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Theoretical analysis of Raman spectra of finite-stage Si/Si-Ge Fibonacci superlattices
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Raman-scattering results for acoustic phonons in Si/Ge Si, Fibonacci superlattices with low-

stage numbers are analyzed and shown to have significant deviations from the infinite-stage assump-
tion implicit in standard theoretical models. We show that a quantitative description of the ob-
served spectra is possible only with a "sample-specific" theory which takes into account the pres-
ence of the substrate and the free surface. A nearest-neighbor linear-chain model is used to calcu-
late Raman spectra which are in good agreement with experiment.

I. INTRODUCTION

With the advent of growth techniques such as
molecular-beam epitaxy, it has been possible to study the
lattice-dynamical properties of zone-folded acoustic pho-
nons in both periodic and quasiperiodic structures.
Quasiperiodic lattices are rather unique in several ways.
For example, such structures will exhibit a dense distri-
bution of peaks throughout the allowed acoustic frequen-
cy spectrum rather than the evenly spaced doublets found
in periodic superlattices. In addition, the allowed acous-
tic frequencies will depend on the size or stage number of
the lattice. It is thus possib1e to observe size-dependent
frequency shifts in finite quasiperiodic structures whereas
periodic superlattices are expected to primarily exhibit
peak broadening in equivalent-sized structures.

The theory of light scattering from periodic and quasi-
periodic superlattices ' proceeds by imposing periodic
boundary conditions appropriate to an infinitely "large"
superlat tice. Experimental Raman spectra of large super-
lattices reveal zone-folded phonon excitations and are
generally in good agreement with the theory based on
periodic boundary conditions (PBC) for a superlattice
with infinitely many repeats. However, in "low-stage"
superlattices, i.e., superlattices where the number of "re-
peats" is too small to be treated as being "infinite, " the
experimental spectra ' begin to show marked deviations
from PBC and a more "sample-specific" theory becomes
necessary. In fact, in discussing the Raman spectrum of
acoustic phonons in ultrathin multilayer structures
(MLS) of the type (Ge) /(Si)„, where m, n (6, it has
been shown that the observed Raman spectrum can be in-
terpreted only if the surface boundary conditions and the
presence of the substrate are explicitly included in the
calculation. Both the experimental results and the calcu-
lation showed that the continuum of phonons associated
v ith the substrate interact with the long-wavelength
modes of the MLS to produce strong changes in the in-
tensity of the Brillouin peak and generated new, broad,
intense peaks which were interpreted as "resonant" pho-
non modes. '

In this report we present a theoretical analysis of
Raman-scattering results for Geo 2Sio 8/Si multilayer
structures of low-stage Fibonacci superlattices grown by
molecular-beam epitaxy on Si(001) substrates. The Fi-
bonacci structures are made by juxtaposing two materi-
als, A and B, so that the nth-stage superlattice S„ is given
iteratively by the concatenation rule S„=S„&S„2,for
n ) 3, with S, = A and S2= AB, S3= ABA, S4= ABAAB, etc. In Sec. II we will present the low-
frequency Raman spectra for sixth-, eighth-, and tenth-
stage Fibonacci structures, having, respectively, 13, 34,
and 89 type-A and -B blocks. The tenth-stage Fibonacci
structure with 89 blocks contains 55 blocks of type A and
34 blocks of type B and hence contains a total of 2445
monolayers deposited on the Si substrate. Even in this
case, although the positions and intensities of most of the
peaks are well predicted by the analytic theory based on
the infinite-stage result, the low-frequency end close to
the Brillouin peak shows disagreement which can be
corrected only when a sample-specific calculation involv-
ing the substrate and the surface boundary conditions is
carried out. To make a detailed sample-specific theory
we model the substrate and MLS with specific boundary
conditions using a linear-chain model developed in Sec.
III. Such linear-chain models are valid for the [001]-
growth-direction dynamics and the light-scattering ex-
periments reported here are designed to probe vibrational
properties along this direction. Results from these calcu-
lations are presented and concluding remarks are made in
Sec. IV.

II. RAMAN SPECTRA FOR THE LOW-STAGE
FIBONACCI LATTICES

In order to study the progression towards full quasi-
periodicity and to unravel finite-sample eftects we have
modeled experimental Raman spectra of Fibonacci super-
lattices of stage X (i.e. , Sz), with X =6, 8, and 10. These
structures have the triplet structure
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S6 =S4S3S4,

S8 =S6SqS6,

S~p S8S7SS

with S3 = AB A, S4 = AB A AB, and S~=S~ )S~
The type-A blocks, being of Gep 2Sip 8 have a small lattice
mismatch of about 0.84go with respect to the Si substrate
and the type-B layers which are also of pure Si. Note
that all the samples studied here (i.e., S6, Ss, and S,o)
have an end surface (top surface) of material B (i.e., Si).

