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Realistic model calculations on the absorption spectra of semiconductor superlattices are present-
ed. Emphasis is put on the analysis of line shapes of various peak structures arising from discrete
excitonic states of one pair of subbands coupled with the excitonic (discrete and continuum) states
associated with other pairs of subbands. The angle-dependent valence-band mixing and the final-
state interaction effects are properly taken into account via the k-space sampling technique. Our re-
sults are in excellent agreement with recent high-resolution photoluminescence excitation spectra
for a number of GaAs-Al, Ga,_, As quantum wells and superlattices.

I. INTRODUCTION

Optical measurements including photoabsorption, pho-
toluminescence, and Raman scattering have been widely
used for probing the electronic states of superlattices and
quantum wells. The general features in the absorption
spectra for a quantum well can be easily interpreted by
using a simple effective-mass (particle-in-a-box) model,!
which assumes parabolic band structures for both the
electrons and holes.. In this model, the oscillator
strengths for the band-to-band transitions are proportion-
al to

an’E<fn|gn’)an8nn' ’ (1)

where f, and g, are the envelope functions of the nth
electron and hole subbands, respectively. Thus the inter-
band transitions are allowed only when the conduction-
and valence-subband states have the same principal quan-
tum number. Associated with each pair of conduction
and valence subbands there exists an exciton state which
appears in the absorption spectrum as a prominent peak.
Ignoring the coupling between excitonic states derived
from different pairs of conduction and valence subbands,
one expects the An =0 selection rule to hold for the exci-
tonic transitions as well. Indeed, most experimental data
indicate that An =0 excitonic transitions are at least an
order of magnitude stronger than the other excitonic
transitions which violate this selection rule.

Recent studies®? of the electronic and optical proper-
ties of semiconducting quantum wells have revealed that
the mixing of heavy- and light-hole components
(valence-band mixing) in the quantum well (or superlat-
tice) states can lead to An7=0 (forbidden) interband tran-
sitions with strengths much larger than those expected
from the simple particle-in-the-box model. The most
pronounced An 0 transition is associated with the exci-
tonic states involving the second conduction subband
(CB2) and the first light-hole (LH1) subband which mix
strongly with the second heavy-hole (HH2) subband.
Here the labels LH1 and HH2 are used based on the sym-
metry properties of the subbands at k;=0. When k70
the superlattice valence-band states in general contain ad-
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mixtures of heavy- and light-hole characters. Ignoring
the coupling of excitons derived from different pairs of
subbands but keeping the mixing of heavy- and light-hole
states, Sanders and Chang® calculated the absorption
spectra of GaAs-Al,Ga;_,As quantum wells. The re-
sults indicate that the excitons associated with the second
conduction subbands will contain a doublet structure,
one derived from the HH2 states and the other derived
from the LH1 states. As a result of strong valence-band
mixing, the two peak structures have comparable oscilla-
tor strengths for well width around 111 A. The theoreti-
cal predictions are in reasonable agreement with the
high-resolution photoluminescence excitation spectra.*

The theory of Sanders and Chang, however, omitted
the angular dependence of the mixing coefficient in the
coupled-valence-subband states. Although this does not
affect the valence-subband structures very much, it
changes the selection rules for the exciton angular
momentum. A theory which incorporates the angular
dependence into the excitonic states was recently
developed by Zhu and Huang,’ and the oscillator
strengths of excitonic transitions were analyzed by Zhu.°
It was shown that as a result of the angle-dependent
valence-band mixing, the p-like light-hole states are cou-
pled to the s-like heavy-hole states.® Thus, the 2p LH1-
CB2 exciton is allowed (via the mixing with the 1s HH2-
CB2 exciton), whereas the 1s LH1-CB2 exciton is forbid-
den. However, the oscillator strength for the 2p LHI1-
CB2 exciton calculated in Zhu’s theory is too small to ac-
count for the prominent doublet structure observed by
Miller et al.* As we shall show in this paper, the line
shapes and oscillator strengths for the HH2-CB2 exciton
doublet -can be reproduced theoretically by taking into
account the angle-dependent valence-band mixing and
the coupling of excitonic states (discrete plus continuum)
associated with different pairs of subbands.

There are added complications for the excitonic effect
in semiconductor superlattices where electronic states de-
rived from different quantum wells are coupled to form a
series of minibands instead of discrete energy levels. At
the minizone boundaries, the lowest subband energy
is a maximum along the growth (z) direction, but a
minimum along the in-plane (x or y) direction. Thus, we
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have M, saddle points there. In the past, excitonic effects
associated with the M, saddle point in bulk semiconduc-
tors have attracted a great deal of interest both theoreti-
cally and experimentally.” !> It is found that the reso-
nant photoabsorption peaks can be formed below the sad-
dle point which is called saddle-point excitons.” Theoret-
ical studies of this phenomenon via a contact-potential
model® and adiabatic model'® have been reported. Re-
cently, we have developed a k-space sampling method
which allows quantitative calculations of the absorption
spectra associated with the saddle-point states in solids
including the realistic Coulomb interaction.!* In this pa-
per we further extend this method to calculate the ab-
sorption spectra for a superlattice system, including the
valence-band mixing and the coupling of exciton states
associated with different pairs of subbands.

