)
xz(2,0,2) X 2(2,0,2)
2(0,2,2) y2(0,2,2)
2(0,2,2) 52(0,2,2)




10 938

P. E. LIPPENS AND M. LANNOO 39

TABLE II. Band-structure energies in eV at the symmetry points, used for the calculation of the

tight-binding parameters (from Refs. 20-26).

ry ry 2 X3 X3 X X
Cds —12.2 2.5 6.4 —11.8 —4.8 —1.8 4.6 5.0
ZnS —14.2 3.7 8.0 —13.0 —4.0 —1.6 5.2 5.8

Duke?®?® have calculated the band structures of CdS and
ZnS with an sp> model. They have used another parame-
trization scheme but similar energy values to fit their pa-
rameters except for ZnS. They have considered
E(XY)=—5.9 eV in good agreement with the experi-
mental data but not with the pseudopotential calcula-
tions. However, this point is not of real importance for
our calculation because of its large negative value com-
pared with the variations of the crystallite gap. Except
for this point, the general shape of their valence bands for
the two materials is similar to ours.

The lowest conduction band is better described with
the sp3s* model than with the sp3 model.’® However,
this band is still less accurate than in other calculations
which use, for example, the pseudopotentials’>?* or the
local-density-functional formalism.”® With the tight-
binding model, the lowest conduction band of ZnS and
CdS varies less steeply along the direction A (I'§—X9).
By comparison with more accurate results, a maximum
underestimation of about 1 eV is observed. Thus, the
band gap of small crystallites at a given diameter d ~k !
will be also underestimated.

All the eigenvalues are computed for crystallites with
less than five shells (83 atoms). In this case we have
verified that the results of the recursion method are ex-
actly the same as those obtained by a direct diagonaliza-
tion. For bigger crystals the number of recursion
coefficients is limited to 60 per starting orbital. We think
that this number is sufficient for at least two reasons.
First, the band gap is hardly modified by additional itera-

TABLE III. Tight-binding parameters in eV for CdS and
ZnS. The notations of Vogl et al. (Ref. 19) are used. The index
a (c) refers to anion (cation) and s, p, s ¥, x, and y are the orbital
notations.

Cds ZnS
E(s,a) —11.53 —11.61
E(p,a) 0.53 1.48
E(s,c) 1.83 1.11
E(p,c) 5.87 6.52
E(s*,a) 7.13 8.08
E(s*c) 6.87 8.02
V(s,s) —3.07 —6.30
Vix,x) 1.76 3.11
Vix,y) 4.23 5.00
V (sa,pc) 2.17 5.16
V(sc,pa) 5.48 5.17
V(s*a,pc) 1.99 2.89
V(s*c,pa) 3.06 1.75

tions. Second, as we will see at the end of this section,
the variations of the gap show a correct decrease with
growing size. From a number of numerical tests we have
verified that a precision of a few percent can be expected
for the values of the band edges.

The TVB and the BCB are related to the ionization po-
tential and the electronic affinity, respectively. Their
variations as a function of the crystallite diameter are
plotted in Fig. 1 for CdS and Fig. 2 for ZnS. Note that
we have taken for these figures the origin of the energies
at the bulk band edges. The diameter is defined by
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FIG. 1. Variations of the band edges as a function of the di-
ameter for CdS. The origins are taken at the bulk values. The
tight-binding results are given for the top of the valence band E,
(X) and for the bottom of the conduction band AE, =E —2.5
eV (+). The dashed curves are the results of the effective-mass
approximation.
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FIG. 2. Variations of the band edges as a function of the di-
ameter for ZnS. The origins are taken at the bulk values. The
tight-binding results are given for the top of the valence band E,
(X) and for the bottom of the conduction band AE,=E_.—3.7
eV (+). The dashed curves are the results of the effective-mass
approximation.

a~5.41 A for ZnS (Ref. 30). We have considered crys-
tallites with the anion S at the central site and sizes in-
creasing from 17 to 2563 atoms. The number of shells,
ng, of atoms N, and the diameter d are given in Table IV.