0
The Raman spectra were obtained with 5145- A excita-

tion at room temperature with the samples under vacuum
in a backscattering geometry. Data collection times
varied from 20 to approximately 80 h depending on the
stage number of the sample. The power at the sample
was 300 mW. The raw spectra have been reported previ-
ously in Ref. 4.

In Fig. 1 [panel a] we present the low-frequency part
(co (50 cm ') of the fitted experimental Raman spectrum
for the Fibonacci superlattice S&p. The raw data were
fitted to a series of Gaussian peaks with use of a nonlinear
least-squares routine in which the amplitudes, frequen-
cies, and half-widths were parameters. The Rayleigh-
Brillouin wing and dark noise background were approxi-
mated using a fit with five additional parameters in the

C3M C5 CO

functional form c
&
+c2e ' +c4e ' . Various func-

tional forms for the background were examined, but the
form employed above proved to be the most consistent
when applied to all the data sets. Nevertheless, the pro-
cess of removing the Rayleigh-Brillouin wing is not
unique, and both the width and intensity of the shoulder
on the wing seen around 10 cm ' varies between fits with
equal constrained error specifications by slightly varying
the background parameters. This should be borne in
mind when viewing the essential parts of the spectra with
background removed as shown in the a panels of Figs.
2 —4. Although the intensity of the first peak at co=10
cm ' is sensitive to the functional form used to remove
the background and the Rayleigh-Brillouin scattering, we
believe that the relative intensities in the S6, S8, and S,p

cases are reasonably well accounted for. If we ignore the
co=10 cm ' peak for the moment, we note that the S6
spectrum is radically different from the S,p spectrum,
both in its qualitative appearance and in its detailed
structure. The S8 spectrum is qualitatively closer to the
S&p spectrum.

Panel d of Figs. 2 —4 shows the spectrum calculated in
the usual manner, by assuming that we can replace the
finite S&-Fibonacci problem by an infinite periodic super-
lattice where the repeating subunit is the finite multilayer
structure given by Sz. We shall denote this PBC model
by Sz '. The spectrum for Sz ' can be calculated, assum-
ing a step-function variation of the photoelastic constants
P~ and P~ for the phonons as in Ref. 2. The calculation
can be done numerically by evaluating Eq. (2) of Ref. 2.
Alternatively, an analytic formula similar to Eq. (10),
Ref. 2 can be derived via the projection technique by
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FIG. 1. Smoothed Raman spectrum obtained from nonlinear
least-squares curve fitting (panel a) for the tenth-stage Fibonacci

0

structure taken with 5145-A excitation. The instrument resolu-

tion was 2.5 cm ', and the Rayleigh-Brillouin wing has not
been removed. Panel b shows a calculated Raman spectrum for
a finite Fibonacci lattice using the linear-chain model including
1000 monolayers of substrate and a free-surface (o =0) bound-

ary condition.
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FIG. 2. Curve fitted and calculated Raman spectra for the
tenth-stage Fibonacci structure. Panel a shows the smoothed
spectrum without the Rayleigh-Brillouin wing. Panels b and c
show calculations using the linear-chain model which includes
substrate and surface boundary effects: b, free surface, o. =0 in
Eq. (2) of text; c, anchored surface, o.=1. Panel d shows the
periodic approximation S',o'.
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choosing the projection axis g (axis and notation of Fig.
2, Ref. 2) such that cot 9=F&,d~ i(F& ~dtt ) where dz
and d~ are the lengths of the type-2 and- B blocks while

Fz &
and F& 2 are the Fibonacci numbers correspond-

ing to the number of type-A and -B blocks, respectively,
in the Nth stage Fibonacci lattice (for example, for N =8,

FIG. 3. Curve fitted and calculated Raman spectra for the
eighth-stage Fibonacci structure. Panel a shows the smoothed
spectrum without the Rayleigh-Brillouin wing. Panels b and c
show calculations using the linear-chain model which include
substrate and surface boundary effects: b, free surface; c, an-
chored surface. Panel d shows the periodic approximation S8 '.