I1. k-SPACE SAMPLING METHOD FOR EXCITONS
IN SUPERLATTICES

We shall first consider the excitonic states derived from
a pair of conduction and valence subbands of a superlat-
tice. Since the photons absorbed have a negligible
momentum, only excitonic states with zero total momen-
tum are needed in the calculation of absorption
coefficient. In general, the zero-momentum excitonic
states can be written as linear combinations of electron-
hole product states associated with electron wave vector
k and hole wave vector —k. In the k-space sampling
method, we divide the entire Brillouin zone into a large
number of small segments of the same volume. We define
a basis state 3; to be the average of all the electron-hole
product states with wave vector k located inside segment
J» viz.,

B=3 k)Y/Va, )

kEAj

where kEA; means that k belongs to segment j, and
A=>,c Ay We then expand the exciton state ¥ in the
set of basis state {B;}, i.e., ¥=3 ;G (k;)B;. Substituting
this expansion into the Schrdodinger equation for ¥ im-
mediately leads to an eigenvalue problem:

Eﬁj,j,G(kjr)=EG(kj) , (3)
-
with
S S (klH[K)
—  keA; kea; -
H; = a , (4)

where (k|H|k') is the exciton Hamiltonian matrix ele-
ment between the electron-hole product states |k) and
|k’). Solving the above eigenvalue problem yields the en-
ergies and corresponding wave functions for a few low-
lying discrete exciton states and a good sampling of the
continuum states. The absorption coefficient for inter-
band transitions can be written as:

a(ﬁw)=g—2|(\yi|’e‘-p|G)|26(E,»~ha)) : (5)
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where C is a constant, € is the polarization vector, G
denotes the ground state of the solid, and ¥; denotes the
ith excitonic states with energy eigenvalue E;. Here the
label i runs through discrete states as well as continuum
states. Assuming the momentum matrix elements be-
tween the conduction- and valence-band Bloch states to
be independent of k, we obtain

(¥,e-plG)Y=P,,(8)SG(X)

k
where P, (€) is the valence-to-conduction-band momen-
tum matrix element for photons with polarization €.

To minimize the size of the matrix to be diagonalized,
while maintaining the high precision, the symmetry of
the system is fully exploited. Note that the absorption
spectrum only depends on ¥,G(k), which is nonzero
only for states with full symmetry of the system. Within
the approximations used, the superlattice has a circular
symmetry in parallel directions and a reflection symmetry
in the growth direction. We then use symmetrized basis
states labeled by the radial component of k; and the
growth direction component q. A cutoff A is introduced
for the sampling of k. The final results for energies near
the saddle point are insensitive to the choice of the cutoff,
as long as A is large enough.

In order to obtain a smooth absorption spectrum, we
replace the 6 function in Eq. (5) by a Lorentzian function
with a half-width I', viz.,

8(E,—E)~T/{n[(E,—E)+T?]] . ()

The magnitude of I' is roughly equal to the energy spac-
ing of the eigenstates. The calculated results for a series
of ideal superlattices (with spherical subbands) are report-
ed in our previous paper.!® For realistic superlattices, we
must consider the mixing and anisotropy of valence sub-
bands which is the subject of the next section.

III. EXCITON HAMILTONIAN
AND RECURSION METHOD

‘In this section we describe the details of the exciton
Hamiltonian, and we consider the coupling of excitonic
states associated with different pairs of subbands. For su-
perlattices of interest here, such coupling is appreciable
only for excitonic states associated with different valence
subbands, but the same conduction subband. This is be-
cause the energy separation between consecutive conduc-
tion subbands is much larger than the exciton binding en-
ergy.

We denote the superlattice wave vector by k, its pro-
jection in the growth direction by g, and its in-plane pro-
jection by k. In the envelope-function approximation,
we write the nth conduction subband state at wave vector
kz(k”, q) as

k= e
k

z

ikp+ik,z

fn,q(kz)luc> >

where |uc) denotes the zone-center Bloch state of the
well material. Note that due to the supperlattice periodi-
city in the z direction, k, in the above summations must
be equal to a superlattice reciprocal lattice vector, i.e.,
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k,=s(w/d), s=integer ,

where d is the length of the superlattice unit cell. The
Fourier transform of f, ,(k,) satisfies the simple effect-
ive-mass equation:

# 202 a2 '
2me(z)(kn d°/0z )+Ve(Z) f,,,q(Z)

=E{(Ky @) fngl2), (D

where V,(z,) is the superlattice potential for the electron
and m,(z) is the effective electron mass in GaAs or
Al,Ga,_,As depending on where z is located. Note that
in this approximation, the envelope function f, is in-
dependent of k.