The tight-binding results (crosses and pluses on the
figures) show an oscillatory behavior as the diameter in-
creases. Let us consider, for example, the three smallest
crystallites of CdS. The TVB increases first by 0.8 eV

TABLE 1IV. Correspondence between the number of slolells,
ng, the number of atoms, N, and the average diameter d in A for
CdS and ZnS crystallites.

ng N d(CdS) d(ZnS)
3 17 9.3 8.6
4 41 12.4 11.6
5 83 15.7 14.6
6 147 19.1 17.7
7 239 22.4 20.8
8 363 25.8 23.9
9 525 29.1 27.1
10 729 325 30.2
11 981 35.9 333
12 1285 393 36.5
13 1647 42.6 39.6
14 2071 46.0 42.8
15 2563 494 45.9
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and then by 0.1 eV. At the same time, the BCB decreases
by about 0.1 eV and then by 0.5 eV. A simple explana-
tion can be given by realizing that the TVB is of anion
type and the BCB of cation type. The surface of the
smallest cluster (17 atoms) is formed by anions. The next
cluster (41 atoms) is obtained by connecting one shell of
cations. Since only the interactions between the first-
nearest neighbors are taken into account, the TVB is
modified but not the BCB. In fact, the BCB, which is not
purely of cation type, is weakly changed. The cluster of
83 atoms is obtained by connecting one shell of anions to
the former cluster and the BCB is strongly modified.
Two points confirm this interpretation. First, we have
calculated the energy levels by changing the type of the
central atom to cation instead of anion. We have ob-
tained behavior which is similar but shifted by one shell.
For example, the BCB decreases first by 0.7 eV and then
by 0.1 eV for the three smallest crystallite sizes con-
sidered here. Second, we have calculated the levels for Si,
a purely covalent crystal, and no significant discontinuity
has been observed. Thus, the oscillations of the band
edges are mainly related to the ionic character of the
crystals and to the limited extension of the interactions.
This effect would be certainly reduced with more distant
interactions. The same degeneracy as for the infinite
crystal is obtained: nondegenerate for the BCB and triply
degenerate for the TVB.

As mentioned in the Introduction, all the published
calculations concerning the electronic properties of small
semiconductor crystallites are based upon the effective-
mass approximation. In the next section we compare
some of their results with ours. But at first, we determine
the band edges with the same level of approximation. We
consider a spherical well of infinite depth and assimilate
the ground state with the band edges. We obtain for the
TVB level E, and the BCB level E,.:

2,2
E,(d)=—22T_ (sa)
mhd
_ 28
Ed)= 2T A E ) (5b)

We have taken the origin of the energies at the TVB and
consequently E_ (o) is the bulk band gap. In order to be
consistent with the tight-binding calculation, the effective
masses are deduced from the band structure obtained
with the parameters of Table III. Since the BCB of
infinite semiconductors is isotropic and nondegenerate,
m/J is easily found. On the other hand, the TVB is triply
degenerate and m;’ cannot be obtained in the same sim-
ple way. In fact, three parameters are required to de-
scribe the valence band closer to its top>"3? and a single-
band model can just give a rough description. However,
as for the published calculations, we use it and we take
for m;* the heavy-hole mass defined by Lawaetz.’* The
results are given in Table V and a reasonably good agree-
ment with other published values is obtained.

The variations of Egs. (5a) and (5b) are plotted in Figs.
1 and 2 (dashed curves). The BCB obtained with the
tight-binding calculation is strongly overestimated. This
can be understood from the band-structure scheme. By
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TABLE V. Values of the effective masses for the electron m *
and the hole m;*. The values, calculated from the band struc-
tures with the tight-binding parameters of Table III, are given
in the first row. The other values have been published else-
where.

Ref. m*(CdS) m;F(CdS) m ¥ (ZnS) m; (ZnS)
this 0.18 0.53 0.42 0.61
work
3,8 0.19 0.8 0.25 0.59
30 0.18 0.28 1.76
33 0.20 0.39

setting d =27 /k, Eq. (5b) approximates the lowest con-
duction band closer to its minimum I'{ by a parabolic
curve. As k increases, this curve varies more steeply than
the lowest conduction band. An overestimation of 10%
is obtained for ka~0.19 (CdS) and ka ~0.23 (ZnS).
From these values we can deduce a rough evaluation of
the diameter for which the effective-mass approximation
fails: d ~190 A (CdS) and d ~150 A (ZnS). Thus, quan-
titative results can be expected with this approximation
for large diameters. For d ~50 A the error is about 80%
(CdS) and we conclude that, in the size range of interest,
inaccurate results will be obtained with the effective-mass
approximation. The comparison for the TVB between
the two approaches is not easy, since the single-band
effective-mass model cannot lead to a good description of
the valence band. Thus, the agreement which can be ob-
served in Fig. 1 for CdS and the weak underestimation of
the tight-binding results which occurs in Fig. 2 for ZnS
are somewhat fortuitous. With a more elaborate
effective-mass model, which would describe the three
highest valence bands closer to the I'{s point, a similar
behavior as for the BCB would be observed. In this case,
the absolute value of the TVB of small crystallites ob-
tained by the tight-binding calculation would be overes-
timated by that of the effective-mass calculation.