F&,=21, and Ftv &=13). In other words, the Projec-
tion using the irrational number r = ( I +&5 ) /2 is re-
placed by the rational approximation F~, /F~
[(N —1)th convergent] corresponding to the stage ¹

The width of the projection strip also has to be adjusted
in the same manner. Panel d of Figs. 2 —4 was obtained
by direct numerical evaluation, including a Lorentzian
broadening of 1 cm ', and it is clear that the calculated
spectra are essentially independent of the stage number X
(for sufficiently large N) Th. at is, S6 ' is already very
similar to S~ ' where X~~. Thus the theory of the
periodically extended S&-Fibonacci subunit is of little
value in explaining the observed experimental progres-
sion shown in panel a of the figures. Even the spectrum
of S&o with 2445 monolayers is poorly predicted by the
standard theory [i.e., the S',o' model] in that the intensi-
ties are manifestly incorrect. Straightforward elabora-
tions of the model involving, say, replacement of the con-
tinuum approximation for the phonon modes by an ex-
plicitly calculated mode spectrum for the S',o helps mar-
ginally, but the experimental spectra demand a more
sample-specific theory.

III. THE LINEAR-CHAIN MODEL

The Raman spectra of ultrathin multilayer structures
grown on Si[001] substrates were discussed in Ref. 5.
The interpretation of the experimental spectra required a
sample-specific theory where the presence of the sub-
strate as well as a capping layer sandwiching the multi-
layer structure (MLS) was explicitly taken into account.
In the present problem we have a substrate and MLS, but
no capping layer. However, the top layer of the MLS es-
tablishes a surface boundary condition on the vibrational
problem. Similarly the Fourier transformations involved
in the light-scattering problem now involve a finite
domain extending from the surface layer (top of the MLS)
to the first monolayer of the substrate.

To model the longitudinal-phonon spectrum along the
[001] direction we use a linear-chain model with
nearest-neighbor coupling f. Thus in the present prob-
lem we have ftt for interactions between two neighboring
Si monolayers of mass mt' and similarly f„ for the alloy
layers of average mass m~. The first Si atom (i.e., mono-
layer) of the substrate is assumed to be fully anchored,
with an equation of motion

mBz1 fB(z2 zl ) fBz 1

0 10 20 30
A~ (cm'j

40 50

m, z, =
fthm (z, ,

—z, ) fez,o—(2)

where z is the growth direction, and mz is the mass of the
first substrate monolayer (Si atom). Note that z, , zz, etc. ,
are the longitudinal displacements of the respective atom-
ic layers. The equation of motion of the surface mono-
layer U is given by

FIG. 4. Curve fitted and calculated Raman spectra for the
sixth-stage Fibonacci structure. Panel a shows the smoothed
spectrum without the Rayleigh-Brillouin wing. Panels b and c
show calculations using the linear-chain model which include
substrate and surface boundary effects: b, free surface; c, an-

chored surface. Panel d shows the periodic approximation S6 '.

where we have introduced a parameter o. which could be
set to zero for a completely free surface, while an an-
chored surface would require o to be unity (since the ac-
tual surface may be oxidized or otherwise affected, the
value of o. may be some value di6'erent from zero even for
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I(co) ~ g r /7T

(co —co, ) +I"

a nominally free surface).
Since we are interested in the long-wavelength phonon

spectrum (ai(50 cm ') further simplification in Eqs. (1)
and (2) can be made. For instance, instead of writing f„
and fe in the type-3 and Bla-yers of the multilayer part,
and average values f„ii =0.5(f„+fit ) for the bonds
across an A-B interface, we used an average force con-
stant f for the coupling between any two monolayers in
the whole structure. The substrate was modeled by lz
layers of Si with i+=1000. The value of f was fixed by
choosing it to reproduce the experimental Brillouin fre-
quency (co=5.3 cm ') and was found to be 1.616X10
dyn/cm, as compared with the "bulk" value of 1.8X 10
dyn/cm. If lz were increased, f increases slowly towards
the bulk value. We have retained lz =1000 in the follow-
ing calculations to keep the dynamical problem small.
The substrate plus MLS will contain L = lz+lM„s layers.
Thus, for the tenth-stage Fibonacci structure we have
L =3445 with I& =1000 for the substrate. The L XL ma-
trix defining the dynamical problem is tridiagonal and
can be easily solved to give the mode frequencies co and
the mode amplitudes u (z).

The nominal thicknesses based on x-ray diffraction
were 44.0 A (32 monolayers) for A and 29.9 A (22 mono-
layers) for B. The best fit to experiment, from the present
study, gives 29 and 25 monolayers, respectively, for type-
A and -B layers. It should be noted, however, that the
discrepancy between the x-ray diffraction block width
determination and the values used in the fits are model
dependent insofar as only one force constant is used in
the linear-chain model to describe both the Ge Si, and
Si layers. In effect the layer widths serve as de facto
fitting parameters.