The mth valence-subband state at wave vector k (or
hole state at —k) can be written as

ik, p+ik
=3 ‘zzg,:,,k“(k,nuv) , ®)
vk,
where {|u,);v=23,1,—1, —2} are four bulk Bloch states

at the valence-band maximum for the well material. The
envelope function g,, , (k,) satisfies a multiband effective
mass equation in k space, viz.,

z[ H) (ky,k,)—ER(k))8, g (k,)

+ 3 Ak, V(2K dgm o (k)=0, (9)
k;
where V), (z) is the superlattive potential seen by the hole
and H, v, (k”,k ) are matrix elements of the Luttinger-
Kohn Hamlltoman for describing the bulk valence-band
structure.

Note that at k“=0, the off-diagonal elements of the
Luttinger- Kohn Hamiltonian vanish, and the four com-
ponents v=3,1,—1 —3 are decoupled. We define the
mth eigenstate associated with the vth diagonal com-
ponent of the hole Hamiltonian (the zeroth-order hole
Hamiltonian) at k as \

ik, -p+ik
e = 1P gy (k)
The corresponding energy eigenvalues are denoted by

—E,‘,’m,(k). In analogy to the k-p theory, one can solve

J

[Eg(k)—ES (k) —EFIGL (K + 3

m',v' k'

v o (KK, — EH O (k) k, g5, 4 (k
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the superlatttice valence-subband states approximately by
expanding them in terms of the zeroth-order solutions.
In the zeroth-order approximatiom, we have well-defined
heavy-hole (HH) and light-hole (LH) subbands, and they
are labeled according to their characters and principal
quantum numbers. For example, HHn and LHr denote
the nth heavy- and light-hole subbands, respectively.
Similarly, the nth conduction subband will be denoted
CBn. At kn¢0, the off-diagonal elements of the Kohn-
Luttinger Hamiltonian mix the zeroth-order solutions;
thus each valence subband contains admixtures of heavy-
and light-hole characters. Examining the Kohn-
Luttinger Hamiltonian, one finds that the coupling term
is angle dependent.

To make the computation more feasible, we adopt the
axial approximation introduced by Altarelli.'> With this
approximation the valence-subband structure has circular
symmetry in the x-y plane. It can be shown that within
the axial model the angle-dependent coupling can be in-
corporated by explicitly introducing an angle-dependent
phase factor in the envelope functions, viz.,

Gy (ke =B U de 12702

where v=2,1, —1, —2 and ¢ is the angle between k” and
the x axis (the azimuthal angle for k). Thus in an exciton
state, different components of the valence-band envelope
function must be associated with different angular mo-
menta. For example, an s-like v=23 (heavy-hole-like) en-
velope function must be coupled to a p-like v=1 (light-
hole-like) envelope function. As a consequence, the
parity-forbidden LH1-CB2 excitonic transition must have
an orbital angular momentum / =1, as it is coupled to the
s-like HH2-CB2 excitonic transition.

Since different valence subbands are also coupled by
the electron-hole Coulomb interaction, we lose no gen-
erality by expanding the excitonic states in terms of
electron-hole product states containing eigenstates of the

zeroth-order hole Hamiltonian. Thus, the excitonic
states associated with conduction subband n is written as
V=3 36, (¥ W0,y (10)
m,v k

where ¢ is the azimuthal angle of k. It can be shown that
the expansion coefficients G,, , (k) satisfy the following
effective-mass equation:

z )gr‘r’t',q(kz )Sk,k' Gr’:z',v’(k,)=

(11)

where H i,?fn)(k”,kz) are off-diagonal matrix elements of the Kohn-Luttinger Hamiltonian. v denotes the electron-hole

Coulomb interaction whose matrix elements are given by

ZFe 9,9

47re

U e (K3 K)= —sK)vam(q,

where

Fi(q,q") f dz [ (2)f } (z)e 14— 9"z

K) - ,

1

(12)

(13)
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and

h
Fv,mm( q9,

g)= [ dz gy, (g3 p(2)e 1097 (14)