The band gap is calculated from the previous tight-
binding results and plotted as a function of the diameter
in Fig. 3 for CdS and Fig. 4 for ZnS (crosses). As for the
band edges, an oscillatory behavior is observed. We have
also plotted the continuous variations between the com-
puted points in order to evaluate the band gap for all di-
ameters (solid line). The comparison with the results of
the effective-mass model obtained from Egs. (5a) and (5b)
(dashed line) reveals large discrepancies, especially for the
smallest diameters. For example, a differenge of about
0.5 eV is observed for CdS crystallites of 30 A diameter.
In fact, this difference must be larger with a more accu-
rate effective-mass model. It is clear that the results ob-
tained with the two methods must converge as the diame-
ter of the crystallites increases. This behavior is observed
for the BCB but not for the TVB because of the inade-
quacy of the effective-mass model.

IV. DISCUSSION

The band gap of CdS and ZnS crystallites cannot be
easily obtained from the optical-absorption spectra since
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FIG. 3. Variations of the band gap as a function of the diam-
eter for CdS. The solid line represents the expected values ob-
tained from the tight-binding results (X) and the dashed curve
from the effective-mass approximation.

an exciton peak exists at the edge.! 7 For a comparison
with experiments we have to determine the peak position.
This can be obtained by adding the binding energy of the
exciton to the energy gap computed in the previous sec-
tion. A simple evaluation of the binding energy is given
by the two last terms of Eq. (1). Since the correlation
term is negligible, the binding energy of the exciton is
given by the average value of the Coulomb energy for s-
type orbitals, which does not depend on the effective
masses and varies as d ..

The variations of the exciton peak position as a func-
tion of the diameter are plotted in Fig. 5 for CdS. The re-
sults of the tight-binding calculation (solid line) and of
the effective-mass model (dashed line) as well as the ex-
perimental data points of Refs. 3 and 34 (squares and tri-
angles) are given. The comparison between the two
theoretical approaches reveals the same features as for
the crystallite band gap. The results of the tight-binding
calculation are overestimated by those of the effective-

6.2}
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FIG. 4. Variations of the band gap as a function of the diam-
eter for ZnS. The solid line represents the expected values ob-
tained from the tight-binding results (X) and the dashed curve
from the effective-mass approximation.
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FIG. 5. Comparison with experimental data for CdS. The
tight-binding results are given by the solid curve and those of
the effective-mass approximation [Eq. (1)] by the dashed curve.
The experimental data are the positions of the exciton peak
given in Refs. 3 (squares) and 31 (triangles).

mass model, but the two approaches tend to converge as
the diameter increases.

The comparison between the experimental data and the
effective-mass calculation reveals a good agreement for
d ~40 A. 1t is clear from the previous discussion on the
validity of the effective-mass model that this agreement is
somewhat fortuitous. In fact, a more accurate model in-
cluding the three valence bands near the I'{5 point would
provide an overestimation of the experimental data. This
agreement fails as the diameter decreases, and the tight-
binding calculation gives better results. For the CdS
crystallites of 25 A diameter, the exciton peak is observed
at about 3.4 eV, the tight-binding calculation gives 3.1
eV, and the effective-mass model 3.9 eV (see Fig. 5).
Smaller sizes have been experimentally obtained for the
ZnS crystallites. For 20 A diameter Rossetti et al.* have
observed the exciton peak at 4.4 eV and they have evalu-
ated its position from an effective-mass model to 5.5 eV.
Our tight-binding calculation gives a value of 4.0 eV, in
better agreement with the experimental data. However,
for the two materials and for all the diameters, the exper-
imental values of the exciton energy level are always un-
derestimated by the tight-binding model.