The theoretical Raman spectrum is calculated with use
of the modes co, amplitudes u, (z), and a photoelastic
coupling mechanism. That is, if the change in the photon
momentum in the Raman scattering is q, the intensity of
the Raman scattered light is given by

n(co )+1

blocks), while a value of P„ is assigned to the Geo 2Sio 8

layers (type-A blocks). Values of 1000 and 500 were used
for P~ and Pz, respectively. The intensity is mostly con-
trolled by the ratio Pz/P~, while the force constants and
the surface boundary condition (parameter o) also play a
role via their effect on the phonon spectrum.

IV. DISCUSSION OF RESULTS

In this section we compare the prediction of the
linear-chain model with the curve-fitted experimental
spectra. The calculated spectra for the Fibonacci struc-
tures with ten, eight, and six stages are shown in panel b
of Figs. 2 —4, respectively, with the surface layer taken to
be completely free (cr =0). In panel c we show the results
of the calculation if the surface monolayer is assumed to
be anchored (cr =1). It is clear that the spectrum calcu-
lated using the free-surface boundary condition gives
good agreement with the experimental spectrum in all
three cases, where the same force constant and layer
thicknesses (for layers A and B) are used in all three cal-
culations. The large width of the first peak ( =10 cm ')
in Fig. 2 (experimental curve) is partly an artifact of the
procedure used to remove the background Rayleigh and
Brillouin wings. If we return to Fig. 1, panel b shows the
calculated S&o spectrum inclusive of the Rayleigh-
Brillouin wing, to be compared with the full experimental
spectrum of panel a of the same figure. The calculated
spectrum is for the free surface boundary condition

2
c)u, (z)

X j e 'q'P(z) dz
0 az

(3)

where I is a broadening parameter ( =1 cm ') and n (co )

is the Bose factor. The Fourier transform extends from
to + ~ in the usual theory, but here, the total

length of the structure consisting of l~+lMLs layers is
d =a s; l& +d MLs where a» is the silicon monolayer thick-
ness (1.36 A), while dMLs is the thickness of the multilay-
er structure. Since the multilayer structures were made
up of Geo zSio 8 blocks and pure Si blocks, the monolayer
thickness everywhere is essentially almost the same as in
pure Si. The calculated spectrum is found to be insensi-
tive to local variations in the monolayer thickness just as
it was found adequate to use an average force constant f
instead of f„,f~, and f„ti over the range of frequencies
considered here. In Eq. (3) the photoelastic coupling con-
stant is P(z), and takes an arbitrary constant value of Pii
in the silicon substrate, and in the silicon layers (type-B
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FIG. 5. Comparison of spectra calculated with use of the
linear-chain model with substrate (solid curves) and without
substrate (dashed curves) for sixth-, eighth-, and tenth-stage Fi-
bonacci superlattices including a free-surface boundary condi-
tion (o =0).
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(o =0).
In Ref. 5, where (Ge) /(Si)„ultrathin superlattices

were studied it was found that the outer surface (Si) of
the MLS had to be modeled as a slightly constrained
(o =O. I) surface rather than a free (o =0) surface. In
the present MLS the outer surface is also a Si layer. Un-
like Ref. 5, here we find the best agreement with experi-
ment using the free-surface boundary condition cr =0.

In order to understand the role of the substrate we
have calculate the Raman spectrum with and without the
substrate, with the first (bottom) layer anchored and the
surface (top) layer free (o =0). The results of the calcula-
tions are shown as solid (with substrate) and dashed
(without substrate) curves in Fig. 5 for S6, Ss, and S|o.
The calculation for S,o shows that a finite multilayer

without a substrate, but with the free-surface boundary
condition, is better than the S&p calculation shown in

panel d of Fig. 2. In the case of S6 we see that an ex-
tremely high intensity attributed to the cu = 10-cm ' peak
is moderated by the presence of the substrate and
enhanced by the presence of the free surface.

In conclusion, we have shown that even for relatively
large-stage multilayer structures like a tenth-stage Fi-
bonacci superlattice, the Raman spectrum at the low-
frequency end is sensitive to sample-specific aspects asso-
ciated with the surface boundary conditions and the pres-
ence (or absence) of the substrate. The sample specificity
appears both in the calculation of the phonon modes and
amplitudes, and also in the calculation of the intensity via
the photoelastic coupling model.
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