Here K =m/d, and s runs through all integers. The symbol f indicates that the integral over z is restricted in one
period of the superlattice. The integrals in Egs. (13) and (14) can be carried out analytically. For reasons given above,
the coupling between excitonic states associated with different conduction subbands has been ignored. We have as-
sumed that the dielectric constants in the well and barrier materials are the same. This a good approximation, since we
are only interested in GaAs-Ga, _, Al As superlattice with small Al mole fraction. The series in Eq. (12) converges fast
since the terms involved in this series are proportional to 1/s® when s is large. For higher subbands and large period

superlattices, to ensure a good convergence it might be desirable to write the above formula in a different form

ot k) = — 2T [ dz, [ dzy frg ) f g 2
where f, ,(z) and g, ,(z) are the electron and hole en-
velope functions, respectively,

—kyz k,z
1 | —kld, e ! el
Viky,g,z)=-—le 17+ . ,
Il q k“ eK—l eK*_l

and K =(k —iq)d.

The exciton expansion coefficients G,, , (k) can be writ-
ten as the product of a radial function and an angular
function which depends on the orbital angular momen-
tum of the exciton,

i (1 +vy—v)
(qu) +0 ¢,

where v, is the predominant hole component in the exci-
ton state and / is the exciton orbital angular momentum
for that component. For example, for the 2p LH1-CB1
exciton state, we have vy=1 (or —J1) and /=1 (or
I = —1). Note that this exciton state contains admixtures
of s-like heavy-hole conduction-band product states, since
the phase factor equals to 1 when v=23 (or v=—3). In
our k-space sampling method we only have to sample the
radial component of k; and g to determine the coefficients
G..»(k|,q). We can further simplify the problem by ex-
ploiting the reflection symmetry in the growth direction.
We define symmetric and antisymmetric electron-hole

product basis states as

G (k)=

ilg( e ho

|n’l’rrl’1/;l(”’q>i =e ”vk”)q\ym,",_k”»_q

W - Yy —kpg) - (15)
We divide the basis states into two sets, one including
symmetric product states with v=3,—1 and antisym-
metric product states with v=1,—3, and the other in-
cluding antisymmetric product states with v=2,—1 and
symmetric product states with v=1, —%. The two sets of
states are decoupled, and the energy spectra produced by
using either set are the same (Kramer’s degeneracy). In
this scheme, the size of the Hamiltonian is reduced by a
factor of 2. For quantum-well cases, the above Hamil-
tonian can be further simplified. For instance, the cou-
pling between the HH1 and HH2 states due to the
Coulomb interaction vanishes by symmetry.
We shall consider excitonic states with orbital angular
momenta |I/|=0 and 1 (i.e, s- and p-like) only. The

Iw ~|

)gmq(zh)gm o zZWVk,g—q'2z,—z,) ,

f

higher-angular-momentum states are much less impor-
tant in the calculation of the absorption coefficient.®
Thus, the Coulomb matrix elements involving the |/| =2
states are ignored. Due to symmetry, the two sets of ex-
citonic states described by {(s-like, [v[=3), (p-like,
[vI=1)} and {(p-like, |v|=3), (s-like, [v|=1)} are
decoupled. In principle, many zeroth-order valence-
subband states of different m values are needed in the ex-
pansion of the exciton states to obtain accurate results.
In practice, it suffices to include only a few valence sub-
bands for the energy range of interest. For calculating
the absorption spectra we typically include both s- and
p-like excitonic states associated with HH1, HH2, HH3,
LHI1, and LH2 valence subbands. The derivations for the
matrix elements for the kinetic energy terms are straight-
forward, and those for the Coulomb interaction are given
in the Appendix.

Since the number of basis states required to produce an
accurate absorption spectrum is quite large (more than
1000), the brute-force matrix diagonalization is impracti-
cal. From Eq. (5) we see that the absorption coefficient
can be written as the imaginary part of the Green’s func-
tion at r=0. Thus the recursion method!® can be used to
calculate the projected density of states. The recursion
method, or alternatively the Lanczos method, is not suit-
able for obtaining exact energy states except for the band
edges. But it gives a good description of projected densi-
ty of states, and this is just what we are after. In this
method we start from an initial state |0) on which the
density of states is to be projected. The state is then to be
multiplied by the Hamiltonian operator of the system,
and the resulting state is orthogonalized with the previ-
ous ones. This is repeated for N steps, where N is the di-
mension of a finite system. If the dimension of the Ham-
iltonian is infinite, the iteration has to be stopped at some
point and a suitable termination function should be intro-
duced to produce the best results. The Hamiltonian is
thus tridiagonalized, and the Green’s function can be cal-
culated directly by a continued fraction scheme. The al-
gorithm is stated in the following. Let |n ) be the basis
state generated at the nth step and |u,)=H|n). We
define

|1>-*" IuO —ao|0>
0

and
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In +1)=ZI—(|u,,)—anln)—bn_lln-—1)) for n>1
with

an=(n|H|n>=(n|un>
and

bn:(<un|un>_03_b3—l)l/2 >

where |0) is the initial state. The iteration should be
stopped when b, =0. The (tridiagonal) Hamiltonian ma-