At the present time the discrepancies between our re-
sults and the experimental data are not clear. However,
our model contains some assumptions which could ex-
plain them. First, the shape and the surface structure of
the crystallites have been chosen in order to facilitate the
determination of the computed values of the gap. These
two features are not accurately characterized by experi-
ments. It seems that the shape is quasispherical and that
the dangling bonds are saturated by molecules of the col-
loid. In our calculation the crystallites are built by con-
necting the successive shells of first-nearest neighbors and
the dangling sp> orbitals are removed by a computer pro-
gram. It is difficult to estimate the effect of the shape and
of the surface atomic structure on the energy gap. How-
ever, we think that our model must give a good approxi-
mation of the real crystallites. Second, the binding ener-
gy is calculated in a simple way and is certainly overes-
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timated. Nevertheless, the error must be lower than a
tenth of an electron volt and cannot explain the observed
difference. Third, the band gap of the crystallites is
strongly dependent on the values of the highest valence
band and of the lowest conduction band of the bulk ma-
terial. By comparison with the band structures obtained
by more elaborate calculations,?> 2% the sp3 * model
gives a good description of the highest valence band but
underestimates the lowest conduction band in some
places. For CdS a difference of about 1.0 eV is found
halfway between I'{5 and X{. If we assume that k=2m/d
we obtain in this point d ~12 A. As k decreases this
difference also decreases but it is clear that a difference of
several tenths of an electron volt can be expected for
d ~30 A. We have tried other sets of tight-binding pa-
rameters but no real improvement has been obtained. It
seems that the sp3s* model cannot produce deep curva-
ture in the conduction band. A more elaborate tight-
binding model (with more parameters), which would pro-
vide a better description of the lowest conduction band,
will give more accurate values of the crystallite band gap.

V. CONCLUSIONS

We have used the recursion method and the tight-
binding approximation to calculate the band gap of small
CdS and ZnS crystals. The position of the exciton peak,
which is observed in the optical-absorption spectra, is
then determined by adding to this band gap the binding
energy evaluated in a simple approximation. It has been
shown that the calculations based on the effective-mass
approximation strongly overestimate the band gap for the
smallest sizes. The discrepancies between our results and
some experimental data are attributed to the inability of
the sp3s* model to give a fully accurate description of the
lowest conduction band. However, our approach pro-
vides correct semiquantitative results and appears as an
appropriate tool to study the size effect on the electronic
properties of small semiconductor crystallites.

APPENDIX

The sp3s* model has 13 empirical parameters. They
can be calculated in different ways, and we describe our
approach, which is similar to that of Vogl et al.'® The
parameters are fitted on six atomic orbital energies and
on the seven points of the band structure given in Table
II. The same notations as in Ref. 19 are used. The
intra-atomic energies are given by

E(s,i)=3{E(I')+E()+B,[w(s,a)—w(s,c)]} ,
(A1)

E (p,i)=1{E(T{5)+B,[w(p,a)—w(p,c)]} , (A2)

E(s*,i)=E(p,i)—[w(p,i)—w(s*,i], (A3)

where i stands for a (anion) or ¢ (cation). In the first two
expressions we have B, =—B,,=0.8 and B,,=—B,
=0.6. These values as well as the atomic-orbital energies
w are taken from Ref. 19. The interatomic energies are
given by
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V(s,s)=—L{[E(T{)—E(I'Y)]*~[E(s,c)—E(s,a)]*}'/*, (A4)
V(x,x)=[E(p,a)E (p,c)]'/?, (AS5)
V(x,y)="L{[E(p,a)+E (p,c)—2E (X{)*—[E (p,c)—E (p,a) }}/?, (A6)

[E (5,0)—E (X$)]LE (s,0)—E(X)E (p,c)+E(s*,a)—E(X$)—E(x)] |7
V(sa,pc)= - , (A7)
E(s,a)—E(s*,a)
[E(s,0)—E(X$)[E (s,0)—E(X)][E (p,a) +E(s*,0)—E(X$)—E(x)] |
V(sc,pa)= . (A8)
E(s,c)—E(s*,c)

The parameter V(s*a,pc) is obtained from Eq. (A7) by
substituting E (s,a) for E(s*,a) and E (s*,a) for E (s,a).
In the same way, the parameter V(s*c,pa) is obtained
from Eq. (A8) by inverting E(s,c) and E(s*,c). Note
that our parametrization scheme differs from that of Ref.
19 by the four latter expressions. Other points of the

band structure (as L3) as well as other parametrization
schemes can be used (see, for example, Refs. 27-29 for
the sp? model). We have verified in some cases that other
sets of parameters do not noticeably improve the band
structures.
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