]

(0|G(E)|0)=
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trix in the new set of basis states { |[n )} becomes

a, by
by a; b,
by a, b,
H=
bn—l a, bn

The Green’s function projected in state |0) is then given
by

2
bNAl

"E—ay—b}t(E)

where the function ¢(E) represents a termination func-
tion of the continued fraction after N iterations and is
zero if the system is finite. In calculating the Green’s
function a broadening procedure similar to that given in
Eq. (6) is still needed. This can be done by replacing E
with E +iI', where I" is the half width for broadening.
Mathematically, this algorithm is exact, but numerically
it is unstable due to the round-off error so that only the
smallest and the largest eigenvalues are reliable. Many
spurious eigenvalues can be generated. However, this
method gives the projected density of states with good ac-
curacy. If one is to analyze this algorithm, it can be seen
that the Lanczos method is very efficient both in speed
and in storage space. With the use of the recursion
method, our problem is substantially simplified.

The choice of the initial state for the recursion method
is determined by the optical matrix element between the
valence bands and the conduction bands. For example,
for the heavy-hole contributions, the initial state is given
by

— hO (3/2)
10)=3 ¥, W32 1 0nm
m,k

where k under the summation runs over all mesh points
selected. 0,‘,,",1,, v=23,1 are overlap integrals between the

electron and hole envelope functions at k=0, viz.,
Osrn= [ frol2)gmo(2)dz .

In the actual computation, the Hamiltonian is defined in
the electron-hole product states at the selected mesh
points in k space. Thus the initial state is described by a
column vector with components

G,':.,g/z(k)=Of,?,f,2) for all k .

The excitonic states associated with different m, [, and v
will be coupled to the inital states via the exciton Hamil-
tonian as the iteration proceeds. In the calculation of the
absorption coefficient, we multiply the density of states
for the heavy-hole contributions by CE /% and that for
the light-hole contributions by CEp/3%w, where C is
some constant, #iw is the photon energy, and Ej is related
to the momentum matrix element between the s-like
conduction-band state and the x-like valence-band state
at zone center by

Ep=2|{(S|P.|X)|*/m, .

Here m is the free-electron mass. We have assumed a
polarization vector parallel to the x direction (perpendic-
ular to the growth direction). The factor 3 appearing in
the denominator of the prefactor for the LHm-CBn tran-
sitions comes from symmetry considerations for the
spin-orbit—-coupled-valence-band Bloch states.

IV. RESULTS
A. Quantum wells

Figures 1 and 2 show the calculated absorption spectra
(solid curves) of an 102-A GaAs-Alj ,;Gag 73As quantum
well and an 81-A GaAs-Aly ,,Gag 14As quantum well, re-
spectively. The Luttinger parameters used here are taken
from Ref. 17 and the valence-band offset is taken to
be 31% of the band-gap difference of GaAs and
Ga,_,Al,As.!"® The calculations include couplings of all
s- and p-like excitonic (discrete plus continuum) states as-
sociated with the HHI1-CB1, LH1-CB1, HH2-CBI,
HH3-CB1, HH1-CB2, HH2-CB2, and LH1-CB2 transi-
tions. 400 k“ points for each transition are used in the
present calculations.

The corresponding photoluminescence excitation spec-
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FIG. 1. Theoretical absorption spectrum (solid line) and ex-
perimental photoluminescence 0excitation spectrum taken from
Ref. 4 (dashed line) for a 102-A GaAs-Aly ,;Gag 73As quantum
well.

\

GaAs-Al, ,.Ga, ,,As QW
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FIG. 2. Theoretical absorption spectra (solid line) and exper-
imental photoluminescenoce excitation spectrum taken from Ref.
4 (dashed line) for an 81-A GaAs-Alj ,6Gag 74As quantum well.
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tra obtained by Miller et al.* are reproduced (in dashed
curves) for comparison. The most important feature of
these spectra is the doublet structure labeled HH2-CB2.
The splitting is a result of strong mixing of the 1s HH2-
CB2 exciton with the 2p LHI1-CB2 exciton. Without
mixing the 2p LH1-CB2 exciton is forbidden. With mix-
ing, the two exciton states share the oscillator strength of
the HH2-CB2 transition. The overall absorption spectra
predicted by our theory (with no adjustable parameters
other than a uniform broadening of 1.2 meV for CB1 re-
lated transitions and 2.4 meV for CB2 related transitions)
agree well with the experiment for both samples. In par-
ticular, the theory correctly predicts the variation of line
shapes for the doublet structure associated with the
HH2-CB2 transition when the well width changes from
102 A to 81 A. It should be noted that it is important to
include the coupling of discrete exciton states (e.g., p-like
LH1-CB2) with the continuum states of other excitons
(e.g., s-like HH2-CB2). If one only includes the coupling
of discrete excitonic states as was done in the variational
calculations of Zhu,® the oscillator strength of the 2p
LH1-CB2 exciton would be too small to account for the
experimental data.

Another important feature in these figures is the small
hump due to the HH3-CB1 exciton. This exciton is al-
lowed even in the simple effective-mass model without
valence-band mixing, because the overlap of HH3 and
CBI1 envelope functions is nonzero. The square of the
overlap is equal to the ratio of oscillator strength of the
HH3-CBI1 exciton to that of the HH1-CB1 exciton in the
effective-mass model. It can be shown that this overlap is
sensitive to the valence-band offset. For example, the
squared overlap integral for the 102-A case is 0.000 18,
0.0062, and 0.011 for Q,=0.15, 0.31, and 0.4, respective-
ly, where Q, is the ratio of valence-band offset to the
difference of GaAs and Ga;_,Al As band gaps. The
valence-band mixing effect is responsible for the predom-
inant portion of the oscillator strength of the HH3-CB1
exciton.>3 The net effect is that the HH3-CBI exciton
has an oscillator strength of roughly 10% of the HH1-
CBI exciton oscillator strength, for values of Q, between
0.15 and 0.4. Since the discrete HH3-CBI1 exciton state is
sitting in the continua of the HH1-CB1 and LHI1-CBI
transitions, we expect to observe an interesting Fano-
resonance effect.” Our theory described here is capable
of predicting the realistic line shape of such Fano reso-
nances. A close look of the Fano-resonance line shape
due to the mixing of the HH3-CBl exciton with the
HH1-CB1 and LHI1-CB1 continua is shown in Fig. 3.
The dashed line in the figure represents the absorption
coefficient without including the HH3-CB1 transitions.
It is seen that the presence of the HH3-CB1 exciton gives
rise to an asymmetric line shape, and it substantially
modifies the spectrum due to continuum states, a result
expected in Fano’s theory. Unfortunately, it is difficult to
compare this line shape with the experimental data, be-
cause it is sitting on a noisy background.

B. Superlattices

The absorption coefficients for excitonic states associ-
ated with the first conduction subband of a (L, =75 A,
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GaAs-Al, ,,Ga, ,,As QW
L, =102 A
HH3-CB1
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FIG. 3. Theoretical absorption spectra for a 1027A GaAs-
Al ,;Gag 73As quantum well near the HH3-CB1 transition with
(solid curve) and without (dashed curve) the HH3-CB1 contri-
bution.

L;=105 A) GaAs-Alj 13Gag g,As superlattice and a
(L =75 A, Ly =60 A) GaAs-Al, 13,Ga, g,As superlattice
are shown in Fig. 4. The calculations include couplings
of all s- and p-like excitonic (discrete plus continuum)
states associated with the HH1-CB1, LH1-CB1, and
HH2-CBI1 transitions. We refer to this as a three-band
model. In this figure, the dashed curve is due to the set of
excitonic transitions involving predominantly HH1-CB1
s-like states, and the dotted curve is due to the set of exci-
tonic transitions involving predominantly LH1-CB1 s-
like states. The solid curve is the sum of the two. The
vertical lines (dotted for HH1-CB1 and dashed for LH]1-
CB1) mark the onsets of continua and the positions of
saddle points. To test the adequacy of the three-band
model, we compare in Fig. 5 the valence-subband struc-
tures obtained by this model (dashed curves) and those
obtained by solving the full k-p Hamiltonian (the “exact”
model) (solid curves). The comparison shows that with
only three zeroth-order valence-subband states included,
the valence-subband structures are reasonably accurate
for small wave vectors where the excitonic effect is most
important. We have also repeated the calculation with
the inclusion of two additional zeroth-order states (HH3
and HH4). We found that the valence-subband struc-
tures are improved substantially, but the difference in the
absorption spectrum is negligible for the energy range of
interest here.

High-resolution photoluminescence excitation (PLE)
spectra for a large number of GaAs-Al,Ga,_,As super-
lattices including the two cases shown in Fig. 4 have re-
cently been obtained by Song et al.?° Comparing the ab-
sorption spectra for the two cases shown in Fig. 4, we see
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FIG. 4. Theoretical absorption spectra foor GaAs-
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bution; dotted line, LH1-CB1 contribution; solid line, total.
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a clear difference in line shape as we change the well
width from 105 A to 60 A. For the 105-A case, the sub-
band dispersion is negligible, and we have essentially un-
coupled quantum wells. The shoulder structure just
below the LH1-CB1 exciton (marked H) is associated
with the 2s excited state of the HH1-CB1 exciton. For
the 60-A case, the subband dispersion is substantial
(about 6 meV for HH1-CB1 and 14 meV for LH1-CB1),
and we observe line-shape change due to the tunneling of
excitons from one well to another. The most noticeable is
the asymmetric line shape of the secondary peak struc-
tures marked H and L. These structures contain the
closely spaced discrete exciton excited states (with
predominant contribution from the 2s) and the exciton
resonances near the onsets of the continua. These
features were observed by Song et al.,”® and the line
shapes obtained here are in good agreement with the ex-
perimental data. There are two other weak structures
marked H' and L’'. These structures are due to exciton
resonances associated with the M, saddle points. The
structure L’ becomes more noticeable if we include more
k points in our calculation. Evidence of the structure L’
was observed by Song et al.?° The structure H' is hidden
under the LH1-CB1 exciton peak, so it was not resolved
experimentally. In other samples examined by Song

n GaAs-Al, ,,Ga, ,,As SL
’ o
L, =52 A
P
=
)
g
<
<}
! T !
1580 1600 1620 1640 1660
Photon Energy ( meV )
FIG. 6. Theoretical absorption spectra for GaAs-

Al ,3Gag 17As superlattices with owell width Ly, =52 A and bar-
rier widths Lz =140, 65, and 56 A. Dashed line, HH1-CB1 con-
tribution; dotted line, LH1-CB1 contribution; solid line, total.
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et al.?® evidence for the structure H' was observed.

We have also calculated the absorption spectra of a
series of GaAs-Alj »3Gag 7;As superlattices with well
vyidth Ly, =52 A and barrier width Ly =56, 65, and 140
A. The results are shown in Fig. 6. The dashed curves
are due to excitonic transitions involving predominantly
HH1-CBI s-like states, and the dotted curves are due to
excitonic transitions involving predominantly LH1-CB1
s-like states. The solid curve is the sum of the two. The
vertical lines (dotted for HH1-CB1 and dashed for LH1-
CB1) mark the onsets of continua and the positions of
saddle points. Again, the main features other than the
well-known principal exciton peaks include the 2s excited
state followed by exciton resonances associated with the
band minimum (marked by H and L) and the M, saddle-
point exciton resonances (marked by H' and L’). The L’
structures are not quite noticeable, but their presence is
confirmed by magnifying the graph. The H’ structure is
observable for the L; =65 A and 56 A cases, since they
are not hidden under the LH1-CB1 exciton, in contrast to
the case shown in Fig. 4. Photoluminescence excitation
(PLE) spectra of the series of samples have been mea-
sured by Deveaud et al.,?' and the line shapes of the
theoretical spectra presented here are also in excellent
agreement with the experimental data. The structure H’
associated with M saddle-point exciton resonances was
clearly identified for the Lz =65 A case.

V. SUMMARY

In summary, we have incorporated the valence-band-
mixing effect in our k-space sampling method to calculate
the absorption spectra of realistic semiconductor quan-
tum wells and superlattices. The band-mixing effect as
well as the Fano-resonance effect give rise to interesting
line shapes of the excitonic peaks in the absorption spec-
tra. The line shapes predicted by our theoretical calcula-
tions are found in excellent agreement with those ob-
served in the photoluminescence excitation (PLE) spec-
tra.
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APPENDIX: COULOMB MATRIX ELEMENTS
IN THE k-SPACE SAMPLING METHOD

In this Appendix, we provide derivations of the
Coulomb potential matrix elements for the exciton basis
states used in our k-space sampling method [see Eq. (2)].
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For ideal 3D and 2D bulk systems, a basis state 3 ; con-

d 1@ sin(ar;) o Ak
tains the integration of electron-hole product states in a =4 f dr — r 1l 2
cube or square in k-space centered at k;. Let 2a be the =1 !
length of the sides for the cube or square. The matrix ele- a2 o d sinz(ar,») 24
ment between f3; and B; is proportional to the integral =4'= f d’f dr 2 ' ke
= 1
_ . 1 iker—ikrti Aker —gd d+1_2
1= [iea @8 ficn 3K Jdr e ’ =4% f dtlliIlF(tAk)
where Ak =k; —k;. Integrating over k and k', we have where d is the dimensionality;
|
F(t,k)=fw dx e~ Fikxgin2y
:%fomdu f—"" dx e~ ORI ] — cog(2x) ]
=Tf0°°duf°° dxe**(t2+u)x2+ikx(2_62ix_e—2ix)
172 ) ) )
© (k+2) (k—2)
=11 du 2exp |————— |—exp | ———5—— _——
iy T ] Pl s a1 u) l
— ‘/77' fl/tﬂ‘_ ze—wzuz_e—(w-f-l)zuz__e—(w—l)zuz)
where w =k /2a. Integrating by parts, we have
F(t,k) \/ﬂf ‘dul(w+1)%e ~ W0 ( — )2~ TV g2 w0ty
Vit (w+1)? (w—1)? w?
=2 Gtw),
where
G(t,w)=|w+1|erf li:_—ll +|w —1lerf l&t_—”l—ﬂwlerflilf—‘l
+ ‘/1_ t(e—(w+l)2/t2+e—(w—l)z/tz_ze—wz/tz) . (A1)
T
Finally the matrix element between states B; and 3 is
. ‘
j,j' )= = dt G(t, . A2
= 2"1/ IS H (w; (A2

It can be shown that the integral converges when d > 1. The above formula can be also derived from the k space direct-
ly. Since the Fourier transforms of Coulomb function in k space with different dimensions are different, the derivation
given above is more systematic. The derivations given above are for systems lacking spherical symmetry such as the
tight-binding model crystal reported in Ref. 13.

For superlattices with a circular symmetry in the plane, we choose the exciton basis states of orbital angular momen-
tum / to be the average of electron-hole product states over a ring, A; in k space centered at (kﬁ( ) ,4;), viz.,

Bnlmv_ 2 ezld)\l,e k\y k/‘/ﬁ ,
kea,;

m,v, —

where Q=73 Aj=A/ (27)3 with A being the k-space volume of the ring. The Coulomb matrix element between two
exciton basis states Bj-”"‘” and B™" is approximately given by [see Egs. (11) and (12)]

°(q;,9;7—sK)F" (q;,q;,—sK)I"(,j")/Q2m)?, (A3)

Umm v(.] .] )""

where K =1 /d, d is the length of the superlattice period, and
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eilld—¢")
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(A4)

1
(D¢ s 50y— 2 ’ ’
LG, = fkeAjdk”dqfkeAj’dk“dq

In the above integral, k and k' are restricted in rings j and j',

F(e) and F"

Ik||'“k|'|]2+ IQ“‘I"*'SK!Z ’

respectively. Here we have approximated the functions

v,m,m' DY their values at g =g; and ¢'=q;. This is a good approximation as long as the mesh size of g is small

compared to K, since the two functlons are quite smooth over the superlattice minizone. Below, we shall derive approx-

imate expressions for the integrals I'"(j, ') for /=0, and 1.

(i) I=0. We approximate the integral I.°)(j,;') by replacmg the integrand by its value at k= k:‘ and ¢'=gq;. Here
k‘{ ') can be any two-dimensional wave vector with length kr’ because the integral is invariant under any rotation

about the z axis. Thus we have
1
|k“_kifl,)}2+ I‘]—q/"s|2

>

IS(O)(jyj’)’/:" kaA.dk” dq
J

where g, =q;

q,+8,/2 k. 1
1°G,jn=["d P dg [ dk—S——————
L fO ¢pqu_51/2 qfkp P kytla—qpl

= [Tag, [" " ———k’”ﬂq—q“lz
0 "Pdg=82 _Hlg—apl |
where
kys=[(k{+8,/2)*—ki{/" s1n2¢ 1'2—k{/"cosg, ,

—sK. Here we have assumed that k| > k. With the change of variables, k, =k

—k}[i'), we obtain

(AS)

¢, is the azimuthal angle for k,,, 8, is the mesh size for g, 5, is the mesh size for k. The integration over ¢ can be car-
ried out analytically. The final integration over ¢, is carried out numerically.

Alternatively, we can evaluate the integrals “exactly” by converting the integration over both k,q and k’,q’ in Eq.
(A4) to a one-dimensional integral. The resulting expressions are too complicated to be presented here. Furthermore,
we found that the absorption spectra obtained by using the approximate integrals described above are almost identical

to those obtained by using the exact integrals.
(ii) Il =1. For the p-like states, we can write

D i b cos(¢—¢’)
GrV= [ dky [ dki [ dq [ dq’ [ d(p—¢")- b cosd—e] ’ ‘ (A6)
whereczkﬁ%—k” +(g—q')? and b =2k k. Using the relation
bcos(¢—¢') _ c—b _ b
c—bcos(¢—¢') c—bcos(¢p—¢’) c—bcos(p—¢') ’

we immediately obtain

V.= [ awy [ ak [ dq [ g

172

+19,7") . (A7)

The first term on the right-hand side is a smooth function of variables k|,k,q,g’, so it can be approximated by the
average value of the integrand or integrated numerically by Gaussian quadrature techniques.
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